鞘氨醇单胞菌属

仪器信息网鞘氨醇单胞菌属专题为您提供2024年最新鞘氨醇单胞菌属价格报价、厂家品牌的相关信息, 包括鞘氨醇单胞菌属参数、型号等,不管是国产,还是进口品牌的鞘氨醇单胞菌属您都可以在这里找到。 除此之外,仪器信息网还免费为您整合鞘氨醇单胞菌属相关的耗材配件、试剂标物,还有鞘氨醇单胞菌属相关的最新资讯、资料,以及鞘氨醇单胞菌属相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

鞘氨醇单胞菌属相关的资料

鞘氨醇单胞菌属相关的论坛

  • 【原创大赛】我测定植物鞘氨醇的经历(1)

    几年前,我刚刚进入分子生物学领域,接手的实验室鉴定植物鞘氨醇的组分及含量。那个时候,实验室没有相关设备,我的实验是举步维艰。现在闲来无聊,用指尖文字回忆下那段日子。提取植物鞘氨醇的第一步自然是取样,这没什么问题,取完样之后的研磨也没有任何问题。而这之后,我采用的方法伴随一个110的加热16小时,这个16小时的加热着实成为我实验中的一个问题。首先,我不知道应该用什么样的仪器实现这个110度,在我们实验室,只有干燥箱可以达到并控制住这个温度。而我的样品只有3-4 mL,并且还含有2 ml易挥发的溶剂,用普通的离心管盛放我的样品放入干燥箱后,用不了16小时样品就蒸发的没有了,这显然不行。 我听实验室的前辈说,以前做这个实验的师姐是利用沸水浴进行的实验。沸水浴?显然达不到110度呀!他们说其实110度也没那么严格,用沸水浴也可以。好吧,那我也就用沸水浴吧。我从实验室找了一个废弃的但还可以加入的小灭菌锅,加满了水,把我的样品放进去,盖子使劲的拧紧呀,拧紧(盖子经常因为离心管内部的高温而破裂,所以一次实验下来还要换好几次盖子,那实验那叫一个粗糙啊!嘿嘿),然后就像炖肉一样的煮啊煮啊。我记得那时候放小锅的实验室里那叫一个热啊!hoho!而且16个小时下来,要添很多次水呢,我从来都不敢开着锅过夜的,吃饭什么的都得求人帮我看着锅。那段日子呀……后来,大家嫌热,也嫌锅的热气太大,就把我的小锅请出了实验室,放到了走廊里。我就经常在走廊里“开伙”煮我的样品。但是即使如此,这样的日子也没有持续多久,在一个月黑风高的夜晚,我的小破锅被盗了,第二天要用的时候,我发现它不见了,着实难过了很久,因为我找不到另外一个可以替代它的小破锅了。我的实验下一步该怎么办?我只好又一次陷入了沉思和搜索……

  • 求助书籍《聚氨酯弹性体及其应用》和《聚氨酯树脂及其应用》

    1. 书名: 聚氨酯弹性体及其应用 作者:傅明源,孙酣经 编著 出版社:化学工业出版社 书号:7502578455 简介:本书主要阐述了聚氨酯混炼胶、聚氨酯浇注胶和聚氨酯热塑胶的合成配方和工艺、加工配方和工艺的具体数据和计算公式;聚氨酯革、聚氨酯胶黏剂、聚氨酯泡沫弹性体、聚氨酯涂料、聚氨酯水乳胶、聚氨酯灌浆材料和聚氨酯弹性纤维等的制作工艺、反应原理;简要介绍了新型聚氨酯弹性体;各种聚氨酯制品的加工方法及其应用。还介绍了合成聚氨酯的原材料的成品的分析,以及聚氨酯的工业卫生等。书中对TPUR半预聚法生产、聚氨酯革生产、反应注射成型(RIM)和增强的反应注射成型(RRIM)方法的生产作了较多介绍。 \r\n 本书除对第二版内容作适当补充修正外,还增加了聚氨弹性体助剂、聚氨酯预聚体以及田径场地塑胶跑道、篮球、排球、羽毛球和网球场地的聚氨酯塑胶铺面、聚氨酯地板和地板砖、聚氨酯防水材、聚氨酯嵌缝材和聚氨酯防腐材与新世纪展望等内容。 \r\n 本书实用性强,内容丰富,可供从事聚氨酯生产、科研、加工应用的工程技术人员和技术工人使用,也可供大专院校及中专高分子专业的师生参考。2. 书名: 聚氨酯树脂及其应用  ISBN:7502537449  著作者:李绍雄 刘益军  出版社:化学工业  出版日期:2002-05-01    页数:743  内容简介:第1章 绪论1.1 聚氨酯树脂的发展史1.2 我国聚氨酯工业的发展史1.3 国外聚氨酯树脂的生产与市场1.4 国内聚氨酯树脂的生产与市场1.5 聚氨酯树脂的技术发展动态第2章 聚氨酯化学2.1 异氰酸酯基本反应2.2 催化剂及温度对反应的影响2.3 聚氨酯分子结构与性能的关系第3章 基本原料3.1 概述3.2 异氰酸酯3.3 聚酯多元素3.4 聚醚多醇3.5 其它低聚物多元醇3.6 助剂第4章 聚氨酯泡沫塑料4.1 概述4.2 泡沫形成的化学机理4.3 软质聚氨酯泡沫塑料4.4 硬质聚氨酯泡沫塑料4.5 聚氨酯半硬泡4.6 聚氨酯泡沫的阻燃4.7 聚氨酯泡沫塑料的应用第5章 弹性体5.1 概述5.2 弹性体原料及原料对性能的影响5.3 浇注型聚氨酯弹性体5.4 热塑性聚氨酯5.5 混炼型聚氨酯弹性体5.6 聚氨酯弹性体的应用第6章 聚氨酯涂料6.1 概述6.2 聚氨酯涂料的分类与特性6.3 聚氨酯涂料的原料6.4 氨酯油6.5 双组分聚氨酯涂料6.6 封闭型聚氨酯涂料6.7 湿固化型聚氨酯涂料6.8 催化固化型双组分聚氨酯涂料6.9 聚氨酯沥青涂料6.10 聚氨酯弹性涂料6.11 水性聚氨酯涂料6.12 聚氨酯粉体涂料6.13 聚氨酯涂料的应用第7章 聚氨酯胶粘剂7.1 概述7.2 聚氨酯胶粘剂粘接机理7.3 多异氰酸酯胶粘剂7.4 双组分聚氨酯胶粘剂7.5 单组分聚氨酯胶粘剂7.6 聚氨酯胶粘剂7.7 聚氨酯密封胶第8章 聚氨酯人造革与合成革8.1 概述8.2 聚氨酯革的主要原料8.3 干法生产聚氨酯人造革8.4 湿法聚氨酯革第9章 聚氨酯弹性纤维9.1 概述9.2 聚氨酯弹性纤维的基本原理9.3 聚氨酯弹性的纤维的制造9.4 聚氨酯弹性纤维的性能与检验9.5 聚氨酯弹性纤维纱线及应用第10章 聚氨酯铺地材料10.1 概述10.2 主要原料10.3 胶面层浆料制备工艺10.4 聚氨酯跑道的铺设10.5 聚氨酯地板第11章 聚氨酯防水材料11.1 概述11.2 焦油聚氨酯防水材料11.3 沥青聚氨酯防水材料11.4 聚醚型聚氨酯防水材料11.5 聚氨酯防水材料标准和施工11.6 油溶性聚氨酯灌浆材料11.7 水溶性聚氨酯灌浆材料11.8 亲水性聚氨酯材料第12章 水性聚氨酯12.1 概述12.2 水性聚氨酯制备用原料12.3 水性聚氨酯的制备12.4 水性聚氨酯的性能12.5 水性聚氨酯的交联12.6 聚氨酯与其它聚合物共混或共聚分散液12.7 水性聚氨酯的应用第13章 反应注射成型聚氨酯13.1 概述13.2 原料体系13.3 RIM生产设备及工艺参

鞘氨醇单胞菌属相关的方案

  • 补充剂中葡萄糖苷脂酰鞘氨醇的定量
    通过SFC和ELSD对补充剂中源自大米的葡萄糖苷脂酰鞘氨醇进行了定量。SFC不使用高度有害的氯仿作为流动相,而是使用二氧化碳,这不仅提高了安全性,而且还可以在2分钟内对葡萄糖苷脂酰鞘氨醇进行洗脱。此外,通过ELSD进行检测,能够以较高的灵敏度进行分析,其重现性良好。此外,除了氯仿之外,二氧化碳比HPLC所使用的许多有机溶剂价格更为便宜,而且无需花费二氧化碳产生的废液处理成本,因此,其有望降低分析的运行成本。
  • 连翘叶风味爆珠的制备工艺研究
    “山西大学生命科学学院”将连翘叶提取物加入钙离子芯液中,利用冷冻反向成球技术,制备一款连翘叶风味爆珠。通过单因素试验优化爆珠的制备工艺,对爆珠平均粒径、平均膜厚和质构进行检测,并进行跌落测试。通过单因素试验和正交试验优化风味爆珠的芯液配方,并以感官评分为标准评价结果的优劣。本研究可为连翘叶风味爆珠的开发提供理论依据,挖掘连翘叶的营养价值及产品形式,为连翘叶产业经济发展作出一定的贡献。
  • 凯氏定氮仪测定乙醇梭菌蛋白的蛋白质含量
    乙醇梭菌蛋白是一种单细胞蛋白,是以含一氧化碳的工业尾气为原料,由乙醇梭菌为发酵菌种生产的一种新型菌体蛋白。人工合成乙醇梭菌蛋白目前主要应用还是在动物饲料上。乙醇梭菌蛋白饲料不但蛋白质含量高,营养丰富,并且氨基酸结构平衡,易于动物消化,同时还具有优异的饲料蛋白质原料加工特性,富含核苷酸等功能性物质,有利于动物肠道与肝脏的健康。本实验参照《GB/T 6432 饲料中粗蛋白的测定凯氏定氮法》使用凯氏定氮法对乙醇梭菌蛋白中的蛋白质含量进行测定。

鞘氨醇单胞菌属相关的资讯

  • 单细胞拉曼光谱揭示氮循环功能菌研究获新进展
    p   氮是维持生命活动最重要的营养元素之一。氮气是氮元素的丰富来源,但由于性质惰性,不能为生物直接利用。氮的生物地球化学循环是将氮转化成生物可利用形式的关键过程。固氮微生物,包括固氮细菌和固氮古菌,可将惰性的氮气转化成生物可利用的氨态氮或硝态氮。据估计,生物可利用氮的半数由生物固氮过程提供。然而,微生物种类和功能丰富多样,超过99%的环境菌目前无法实现纯培养,因而对环境中固氮菌功能和活性的认识仍非常不足。环境微生物的不可纯培养性,带来了方法学上的挑战。从单细胞水平上研究环境微生物可克服纯培养或富集培养的限制,实现在环境介质下的原位研究。拉曼光谱(包括SERS、常规和共振拉曼)可在单细胞水平上对微生物进行无损检测,并提供微生物组成的指纹图谱。拉曼光谱与稳定同位素标记结合(Stable isotope probing, SIP),利用微生物同化SIP标记底物引起蛋白、脂类、色素的特征拉曼谱峰偏移,已实现从单细胞水平上检测环境功能菌。 /p p   中国科学院城市环境研究所城市土壤与生物地球化学研究组(朱永官团队),在发展单细胞拉曼-15N2SIP技术用于固氮功能菌的研究上做了开拓性工作。针对土壤中的固氮菌,首次建立单细胞共振拉曼与15N2标记联用技术,发掘出15N2相关的指示固氮菌的特征偏移谱峰,即细胞色素c共振拉曼峰的偏移。利用此指示峰,实现在单细胞水平上检测复杂土壤环境中的固氮菌,并利用指示峰的偏移程度,在单细胞水平上,比较了土壤固氮菌的固氮活性。此外,研究组与牛津大学教授Wei Huang合作,针对包括固氮菌在内的多种氮循环(N2、NH4、NO3)功能菌,率先发展表面增强拉曼光谱(SERS)-15N SIP联用技术,利用SERS对微生物中含氮生物分子腺嘌呤的选择性增强,获得不同15N标记氮源引起的细菌腺嘌呤谱峰的显著线性偏移,并利用SERS-15N SIP研究厦门杏林湾水体中细菌对15N2、15NH4Cl、15NO3不同氮源的选择性代谢。上述工作促进了对大量未知环境菌群的深入认识,尤其是氮循环功能菌及其活性的深入解析。 /p p   相关研究成果分别以Functional Single-Cell Approach to Probing Nitrogen-Fixing Bacteria in Soil Communities by Resonance Raman Spectroscopy with15N2Labeling为题,发表在Anal. Chem.上;以Surface-enhanced Raman spectroscopy combined with stable isotope probing to monitor nitrogen assimilation at both bulk and single-cell level为题,发表在Anal. Chem.上。研究工作得到了国家重点研发计划和国家自然科学基金等的资助。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/95e9fe92-ccc2-4ded-8e88-bac97919cf0d.jpg" title=" W020180807542181390530.jpg" / /p p style=" text-align: center " 城市环境所在发展单细胞拉曼光谱揭示氮循环功能菌研究中取得进展 /p
  • Nature | 菌群代谢物激活自然杀伤性T细胞的机制
    机体与共生微生物相互作用,共同进化,在机体的免疫系统发育和稳态维持发挥关键作用。微生物代谢物多样性水平很高,宿主已经进化出复杂的机制来区分病原体和共生体衍生而来的分子。但是在一个物种中,微生物代谢物仍然会存在结构变异。以结构为基础探究化学异构体的生物学作用极具挑战性。在人肠道微生物中,脆弱拟杆菌经常用于研究共生菌衍生物活性的分子机制。目前已经鉴定出α-半乳糖神经酰胺(α-Galactosylceramide BfaGCs)是由脆弱拟杆菌产生的可用做免疫调节分子的衍生物。新生小鼠脆弱拟杆菌单菌定植或者新生小鼠口服BfaGCs可以调节肠道NKT细胞数量。而给与小鼠BfaGCs突变的脆弱拟杆菌,小鼠的表现类似于无菌小鼠。也有报道发现鞘氨醇单胞菌可以调控肠道NKT(natural killer T)细胞功能。但是菌群衍生物在调控宿主免疫系统中的分子机制尚不清楚。2021年11月10日,来自哈佛大学的Dennis L. Kasper 团队在Nature 上发表题为Host immunomodulatory lipids created by symbionts from dietary amino acids 的文章。本研究从结构水平上证实BfaGCs可以直接作用于NKT细胞,与CD1d和TCR结合激活NKT。作者首先利用LC-MS/MS技术分析脆弱拟杆菌鞘脂发现BfaGCs是同源酰基链的混合物。其中C34丰度最高。鉴于共生菌来源鞘脂的结构多样性,作者系统构建了16个BfaGCs类似物,7个异构体。支链BfaGCs在真核生物中相对少见,原核生物中更常见。于是作者评估了支链氨基酸对于BfaGCs生物合成的影响。分析后发现支链氨基酸可以直接渗入脂质决定BfaGCs的结构,而不含氨基酸时BfaGCs倾向于单支和非支化结构。进一步研究发现宿主饮食中补充或者去除支链氨基酸直接影响单支和分支型鞘脂的比例。这些结果在分子水平证实了宿主膳食对于肠道菌群衍生物合成的影响。接下来作者开始通过靶向脆弱杆菌支链氨基酸代谢途径来探究支链BfaGCs对于肠道NKT的调控作用。支链氨基酸转氨酶BCAT将支链氨基酸脱氨基为a-酮羧酸,进一步再转化为支链脂肪酸。作者构建了目标基因敲除菌株(BF9343-Δ3671)。对比发现野生菌株与敲除菌株在小鼠肠道定植水平相当,敲除菌株产生不含分支的BfaGCs水平更高。分析结果显示敲除菌株定植的小鼠成年后结肠NKT细胞数量较高。作者又利用BMDC(小鼠骨髓来源树突状细胞)和NKT共培养体系评估21种合成BfaGCs对NKT的作用。检测IL2的产生水平,作者把21中合成物分成了两组:强刺激物和弱刺激物。10个属于强刺激物都是分支结构,11个弱刺激物没有这些结构。作者又直接挑选了支链和不含支链的代表合成分子SB2222和SB2223,浓度梯度实验发现支链长度与刺激强度无关。作者用脆弱拟杆菌主要合成的SB2217 和SB2219进行体内实验。对比与KRN7000诱导的IFNr产生和CD1d配体OCH诱导的IL4,含支链的SB2217则只能较弱的产生IFNr和IL4,不含支链的SB2219则几乎不能产生IFNr和IL4。预防性给与小鼠SB2217可以保护小鼠免受炎症,减少小鼠体重减轻和组织损伤。为了细致分析SB2217的体内效应,作者分析了SB2217处理后脾脏NKT细胞的转录组特征。分析发现SB2217可以促进NKT相关细胞因子表达以及免疫信号的激活。这表明SB2217是CD1d的功能性配体和NKT细胞的激动剂。最后作者分析了BfaGC和CD1d、TCR相互作用的晶体结构,从结构水平上证明了BfaGC是由CD1d呈递的配体,并被NKT细胞受体以保守方式识别。亲和力比较支链BfaGC SB2217大于非支链 SB2219。本研究证实BfaGCs的分支结构是激活NKT细胞的关键决定因素,从而诱导特定的免疫调节基因表达特征,并从结构水平和亲和力分析证实了BfaGCs与CD1d和TCR相互作用方式。本文为菌群、饮食以及免疫系统相互作用提供了分子机制范式。原文链接:https://doi.org/10.1038/s41586-021-04083-0
  • 水中氨氮测定方法及操作步骤汇总介绍
    氨 氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1. 方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预 处 理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮 凝 沉 淀 法 概 述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪 器 100ml具塞量筒或比色管。 试 剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。 (2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。 (3)硫酸ρ=1.84。 步 骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节pH至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 (二)蒸 馏 法 概 述 调节水样的pH使在6.0—7.4的范围,加入适量氧化镁使呈微碱性(也可加入pH9.5的Na4B4O7-NaOH缓冲溶液使呈弱碱性进行蒸馏;pH过高能促使有机氮的水解,导致结果偏高),蒸馏释出的氨,被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定发时,以硼酸溶液为吸收液;采用水杨酸-次氯酸比色法时,则以硫酸溶液为吸收液。 仪 器 带氮球的定氮蒸馏装置:500ml凯氏烧瓶、氮球、直形冷凝管和导管。 试 剂 水样稀释及试剂配制均用无氨水。 (1) 无氨水制备: ① 蒸馏法:每升蒸馏水中加0.1ml硫酸,在全玻璃蒸馏器中重蒸馏,弃去50ml初滤液,接取其余馏出液于具塞磨口的玻瓶中,密塞保存。 ② 离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 (2) 1mol/L盐酸溶液。 (3) 1mol/L氢氧化钠溶液。 (4) 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐。 (5) 0.05%溴百里酚蓝指示液(pH6.0—7.6)。 (6) 防沫剂,如石蜡碎片。 (7) 吸收液:① 硼酸溶液:称取20g硼酸溶于水稀释至1L。 ② 硫酸(H2SO4)溶液:0.01mol/L。 步 骤 (1) 蒸馏装置的预处理:加250ml水于凯氏烧瓶中,加0.25g轻质氧化镁和数粒玻璃珠,加热蒸馏,至馏出液不含氨为止,弃去瓶内残渣。 (2) 分取250ml水样(如氨氮含量较高,可分取适量并加水至250ml,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏至馏出液达200ml时,停止蒸馏。定容至250ml。 采用酸滴定法或纳氏比色法时,以50ml硼酸溶液为吸收液,采用水杨酸-次氯酸盐比色法时,改用50ml 0.0 1mol/L硫酸溶液为吸收液。 注意事项 (1) 蒸馏时应避免发生暴沸,否则可造成馏出液温度升高,氨吸收不完全。 (2) 防止在蒸馏时产生泡沫,必要时加入少量石蜡碎片于凯氏烧瓶中。 (3) 水样如含余氯,则应加入适量0.35%硫代硫酸钠溶液,每0.5ml可除去0.25mg余氯。 (一) 纳氏试剂光度法GB7479--87 概 述 1. 方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。 2. 干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围 本法最低检出浓度为0.025mol/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水。 仪 器 (1) 分光光度法。 (2) pH计。 试 剂 配制试剂用水应为无氨水。 1. 纳氏试剂 可选择下列一种方法制备。 (1) 称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCI2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2) 称取16g氢氧化钠,溶于50ml充分冷却至室温。 另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。 2.酒石酸钾钠溶液 称取50g酒石酸钾钠(KnaC4H4O64H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。 3.铵标准贮备溶液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,稀释至标线。此溶液每毫升含1.00mg氨氮。 4. 铵标准使用溶液 移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 步 骤 1. 校准曲线的绘制 吸取0、0.50、1.00、3.00、5.00、7.00、和10.0ml铵标准使用液于50ml比色管中,加水至标线。加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长4250nm处,用光程20mm比色皿,以水作参比,测量吸光度。 由测得得吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度得校准曲线。 2. 水样的测定 (1) 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。 (2)分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢氧化钠溶液以中和硼酸,稀释至标线。加1.5ml纳氏试剂,混匀。放置10min后,同校准曲线步骤测量吸光度。 3. 空白试验:以无氨水代替水样,作全程序空白测定。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(mg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(mg); V—水样体积(ml)。 精密度和准确度 三个实验室分析含1.14~1.16mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过9.5%;加标回收率范围为95~104%。 四个实验室分析含1.81~3.06mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过4.4%;加标回收率范围为94~96%。 注意事项 (1) 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。 (2) 滤纸中常含有痕量铵盐,使用时注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中氨的沾污。 (二) 水杨酸-次氯酸盐光度法 GB7481--87 概 述 1. 方法原理 在亚硝基铁氰化钠存在下,铵与水杨酸盐和次氯酸离子反应生成兰色化合物,在波长697nm具最大吸收。 2. 干扰及消除 氯铵在此条件下,均被定量的测定。钙、镁等阳离子的干扰,可加酒石酸钾钠掩蔽。 3. 方法的适用范围 本法最低检出浓度为0.01mg/L,测定上限为1mg/L。适用于饮用水、生活污水和大部分工业废水中氨氮的测定。 仪 器 (1) 分光光度计。 (2) 滴瓶(滴管流出液体,每毫升相当于20±1滴) 试 剂 所有试剂配制均用无氨水。 1. 铵标准贮备液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 2. 铵标准中间液 吸取10.00ml铵标准贮备液移取100ml容量瓶中,稀释至标线。此溶液每毫升含0.10mg氨氮。 3. 铵标准使用液 吸取10.00ml铵标准中间液移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00μg氨氮。临用时配置。 4. 显色液 称取50g水杨酸〔C6H4(OH)COOH〕,加入100ml水,再加入160ml 2mol/L氢氧化钠溶液,搅拌使之完全溶解。另称取50g酒石酸钾钠溶于水中,与上述溶液合并移入1000ml容量瓶中,稀释至标线。存放于棕色玻瓶中,本试剂至少稳定一个月。 注: 若水杨酸未能全部溶解,可再加入数毫升氢氧化钠溶液,直至完全溶解为止,最后溶液的pH值为6.0—6.5。 5. 次氯酸钠溶液 取市售或自行制备的次氯酸钠溶液,经标定后,用氢氧化钠溶液稀释成含有效氯浓度为0.35%(m/V),游离碱浓度为0.75mol/L(以NaOH计)的次氯酸钠溶液。存放于棕色滴瓶内,本试剂可稳定一星期。 6. 亚硝基铁氰化钠溶液 称取0.1g亚硝基铁氰化钠{Na2〔Fe(CN)6NO〕2H2O}置于10ml具塞比色管中,溶于水,稀释至标线。此溶液临用前配制。 7. 清洗溶液 称取100g氢氧化钾溶于100ml水中,冷却后与900ml 95%(V/V)乙醇混合,贮于聚乙烯瓶内。 步 骤 1. 校准曲线的绘制 吸取0、1.00、2.00、4.00、6.00、8.00ml铵标准使用液于10ml比色管中,用水稀释至8ml,加入1.00ml显色液和2滴亚硝基铁氰化钠溶液,混匀。再滴加2滴次氯酸钠溶液,稀释至标线,充分混匀。放置1h后,在波长697nm处,用光程为10mm的比色皿,以水为参比,测量吸光度。 由测得的吸光度,减去空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(μg)对校正吸光度的校准曲线。 2. 水样的测定 分取适量经预处理的水样(使氨氮含量不超过8μg)至10ml比色管中,加水稀释至8ml,与校准曲线相同操作,进行显色和测量吸光度。 3. 空白试验 以无氨水代替水样,按样品测定相同步骤进行显色和测量。 计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(μg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(μg); V—水样体积(ml)。 注意事项 水样采用蒸馏预处理时,应以硫酸溶液为吸收液,显色前加氢氧化钠溶液使其中和。 (三) 滴 定 法 GB7478--87 概 述 滴定法仅适用于进行蒸馏预处理的水样。调节水样至pH6.0~7.4范围,加入氧化镁使呈微碱性。加热蒸馏,释出的氨被吸收入硼酸溶液中,以甲基红-亚甲蓝为指示剂,用酸标准溶液滴定馏出液中的铵。 当水样中含有在此条件下,可被蒸馏出并在滴定时能与酸反应的物质,如挥发性胺类等,则将使测定结果偏高。 试 剂 (1) 混合指示液: 称取200mg甲基红溶于100ml 95%乙醇;另称取100mg亚甲蓝溶于50ml 95%乙醇。以两份甲基红溶液与一份亚甲蓝溶液混合后供用。混合液一个月配制一次。 注: 为使滴定终点明显,必要时添加少量甲基红溶液于混合指示液中,以调节二者的比例至合适为止。 (2) 硫酸标准溶液(1/2H2SO4=0.020mol/L): 分取5.6ml(1+9)硫酸溶液于1000ml容量瓶中,稀释至标线,混匀。按下述操作进行标定。 称取经180℃干燥2h的基准试剂级无水碳酸钠(Na2CO3)约0.5g(称准至0.0001g),溶于新煮沸放冷的水中,移入500ml容量瓶中,稀释至标线。移取25.00ml碳酸钠溶液于150ml锥形瓶中,加25ml水,加1滴0.05%甲基橙指示液,用硫酸溶液滴定至淡橙红色止。记录用量,用下列公式计算,硫酸溶液的浓度。 硫酸溶液浓度(1/2H2SO4,mol/L)= 式中,W—碳酸钠的重量(g); V—硫酸溶液体积(ml)。 (3)0.05%甲基橙指示液。 步 骤 1. 水样的测定 于全部经蒸馏预处理、以硼酸溶液为吸收液的馏出液中,加2滴混合指示液,用0.020mol/L硫酸溶液滴定至绿色转变成淡紫色止,记录用量。 2. 空白试验 以无氨水代替水样,同水样全程序步骤进行测定。 计 算 氨氮(N,mg/L)= 式中,A—滴定水样时消耗硫酸溶液体积(ml); B—空白试验硫酸溶液体积(ml); M—硫酸溶液浓度(mol/L); V—水样体积(ml); 14—氨氮(N)摩尔质量。 (四) 电 极 法 概 述 1. 方法原理 氨气敏电极为一复合电极,以pH玻璃电极为指示电极,银-氯化银电极为参比电极。此电极对置于盛有0.1mol/L氯化铵内充液的塑料管中,管端部紧贴指示电极敏感膜处装有疏水半渗透薄膜,使内电解液与外部试液隔开,半透膜与pH玻璃电极有一层很薄的液膜。当水样中加入强碱溶液将pH提高到11以上,使铵盐转化为氨,生成的氨由于扩散作用而通过半透膜(水和其他离子则不能通过),使氯化铵电解质液膜层内NH4+Ö NH3+H+的反应向左移动,引起氢离子浓度改变,由pH玻璃电极测得其变化。在恒定的离子强度下,测得的电动势与水样中氨氮浓度的对数呈一定的线性关系。由此,可从测得的电位确定样品中氨氮的含量。 2. 干扰及消除 挥发性胺产生正干扰;汞和银因同氨络合力强而有干扰;高浓度溶解离子影响测定。 3. 方法适用范围 本法可用于测定饮用水、地面水、生活污水及工业废水中氨氮的含量。色度和浊度对测定没有影响,水样不必进行预蒸馏,标准溶液和水样的温度应相同,含有溶解物质的总浓度也要大致相同。 方法的最低检出浓度为0.03mg/L氨氮;测定上限为1400mg/L氨氮。 仪 器 (1) 离子活度计或带扩展毫伏的pH计。 (2) 氨气敏电极。 (3) 电磁搅拌器。 试 剂 所有试剂均用无氨水配制。 (1) 铵标准贮备液: 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 (2) 100、10、1.0、0.1mg/L的氨标准使用液: 用铵标准贮备液稀释配制。 (3) 电极内充液:0.1mol氯化铵溶液。 (4) 氢氧化钠(5mol/L)-Na2-EDTA(0.5mol/L)混合溶液,贮于聚乙烯瓶中。 步 骤 1. 仪器和电极的准备 按使用说明书进行,调试仪器。 2. 校准曲线的绘制 吸取10.00ml浓度为0.1、1.0、10、100、1000mg/L的铵标准溶液于25ml小烧杯中,浸入电极后加入1.0ml氢氧化钠-Na2-EDTA溶液,在搅拌下,读取稳定的电位值(在1min内变化不超过1mV时,即可读数)。在半对数坐标线绘制E-logc的校准曲线。 3. 水样的测定 吸取10.00ml水样,以下步骤与校准曲线绘制相同。由测得的电位值,在校准曲线上直接查得水样的氨氮含量(mg/L)。 精密度与准确度 七个实验室分析含14.5mg/L氨氮的统一分发的加标地面水。实验室内相对标准偏差为2.0%;实验室间相对标准偏差为5.2%;相对误差为-1.4%。 注意事项 (1) 绘制校准曲线时,可以根据水样中氨氮含量,自行取舍三或四个标准点。 (2) 试验过程中,应避免由于搅拌器发热而引起被测溶液温度上升,影响电位值的测定。 (3) 当水样酸性较大时,应先用碱液调至中性后,再加离子强度调节液进行测定。 (4) 水样不要加氯化汞保存。 (5) 搅拌速度应适当,不使形成涡流,避免在电极处产生气泡。 (6) 水样中盐类含量过高时,将影响测定结果。必要时,应在标准溶液中加入相同量的盐类,以消除误差。

鞘氨醇单胞菌属相关的仪器

  • MD脱氨氮技术 400-877-2799
    膜蒸馏(MD)是膜技术与蒸馏过程相结合的膜分离过程,它以疏水有孔膜为介质,在膜两侧蒸气压差的作用下,料液中挥发性组分以蒸气形式透过膜孔,从而实现分离的目的。与其他常用分离过程相比,膜蒸馏具有分离效率高、操作条件温和等优点。膜蒸馏过程几乎在常压下进行,该过程无需把液体加热到沸点,只要在膜两侧维持适当温差就可进行,可充分利用太阳能及工业余热等廉价能源。膜蒸馏技术应用于高氨氮废水处理的原理:分离膜将含氨氮废水和渗透液(一般为一定浓度的硫酸溶液)分隔于膜的两侧,通过加碱提高废水的PH,使废水中离子态NH4+转变为挥发性的NH3。 NH4++H2O ←→ NH3?H2O+OH-以膜两侧NH3的浓度差为动力,废水中的NH3在废水一侧微孔膜界面汽化挥发,并沿膜孔向膜的另一侧扩散,在渗透液一侧的微孔膜界面上被渗透液吸收并发生化学反应,从而实现分离。2NH3 + H2SO4 = (NH4)2SO4使用该技术:● 比传统吹脱法或蒸馏法脱氨氮能耗低,可充分利用工业废汽、余热等廉价能源● 也可采用真空法MD工艺,将废水中氨氮直接回收变成高纯度氨水,重复利用
    留言咨询
  • 德国WTW Wpack/A111氨氮管件包 821197 Wpack/A111氨氮管件包 货号:821197 WTWWpack/A111氨氮管件包为了使WTW氨氮分析仪正常准确地进行测量,必须保证添加的化学试剂量必须是均匀的,而氨氮分析仪添加的化学试剂是通过蠕动泵来实现的,所以:1)必须保证蠕动泵管不变形不堵塞;2)化学试剂管,不变形不堵塞。Wpack/A111氨氮管件包包含:(1)蠕动泵管2条,耐压不易变形的特殊材料做成,保证所添加的试剂量是相同的。(2)3米黑色试剂管,3米透明试剂管,耐化学腐蚀,不易变形。(3)一些试剂接头,使用时间久后,怕引起堵塞,更换新的试剂接头。德国WTW Wpack/A111氨氮管件包 821197
    留言咨询
  • Wpack/A111氨氮管件包 货号:821197 WTWWpack/A111氨氮管件包为了使WTW氨氮分析仪正常准确地进行测量,必须保证添加的化学试剂量必须是均匀的,而氨氮分析仪添加的化学试剂是通过蠕动泵来实现的,所以:1)必须保证蠕动泵管不变形不堵塞;2)化学试剂管,不变形不堵塞。Wpack/A111氨氮管件包包含:(1)蠕动泵管2条,耐压不易变形的特殊材料做成,保证所添加的试剂量是相同的。(2)3米黑色试剂管,3米透明试剂管,耐化学腐蚀,不易变形。(3)一些试剂接头,使用时间久后,怕引起堵塞,更换新的试剂接头。
    留言咨询

鞘氨醇单胞菌属相关的耗材

  • NH4氨氮测试盒氨氮离子测试包
    NH4氨氮测试盒氨氮离子测试包 水质检测分析氨氮残留测试产品NH4氨氮测试盒氨氮离子测试包其优势就在于快速、便捷、精确等优点,而且价格经济便宜。原装德国进口的水质检测VISOCOLOR@alpha测试产品。方源仪器代理出售批发供应(周)。 NH4氨氮测试盒氨氮离子测试包品牌:德国MN测试范围:0-0.2-0.5-1-2-3mg/l NH4+测试时间:15秒供货期:每天测试原理:alpha比色法规格:50次测试条件:常温 特点:目测法不含危险物质,不会产生环境污染价格便宜使用方便测试结果精确包装小巧,便于携带带有图示操作说明试剂瓶上清楚的标有用量说明 操作说明:在取样试管中加入样品溶液加入液体试剂加入固体试剂混合均匀等待一定的反应时间与标准比色卡进行颜色对比并从上部观察  方源总硬度测试盒 快速余氯测试盒 快速亚硝酸盐测试盒 快速铜测试盒 快速镍测试盒 快速碱度测试盒 半定量碱度测试盒 快速甲醛测试盒 硅酸盐测试盒 方源水质氟测试盒 水质二氧化氯测试盒 臭氧测试盒批发 臭氧快速检测试纸 氨氮快速测试盒 快速亚硫酸盐试纸 亚硫酸盐测试盒 总硬度测试盒 水硬度快速测试盒 快速亚硫酸盐测试盒 电镀废水铜测试盒 方源亚硝酸盐测试盒 磷酸盐快速测试盒 氨氮快速测试盒 过氧化氢浓度快速检测 水质应急检测箱 磷酸盐快速测试盒 德国MN快速测试盒 线路板铜测试盒 六价铬快速测试盒 硝酸根测试盒 硝酸盐快速测试盒 快速qing化物测试盒 废水qing化物测试盒 镍快速测试盒 铜离子快速测试盒 比色法测试盒 比色测试盒 VISOCOLOR?HE?测试盒 锌测试盒 氨氮测试盒 六价铬测试盒 磷酸盐测试盒 铬离子测试盒 余氯测试盒 亚硝酸盐测试盒 qing化物测试盒 镍测试盒 铜测试盒 水硬度快速测试盒 余氯快速测试盒 ?氯化物测试盒 砷快速测试盒 铝快速测试盒 AQUADUR@水硬度测试条水硬度试纸 中国代理商:深圳市方源仪器有限公司
  • WTW氨氮管件包Wpack/A111 货号:821197
    WTW氨氮管件包Wpack/A111 货号:821197 Wpack/A111氨氮管件包为了使WTW氨氮分析仪正常准确地进行测量,必须保证添加的化学试剂量必须是均匀的,而氨氮分析仪添加的化学试剂是通过蠕动泵来实现的,所以:1)必须保证蠕动泵管不变形不堵塞;2)化学试剂管,不变形不堵塞。Wpack/A111氨氮管件包包含:(1)蠕动泵管2条,耐压不易变形的特殊材料做成,保证所添加的试剂量是相同的。(2)3米黑色试剂管,3米透明试剂管,耐化学腐蚀,不易变形。(3)一些试剂接头,使用时间久后,怕引起堵塞,更换新的试剂接头。WTW氨氮管件包Wpack/A111 货号:821197
  • WTW Wpack/A111氨氮管件包
    Wpack/A111氨氮管件包 货号:821197 德国WTW Wpack/A111氨氮管件包为了使WTW氨氮分析仪正常准确地进行测量,必须保证添加的化学试剂量必须是均匀的,而氨氮分析仪添加的化学试剂是通过蠕动泵来实现的,所以:1)必须保证蠕动泵管不变形不堵塞;2)化学试剂管,不变形不堵塞。Wpack/A111氨氮管件包包含:(1)蠕动泵管2条,耐压不易变形的特殊材料做成,保证所添加的试剂量是相同的。(2)3米黑色试剂管,3米透明试剂管,耐化学腐蚀,不易变形。(3)一些试剂接头,使用时间久后,怕引起堵塞,更换新的试剂接头。

鞘氨醇单胞菌属相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制