水下原位传感器

仪器信息网水下原位传感器专题为您提供2024年最新水下原位传感器价格报价、厂家品牌的相关信息, 包括水下原位传感器参数、型号等,不管是国产,还是进口品牌的水下原位传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水下原位传感器相关的耗材配件、试剂标物,还有水下原位传感器相关的最新资讯、资料,以及水下原位传感器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

水下原位传感器相关的厂商

  • 400-860-5168转4548
    超新芯(CHIPNOVA)是早期原位芯片技术开发研究者,拥有MEMS芯片制造和原位电镜方面的资深团队,10余年来技术不断迭代升级,在电镜中实现了液、气体微环境引入及光、电、力、热等外场控制与高时空分辨显微研究。相关系统在材料、能源、环境、化学、生物等领域广泛应用,促进了人类对微观世界的探索,推动了相关领域的科技进步。除了继续深耕原位电子显微等高端科研领域,做世界一流的科研产品供应商;超新芯(CHIPNOVA)也正将相关技术延伸应用于智慧物联、大健康等民用领域,产品涵盖提供智慧牧场方案的智能项圈、监测实时血糖状况的CGM,为国人提供高品质的技术与服务。
    留言咨询
  • 安徽天光传感器有限公司创建于1991年,占地面积22000平方米。主要研发、生产、销售:称重传感器,电力覆冰检测传感器,扭矩传感器,拉力传感器,轴销传感器,压力传感器,拉压力传感器以及相配套测控仪表等产品。二十多年来天光不断吸取国内外的先进技术,引进国外领先的设备与工艺,学习与吸收现代企业管理理念,先后研发、生产了百余种测力传感器及配套仪器仪表,产品广泛应用于军工、航空航天、油田、交通、医药、冶金建材、教学等行业的计量与自动化过程中的检测等方面,其半导体应变计的生产工艺、设备及产量为国内领先,已申报发明专利。2008年我公司荣幸为北京奥运会主体育场鸟巢提供专用传感器,并获得好评。 陈圆圆180 5523 0933
    留言咨询
  • 湖北五岳传感器有限公司是中国第一支高温熔体压力传感器的诞生公司,成立20多年来,一直专注于PT111系列、PT124系列、PT131、PY1366B、PT167B系列传感器,压力传感器,压力变送器,高温压力传感器,熔体压力传感器,流体压力传感器,高温熔体压力传感器,高温熔体压力变送器,挤出机熔体压力传感器,化纤挤出机压力传感器,橡胶挤出机压力传感器,塑料机械熔体压力传感器,工业熔体压力传感器,和PY909、PY208、PY508、PY600、PY708系列高温熔体压力传感器智能数字显示压力仪表的开发,研制,销售及工程配套。是国内替代同类进口高温熔体压力传感器产品的最大生产商。五岳牌高温熔体压力传感器,变送器系列及高温熔体压力传感器智能数显仪表等产品在塑料,化纤,橡胶,石化等诸多工业门类的应用始终居于领导地位。五岳系列高温熔体压力传感器、高温熔体压力变送器、智能数字显示压力仪表还出口到东南亚、港澳台、韩国、中东及世界其它地区。同时维修美国DYNISCO意大利GEFRAN的同类高温熔体压力传感器产,提供关于各类高温熔体压力传感器的技术支持、使用维护!湖北五岳传感器有限公司荣誉榜:在中国制造出:第一支高温熔体压力传感器;第一支超高温熔体压力传感变送器;第一支**高温熔体压力传感器;第一台**高温熔体压力表;第一支高温熔体压力变送器;第一家与国际著名挤出业龙头企业合作的公司。
    留言咨询

水下原位传感器相关的仪器

  • 产品简介通过MEMS芯片对样品施加力学、电场、热场控制,在原位样品台内构建力、电、热复合多场自动控制及反馈测量系统,结合EDS、EELS、SAED、HRTEM、STEM等多种不同模式,实现从纳米层面实时、动态监测样品在真空环境下随温度、电场、施加力变化产生的微观结构、相变、元素价态、微观应力以及表/界面处的结构和成分演化等关键信息。我们的优势力学性能1.高精度压电陶瓷驱动,纳米级别精度数字化精确定位。2.实现1000℃加热条件下压缩、拉伸、弯曲等微观力学性能测试。3.nN级力学测量噪音。4.具备连续的载荷-位移-时间数据实时自动收集功能。5.具备恒定载荷、恒定位移、循环加载控制功能,适用于材料的蠕变特性、应力松弛、疲劳性能研究。优异的热学性能1.高精密红外测温校正,微米级高分辨热场测量及校准,确保温度的准确性。2.超高频控温方式,排除导线和接触电阻的影响,测量温度和电学参数更精确。3.采用高稳定性贵金属加热丝(非陶瓷材料),既是热导材料又是热敏材料,其电阻与温度有良好的线性关系,加热区覆盖整个观测区域,升温降温速度快,热场稳定且均匀,稳定状态下温度波动≤±0.1℃。4.采用闭合回路高频动态控制和反馈环境温度的控温方式,高频反馈控制消除误差,控温精度±0.01 ℃。5.多级复合加热MEMS芯片设计,控制加热过程热扩散,极大抑制升温过程的热漂移,确保实验的高效观察。优异的电学性能1.芯片表面的保护性涂层保证电学测量的低噪音和精确性,电流测量精度可达皮安级。2.MEMS微加工特殊设计,同时加载电场、热场、力学,相互独立控制。智能化软件1.人机分离,软件远程控制纳米探针运动,自动测量载荷-位移数据。2.自定义程序升温曲线。可定义10步以上升温程序、恒温时间等,同时可手动控制目标温度及时间,在程序升温过程中发现需要变温及恒温,可即时调整实验方案,提升实验效率。3.内置绝对温标校准程序,每块芯片每次控温都能根据电阻值变化,重新进行曲线拟合和校正,确保测量温度精确性,保证高温实验的重现性及可靠性。技术参数类别项目参数基本参数杆体材质高强度钛合金控制方式高精度压电陶瓷倾转角α≥±20°,倾转分辨率<0.1°(实际范围取决于透射电镜和极靴型号)适用电镜Thermo Fisher/FEI, JEOL, Hitachi适用极靴ST, XT, T, BioT, HRP, HTP, CRP(HR)TEM/STEM支持(HR)EDS/EELS/SAED支持应用案例600°C高温下铜纳米柱力学压缩实验以形状尺寸微小或操作尺度极小为特征的微机电系统 (MEMS)越来越受到人们的高度重视 , 对于尺度在 100μm 量级以下的样品 , 会给常规的拉伸和压缩试验带来一系列的困难。纳米压缩实验 , 由于在材料表面局部体积内只产生很小的压力 , 正逐渐成为微 / 纳米尺度力学特性测量的主要工作方式。因此 , 开展微纳米尺度下材料变形行为的实验研究十分必要。为了研究单晶面心立方材料的微纳米尺度下变形行为 , 以纳米压缩实验为主要手段 , 分析了铜纳米柱初始塑性变形行为和晶体缺陷对单晶铜初始塑性变形的影响。结果表明铜柱在纳米压缩过程中表现出更大程度的弹性变形。同时对压缩周围材料发生凸起的原因和产生的影响进行了分析 , 认为铜纳米柱压缩时周围材料的凸起将导致纳米硬度和测量的弹性模量值偏大。为了研究表面形貌的不均匀性对铜纳米柱初始塑性变形行为的影响 , 通过加热的方法 , 在铜纳米柱表面制备得到纳米级的表面缺陷 , 并对表面缺陷的纳米压缩实验数据进行对比分析 , 结果表明表面缺陷的存在会极大影响铜纳米柱初始塑性变形。通过透射电子显微镜 ,铜纳米柱压缩点周围的位错形态进行了观察 , 除了观察到纳米压缩周围生成的位错 , 还发现有层错、不全位错及位错环的共存。表明铜纳米柱的初始塑性变形与位错的发生有密切的联系。
    留言咨询
  • 水下原位CO2传感器 400-860-5168转1218
    海洋CO2通量在线监测传感器 HydroC/CO2水下原位测量CO2通量的理想选择HydroC/CO2主要用于水下原位测量CO2通量,也可用于测量大气中的CO2通量,是全球气候变化研究的理想工具。工作原理:从液体中扩散出来的CO2,通过一种特别设计的硅树脂膜(专利设计)到达检测室。当CO2受到红外光束照射时,CO2选择性吸收特定波段的红外辐射,从而表现为特定波段透射光的强度变小,利用光电器件将透射光强度变化转换为电信号,经过计算可以准确得出CO2浓度。主要功能 * 利用基于红外分析原理、专利设计的光学分析系统在水下原位监测CO2通量,也可监测大气中的CO2通量,可长期连续监测 * 操作简单,不同环境自动零点校正 * 钛金外壳,最大工作水深可达2000 m、4000 m和6000 m * 结合SmartDITM内置或外置数据采集器(见第??页)可以扩展获得其它传感器信号,并且增加ASCII、NMEA-0183等输出信号 * 可以集成到移动式海洋CO2/CH4通量监测站OceanPack+中,进行走航式测量 * 可集成到水下机器人AUV/ROV上进行测量应用领域主要应用于海洋或淡水的CO2通量研究,适合于海洋生态学、水域生态学、温室效应、全球变化等领域。主要技术参数 &ldquo Shorty&rdquo 版&ldquo Long John&rdquo 版硅树脂膜小于1000 m的浅水,2 mm;4000 m水深,4 mm;6000 m水深,10 mm工作水深2000 m、4000 m或6000 m工作温度标准+4~+30℃;可选-5~+30℃,用于极地环境测量范围0~100%,范围大0~10%,精度高尺寸直径90 mm,长度380 mm直径90 mm,长度550 mm响应时间首次响应10 s,T66&asymp 30 s是&ldquo Shorty&rdquo 版的两倍重量2000 m版:空气中3.9 Kg,水中1.9 Kg4000 m版:空气中5.6 Kg,水中3.2 Kg2000 m版:空气中5.3 Kg,水中2.4 Kg4000 m版:空气中6.6 Kg,水中3.5 Kg分辨率0.1 ppm精度读数的± 3%,噪音水平约± 3 ppm调零开机自动调零/智能调零/软件或按键控制调零供电9~36 V DC接头SUBCONNMCBH8MTI 8针接头模拟输出0~5V或/0~10 V,0~20 mA或4~20 mA,输出范围可由用户指定内存/数采可选SmartDI内置数采,带2 GB闪存卡,带RS-232、RS-485二进制输出或ASCII/NMEA-0183格式 所属分类:
    留言咨询
  • 甲烷水下在线传感器 400-860-5168转1218
    海底油气/可燃冰勘探、水下原位测量CH4通量的理想选择HydroC/CH4主要用于检测液相或气相中的甲烷和烃类,是测量CH4通量、海底油气勘探、可燃冰(天然气水合物)勘探、输气管泄漏检测等领域的理想工具。工作原理:从液体中扩散出来的烃类/甲烷,通过一种特别设计的硅树脂膜(专利设计)到达检测室。当甲烷受到红外光束照射时,甲烷选择性吸收特定波段的红外辐射,从而表现为特定波段透射光的强度变小,利用光电器件将透射光强度变化转换为电信号,经过计算可以准确得出甲烷浓度。主要功能 * 利用基于红外分析原理、专利设计的光学分析系统检测海洋(淡水)或大气中的甲烷和烃类,可长期连续监测 * 操作简单,不同环境自动零点校正 * 响应时间快、检测限灵敏 * 钛金外壳,最大工作水深可达2000 m、4000 m和6000 m * 结合SmartDITM内置或外置数据采集器可以扩展获得其它传感器信号,并且增加ASCII、NMEA-0183等输出信号 * 可以集成到移动式海洋CO2/CH4通量监测站OceanPack+中,进行走航式测量 * 可集成到水下机器人AUV/ROV上进行测量 * 特制的&ldquo Long John&rdquo 版灵敏度非常高,可以检测极低的甲烷/烃类浓度应用领域主要应用于海洋或淡水的CH4通量研究、海底油气勘探、可燃冰(天然气水合物)勘探、输气管泄漏检测等领域,也可用于水稻田/池塘/湖泊等环境的沼气释放监测、冻土沼气释放监测等领域。技术参数 &ldquo Shorty&rdquo 版&ldquo Long John&rdquo 版硅树脂膜小于1000 m的浅水,2 mm;4000 m水深,4 mm;6000 m水深,10 mm工作水深2000 m、4000 m或6000 m工作温度标准+4~+30℃;可选-5~+30℃,用于极地环境测量范围100 nmol/L~50/500/5000 mmol/L30 nmol/L~50/500/5000 mmol/L尺寸直径90 mm,长度380 mm直径90 mm,长度550 mm响应时间首次响应10 s,T66&asymp 30 s是&ldquo Shorty&rdquo 版的两倍重量2000 m版:空气中3.9 Kg,水中1.9 Kg4000 m版:空气中5.6 Kg,水中3.2 Kg2000 m版:空气中5.3 Kg,水中2.4 Kg4000 m版:空气中6.6 Kg,水中3.5 Kg精度读数的± 3%,噪音水平约± 3 nmol/L调零开机自动调零/智能调零/软件或按键控制调零供电9~36 V DC接头SUBCONNMCBH8MTI 8针接头模拟输出0~5V或/0~10 V,0~20 mA或4~20 mA,输出范围可由用户指定内存/数采可选SmartDI内置数采,带2 GB闪存卡,带RS-232、RS-485二进制输出或ASCII/NMEA-0183格式
    留言咨询

水下原位传感器相关的资讯

  • 我国自主研制的多类海洋生物化学原位传感器搭载水下滑翔机顺利完成海试
    近日,由中国科学院西安光机所吴国俊研究员牵头,联合青岛海洋科技中心、国家海洋技术中心、厦门大学、自然资源部第二海洋研究所等多家科研机构联合承担的某国家重点研发计划项目取得重要进展。项目将自主研制的多类海洋生物化学原位传感器(硝酸盐、叶绿素、多环芳烃、溶解氧、下行辐照度等)搭载国产“海燕”水下滑翔机在南海西沙海槽盆地区域顺利完成海试,成功实现了高时空分辨率的海洋环境长期原位观测,连续获取最大深度达1000米的生化参量深海剖面17个,有效验证了温度、压力等环境因素对参数观测的影响、传感器长期漂移、深海光学探头高集成度封装等多项关键技术。这是我国首次通过水下滑翔机搭载自研传感器的方式获取深海生物化学剖面数据。 水下移动平台搭载传感器是同时满足多学科、多参数同步海洋观测以及多过程、多界面、多尺度综合观测的重要手段。本项目正是利用这种试验手段,实现大范围、高时空分辨率生物化学剖面参数获取,以此填补跨学科、跨尺度观测空白,丰富我国海洋科学研究方式,为复杂的全球系统提供新的理解。此外,联合团队所研制的适合移动观测的海洋生物化学传感器为首创,这将显著提升我国海洋自主观测能力。突破的传感器多项关键技术,对于推动国产海洋高端传感器产业化应用提供了坚实基础。 本次海试同步进行了与国际先进传感器(Aanderaa4330、SeaOWL等)的比测,剖面浓度变化趋势、拐点深度和绝对浓度等比测结果吻合度高。后续联合团队将深入开展BGC-Argo/BGC-Glider两类示范应用。海试现场(图片来源于中国科学院西安光学精密机械研究所)部分比测数据(图片来源于中国科学院西安光学精密机械研究所)
  • 关亚风团队研制深海原位气相色谱仪、荧光传感器海试成功
    p style=" text-align: justify line-height: 1.5em text-indent: 2em " 近日,中科院大连化学物理研究所微型分析仪器研究组(105组)关亚风研究员、耿旭辉研究员团队与中国科学院深海科学与工程研究所共同研制的4500米级深海原位气相色谱仪、深海原位有色溶解有机物(CDOM)荧光传感器和深海原位叶绿素荧光传感器于8月14日至9月7日搭载深海勇士号/探索二号在某海域科考航次中海试成功,均获得了有效数据。深海原位气相色谱仪进行了两次海底试验,最大潜深1637米 深海原位CDOM荧光传感器和深海原位叶绿素荧光传感器进行了八次海底试验,最大潜深3961.9米。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/ac0cd68f-5f82-48f1-bedc-8ab77b37a2b3.jpg" title=" W020201123364060937305.jpg" alt=" W020201123364060937305.jpg" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/9dfb6c93-35ab-4857-9a7a-39034961aa87.jpg" title=" W020201123364061206150.jpg" alt=" W020201123364061206150.jpg" / /p p style=" text-align: justify line-height: 1.5em "   深海原位气相色谱仪可原位定量测量深海中单体挥发性有机组分和各类气体成分。本次海试成功的深海原位气相色谱仪验证了其工作原理及工程应用的可行性,获得了不同沸点组分含量的半定量数据,为后续深海地球化学和生物等科学研究,以及能源勘探等工程技术奠定了原位探测技术基础。 /p p style=" text-align: justify line-height: 1.5em "   有色溶解有机物(chromophoric dissolved organic matter,CDOM)是存在于各类水体中的含有腐殖酸、富里酸、氨基酸和芳烃聚合物等物质的溶解性有机物。开展CDOM分布研究能够更好地确定其来源及组成,对揭示海洋碳循环变化规律和海洋生态系统特征有重要意义。在本航次海试中,深海原位CDOM荧光传感器以及新型超高灵敏度深海原位叶绿素a荧光传感器分别测量到了某海域从海平面到海底整个剖面的CDOM和叶绿素a的浓度,为海洋生物、物理海洋等学科研究提供了重要数据。两类荧光传感器均采用行业认可的标定方法,经比对,测量结果与文献报道的船载光谱仪对该海域的测量数据相吻合,包括剖面浓度变化趋势、拐点深度和绝对浓度,证明了两类荧光传感器的测量及标定准确性。经权威部门第三方测试,CDOM传感器检测下限为8.5ng/L硫酸奎宁,叶绿素传感器检测下限为0.42ng/L叶绿素a,检测灵敏度均比可查询的美国、德国等进口同类产品高数倍。两类深海原位荧光传感器已作为中科院A类先导专项“深海/深渊智能技术及海底原位科学实验站”的首批成果,搭载到深海原位实验站上。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/5bbed161-aaa0-416a-b540-8d74e9ac1bdc.jpg" title=" W020201123467651928485.jpg" alt=" W020201123467651928485.jpg" / /p p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em " 在今年年初,团队研发的三种深海原位荧光传感器工程样机,包 /span span style=" text-align: justify text-indent: 2em " 括深海原位叶绿素荧光传感器、深海原位微生物荧光传感器和深海原位多环芳烃荧光传感器已经 /span span style=" text-align: justify text-indent: 2em " 在深海勇士号/探索一号TS16南海科考航次中,搭载“深海勇士号”载人潜水器先后11次进行水下试验,最大潜深达3497.6米。分别测量了南海海水中从海平面到海底整个剖面的叶绿素a、微生物和多环芳烃的浓度。原位探测深海中叶绿素a的浓度,反映了深海中浮游植物生物量或现存量,是计算初级生产力的基础。原位探测深海中微生物的浓度,具有很高的科学研究价值和衍生的经济价值。原位探测深海中多环芳烃的浓度,有助于勘探海底原油溢油,具有重要的能源勘探价值。此次勘探所得数据为海洋生物、物理海洋等多学科研究提供了重要的原始数据。该系列仪器均属我国首套该类型的深海原位荧光传感器。其中,深海原位微生物荧光传感器也是国际首套该类型仪器。 /span /p p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/215f7a10-5d96-406b-b6db-ed8a4bb1f93a.jpg" title=" 7F8DFBF6865801A3EFA9B3FCEA2_3B5971E0_46F7B (1).jpg" alt=" 7F8DFBF6865801A3EFA9B3FCEA2_3B5971E0_46F7B (1).jpg" / /p p style=" text-align: justify " & nbsp & nbsp & nbsp 关亚风团队自21世纪初开展高灵敏荧光检测器及应用研究,该系列仪器的研发成功是该团队在深海极端条件应用的原位荧光探测技术研究方面的重要进展。该项目是中科院战略性A类先导专项“深海/深渊智能技术及海底原位科学实验站”的子课题,关亚风团队负责深海原位有机组分气相色谱—质谱联用仪与荧光传感器的研发,深海负责耐压水密封外壳的研发和海试。 /p p style=" text-align: justify text-indent: 2em " 该工作得到中科院A类先导专项“深海/深渊智能技术及海底原位科学实验站”和中科院大连化物所创新研究基金等项目的资助。 /p
  • 大连化物所关亚风等研制的三种深海原位荧光传感器海试成功
    p style=" text-indent: 2em " strong style=" text-indent: 2em " 仪器信息网讯 /strong span style=" text-indent: 2em " & nbsp 近日,我国三种深海原位荧光传感器工程样机在深海勇士号/探索一号TS16南海科考航次中,搭载“深海勇士号”载人潜水器先后11次进行水下试验,最大潜深达3497.6米。此三种传感器由中国科学院大连化学物理研究所微型分析仪器研究组(105组)关亚风研究员、耿旭辉副研究员团队与中国科学院深海科学与工程研究所(简称“深海所”)共同研制,深海所负责耐压水密封外壳的研发和海试。 /span br/ /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/8e566b26-b3bd-4d52-a9cd-1aaf3d6c49da.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-indent: 2em " span style=" text-indent: 2em " 该系列传感器包括深海原位叶绿素荧光传感器、深海原位微生物荧光传感器和深海原位多环芳烃荧光传感器。此前,经深海所测试,此三种传感器均通过净水压力试验,最大工作深度均为4500米。本航次海试过程中,深海原位叶绿素荧光传感器共进行5潜次海底试验,最大试验深度为3497.6米;深海原位多环芳烃荧光传感器共进行3潜次海底试验,最大试验深度为3340.0米;深海原位微生物荧光传感器共进行3潜次海底试验,最大试验深度为2371.4米。该系列传感器分别测量了南海海水中从海平面到海底整个剖面的叶绿素a、微生物和多环芳烃的浓度。原位探测深海中叶绿素a的浓度,反映了深海中浮游植物生物量或现存量,是计算初级生产力的基础。原位探测深海中微生物的浓度,具有很高的科学研究价值和衍生的经济价值。原位探测深海中多环芳烃的浓度,有助于勘探海底原油溢油,具有重要的能源勘探价值。此次勘探所得数据为海洋生物、物理海洋等多学科研究提供了重要的原始数据。该系列仪器均属我国首套该类型的深海原位荧光传感器。其中,深海原位微生物荧光传感器也是国际首套该类型仪器。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/90a692f8-c50e-412c-9933-cf17f7162a8d.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-indent: 2em " 该团队自21世纪初开展高灵敏荧光检测器及应用研究,该系列仪器的研发成功是该团队在深海极端条件应用的原位荧光探测技术研究方面的重要进展。该项目是中科院战略性A类先导专项“深海/深渊智能技术及海底原位科学实验站”的子课题,中国科学院大连化学物理研究所负责深海原位有机组分气相色谱-质谱联用仪与荧光传感器的研发。 /p p style=" text-indent: 2em " strong 关于“深海/深渊智能技术及海底原位科学实验站”专项 /strong /p p style=" text-indent: 2em " 中国科学院A类战略性先导科技专项 “深海/深渊智能技术及海底原位科学实验站”于2018年11月正式启动(简称深海智能技术专项),执行周期为五年,牵头单位为中科院深海所,参与单位包括多家中科院院内及院外单位。 /p p style=" text-indent: 2em " 加快打造深海研发基地、发展深海科技事业、推动海洋强国建设,中科院论证启动了深海智能技术专项。通过专项的实施,产出重大原创成果,坚持自主可控、自主发展,重视成果转化应用,实现深海/深渊长周期、无人原位科考,促进我国深海技术从“平台时代”向“平台+载荷时代”转型。 /p p style=" text-indent: 2em " strong 项目执行时间: /strong /p p style=" text-indent: 2em " 2018年10月-2023年10月 /p p style=" text-indent: 2em " strong 参与单位: /strong /p p style=" text-indent: 2em " 声学研究所、大连化学物理研究所、金属研究所、海洋研究所、中国科学技术大学等 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/202004/uepic/2be48132-ad69-441a-a985-e3619efd04b2.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" text-indent: 2em color: rgb(0, 176, 240) " “探索一号”科考船 /span span style=" text-indent: 2em color: rgb(127, 127, 127) " (图片来源于中科院深海所网站) /span /p p br/ /p

水下原位传感器相关的方案

水下原位传感器相关的资料

水下原位传感器相关的试剂

水下原位传感器相关的论坛

  • 求助关于甲烷传感器

    请问哪位知道德国METS深海溶解性甲烷气体传感器中采用的SnO2甲烷传感头的具体型号或性能?目前我们想参考MET的甲烷传感器自己DIY一个深海甲烷传感器,需要一种基于二氧化锡材料的甲烷气体传感探头,由于水下甲烷气体含量很低(十几个nM),而目前我所查到的大部分商业化的探头测定范围多是500-10000ppm,这显然不能满足要求,不知各位谁知道目前有没有商品化的基于二氧化锡材料的甲烷传感器探头能够达到sub-ppm的检测限,另外,二氧化锡这种材料制成的气敏探头有没有可能达到这个检测水平?谢谢。。

  • 求助关于甲烷传感器的问题

    请问哪位知道德国METS深海溶解性甲烷气体传感器中采用的SnO2甲烷传感头的具体型号或性能?目前我们想参考MET的甲烷传感器自己DIY一个深海甲烷传感器,需要一种基于二氧化锡材料的甲烷气体传感探头,由于水下甲烷气体含量很低(十几个nM),而目前我所查到的大部分商业化的探头测定范围多是500-10000ppm,这显然不能满足要求,不知各位谁知道目前有没有商品化的基于二氧化锡材料的甲烷传感器探头能够达到sub-ppm的检测限,另外,二氧化锡这种材料制成的气敏探头有没有可能达到这个检测水平?谢谢。。

  • 不锈钢液位传感器有哪些特性

    [font=等线]如今随着科学技术的不断发展,液位检测方法也有很多,如[url=https://www.eptsz.com]光电液位传感器[/url]、电容式液位传感器、不锈钢液位传感器等液位传感器,不锈钢液位传感器材质比较特殊,价格也比较昂贵一些,不锈钢液位传感器有哪些特征?[/font][font=等线]不锈钢光电传感器采用光电液位开关技术,内置红外发射管和光敏接收器,检测部分采用玻璃棱镜结构。通过检测光线的折射情况,能够准确地判断液位高低,实现精准的液位测量和监控。[/font][font=等线] [/font][align=left][font=等线]安装非常简易,只需在水箱或机体上进行开孔安装即可。这种简便的安装方式使得用户能够快速、方便地部署传感器从而节省了大量的安装时间和人力成本。[/font][font=等线]不锈钢光电液位传感器具有低功耗的特性,这意味着在使用过程中能够有效地节约能源,延长设备的使用寿命,并且减少了能源成本。[/font][/align][font=等线][/font][align=center] [img=不锈钢液位传感器,690,400]https://ng1.17img.cn/bbsfiles/images/2024/04/202404031517296579_7623_4008598_3.jpg!w690x400.jpg[/img][/align][font=等线][font=等线]还具有耐强压、高耐腐蚀的特性,能够在恶劣的工作环境中稳定运行。其防水等级达到了[/font][font=等线]IP68,可以在水下长时间工作,保证了传感器的可靠性和耐用性。[/font][/font][font=等线]不锈钢光电液位传感器采用无机械运动部件的设计,使其具有较高的稳定性和可靠性,减少了因机械磨损而引起的故障和维护成本。[/font][font=等线]传感器支持个性化机型定制,可以根据用户的需求进行定制设计,满足不同应用场景的需求,提供更加灵活、多样化的解决方案。[/font][font=等线]适用于商用设备、工业设备、医疗设备以及高耐压或强腐蚀性液体设备等多个领域,广泛应用于液位检测、监控和控制领域。[/font]

水下原位传感器相关的耗材

  • CS225温度链传感器
    概述:CS225 温度链传感器使用 SDI-12 数字技术简单集成,可靠性高。 CS225 包含多个温度传感器,固定在结实的不锈钢加固的线缆上。每个温度感应点都是二次注塑成型,能够长期地耐受所有的测量介质。每一个 CS225 都是根据客户指定的需求定制的。CS225 可在广泛的应用领域和不同的环境中进行温度剖面测量。用途完全密封的线缆允许 CS225被埋设、放置在水下,或者直接集成在某些结构上。既能适合淡水环境,也能适合咸水环境。能够承受弯曲,拉伸,挤压,冰冻、解冻周期循环等恶劣条件。线缆完全密封,可浸没水下,也可如在钻井中、土壤、水下、冰霜或多年冻土中进行温度监测。优点1. 可定制测量间距,可靠性高2. 仅占用一个SDI-12通道,接线简单3. 低功耗,无需校准4. 长期测量稳定5. 高强度和耐受性6. SGB模块防止电涌损坏7. 序列号和安装深度数据存储在每一个传感器的内存上配置包含一个SGB3 3线防浪涌保护模块SGB3为CS225提供防浪涌保护技术参数工作温度-55℃到+85℃精度典型:±0.2℃(-40℃到+85℃)恶略环境:±0.5℃(-55℃到+85℃)分辨率0.0078℃最大压力150PSI通讯方式SDI-12温度点直径2.22cm(0.875in)最大线缆长度152m(500ft)每一个温度链能安装的传感器最大数量36最小间距15cm(5.9in)供电电压9到28Vdc电流消耗每个传感器的电流消耗:1.0mA(最大)活跃状态下的电流消耗:20ma(传感器数目*1.0mA)上电后预热时间10秒产地:美国
  • CS225温度链传感器
    CS225 温度链传感器使用 SDI-12 数字技术简单集成, 可靠性高。 CS225 包含多个温度传感器, 固定在结实的不锈钢加固的线缆上。 每个温度感应点都是二次注塑成型, 能够长期地耐受所有的测量介质。 每一个 CS225 都是根据客户指定的需求定制的。CS225 可在广泛的应用领域和不同的环境中进行温度剖面测量。用途:完全密封的线缆允许 CS225被埋设、 放置在水下,或者直接集成在某些结构上。既能适合淡水环境, 也能适合咸水环境。能够承受弯曲,拉伸,挤压,冰冻、解冻周期循环等恶劣条件。线缆完全密封,可浸没水下,也可如在钻井中、 土壤、 水下、 冰霜或多年冻土中进行温度监测。优点1. 可定制测量间距,可靠性高2. 仅占用一个SDI-12通道,接线简单3. 低功耗,无需校准4. 长期测量稳定5. 高强度和耐受性6. SGB模块防止电涌损坏7. 序列号和安装深度数据存储在每一个传感器的内存上 配置包含一个SGB3 3线防浪涌保护模块SGB3为CS225提供防浪涌保护 技术参数工作温度-55℃到+85℃精度典型:±0.2℃(-40℃到+85℃)恶略环境:±0.5℃(-55℃到+85℃)分辨率0.0078℃最大压力150PSI通讯方式SDI-12温度点直径2.22cm(0.875in)最大线缆长度152m(500ft)每一个温度链能安装的传感器最大数量36最小间距15cm(5.9in)供电电压9到28Vdc电流消耗每个传感器的电流消耗:1.0mA(最大)活跃状态下的电流消耗:20ma(传感器数目*1.0mA)上电后预热时间10秒产地:美国
  • 109SS温度传感器
    用途:109SS温度传感器能胜任野外严酷环境的温度传感器探头。包裹在热敏电阻外的316L型不锈钢保护套,保证该产品即使在地下或水下或腐蚀性环境,也能稳定可靠地工作。109SS温度传感器响应时间短。109SS温度传感器的有效量程能够达到-40~+70℃,而其采用的热敏电阻在+100℃的严酷环境下也能保证不损坏。技术规格:测量范围-40~+70℃热敏电阻承受温度-50~+100℃电缆承受温度-50~+70℃最大潜水深度45.7米可交换性误差±0.6℃(-40℃时),±0.38℃(0℃时),±0.1℃(+25℃时),±0.3℃(+50℃时),±0.4℃(+70℃时)线性方程误差最大0.02℃(-40℃时)反应时间静止的空气中31秒,3米/秒的空气中7.5秒,搅拌的水中0.5秒不锈钢保护套尺寸直径0.16厘米×长度5.84厘米电缆直径0.56厘米重量0.1公斤(带3.2米电缆时)产地:美国
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制