外消旋叔丁氧羰基氟

仪器信息网外消旋叔丁氧羰基氟专题为您提供2024年最新外消旋叔丁氧羰基氟价格报价、厂家品牌的相关信息, 包括外消旋叔丁氧羰基氟参数、型号等,不管是国产,还是进口品牌的外消旋叔丁氧羰基氟您都可以在这里找到。 除此之外,仪器信息网还免费为您整合外消旋叔丁氧羰基氟相关的耗材配件、试剂标物,还有外消旋叔丁氧羰基氟相关的最新资讯、资料,以及外消旋叔丁氧羰基氟相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

外消旋叔丁氧羰基氟相关的资料

外消旋叔丁氧羰基氟相关的论坛

  • 羰基氧和羟基氧与钠离子和氢离子的结合能力

    [color=#444444]ESI 质谱条件下,M+H的二级产生含羰基的加氢峰,m/z 220,M+Na的二级碎片产生含羟基的加钠峰m/z 244,二者相差24。羰基氧和羟基氧与钠离子和氢离子的结合能力是怎样?[/color][color=#444444]难道钠离子更容易稳定含羟基离子?氢离子更容易稳定含羰基的离子?该怎么解释呢?[/color]

  • 【原创】关于药典附录中酸败度测定法下羰基值的测定有关问题的讨论

    药典附录中关于酸败度测定法,共有三个值需要测定:1、酸值;2、羰基值;3、过氧化值。此三个值均是在油脂的提取后,进行测定。这里主要讨论第二个羰基值的测定。关于羰基值的测定,需要用到有毒溶剂苯。为方便,以下为药典原文:羰基值的测定 羰基值系指每1kg供试品中所含羰基化合物的毫摩尔数。除另有规定外,取供试品0.025~0.5g,精密称定,置25ml量瓶中,加苯使溶解,稀释至刻度,摇匀。精密量取5ml,置25ml具塞试管中,精密加4.3%三氯醋酸的苯溶液3ml及0.05%二硝基苯肼的苯溶液5ml,混匀,置60度水浴中加热30分钟,冷却后沿管壁慢慢精密加入4%氢氧化钾的乙醇溶液10ml,密塞,剧烈振摇1分钟,放置10分钟,以相应试剂为空白,照紫外-可见分光光度法在453nm的波长处测定吸光度,照公式计算。因为05年版与10年版的计算公式相差太大,此处不录。我的问题是:假如苯中含有杂质,这杂质为小分子的含羰基化合物,这就影响到了测定。如果这些含羰基化合物是微量的,则可能不会影响测定。但我们在实验中,发现,即使不加供试品,相应试剂的颜色已经成了一种黑色了,致使光无法透过比色皿,而呈现以下的现象:在相当大的(大于5)吸光度范围内,光谱呈剧烈、快速频率的波动。我猜是因为光透不过比色皿而引起的。我想问:按照紫外-可见分光光度法下对溶剂的要求,此处测定波长为453nm,位于可见光区,以空气为空白,测定苯的吸光度,完全合格。但是,如果杂质的羰基化合物,这同样是测不出来的,也就是即使有杂质的羰基化合物,以453nm为检验溶剂是否合格,当然也就合格了。因为羰基化合物本身就没有颜色。所以,我觉得,此处应有其它规定,以检验苯是否真的合格。

外消旋叔丁氧羰基氟相关的方案

外消旋叔丁氧羰基氟相关的资讯

  • 北分瑞利名扬国际,70台双光束紫外远销非洲
    近日,北分瑞利70台双光束紫外/可见分光光度计远销非洲尼日尔,进驻当地70家诊所,使得高品质中国制造产品在国际平台中发挥积极作用。  紫外/可见分光光度计分为单光束和双光束,利用光谱分析方法对样品进行定性和定量分析,在生命科学、食品检验、环保、农业等各个领域都有广泛的应用。双光束紫外/可见分光光度计,以两束光分别通过样品和参比,这种方式可以自动消除光源强度变化所引起的误差,提高分析准确度,属于中高档产品。  北分瑞利公司产品凭借其稳定的性能和优异的品质,在此次国际招标项目中得到青睐。该项目跨越2015和2016年,时间紧迫,工程量大,北分瑞利克服多重困难,在面临东区搬迁和农村饮用水安全工程大项目运作的情况下,加班加点,保障产品质量,保证生产工期,确保了项目的圆满完成。  此次国际合作项目有助于中国制造产品在国际平台的展现,发扬“工匠精神”,弘扬“中国制造”。
  • 在线固定化糖苷酶实现糖基化表位的氢氘交换定位
    大家好,本周为大家分享一篇在Analytical Chemistry上发表的文章:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase[1],文章的通讯作者是来自弗罗里达大学的Patrick R. Griffin教授。  氢氘交换质谱(HDX-MS)是一种常用的抗体表位定位方法。在典型的HDX-MS实验中,目标蛋白在D2O缓冲液中孵育,使氢与氘在设定的时间内交换。随后通过添加低pH“猝灭”缓冲液,在低温(0 ̊C)并保持pH接近2.7的情况下猝灭氘代反应, 使得氘化酰胺氢的回交速率最低。蛋白质结构的不同特征可以影响氘交换速率,其贡献因素包括溶剂可及性和酰胺骨架的氢键。蛋白质被耐受低pH慢交换条件的蛋白酶消化,所得肽通过液相色谱联用质谱(LC-MS)分析。通过比较氘代肽段与未暴露于D2O的对照肽的同位素分布的m/z位移,用质谱法监测肽水平上的氘交换程度。  蛋白糖基化可导致HDX-MS中肽覆盖范围的减少,这是由于多糖对肽的异质修饰。为了获得可以通过质谱监测的确定的糖肽质量,在HDX-MS实验之前,必须首先通过专门的糖蛋白组学方法解决糖肽的结构。此外,糖基化氨基酸通常在每个位点被多个糖型修饰,这可能导致糖肽的质谱信号被稀释。聚糖酰胺基团也可能参与交换和影响氘摄取测量,这个问题很明显,特别是对于病毒刺突蛋白,它们已经进化到通过N-聚糖的广泛修饰来逃避免疫检测。在许多涉及SARS-CoV-2的HDX-MS研究中,特别是当快速结果至关重要时,糖基化位点从分析中被省略。SARS-CoV-2 RBD(受体结合区域)含有N331和N343两个N-聚糖,几个靶向RBD并且识别包括N343在内的表位的中和单抗(例如S309、SW186、SP1-77和C144)的对应信息在HDX-MS中均无法被识别。  酶解后去除氘代肽段上的N-聚糖是一种很有前途的方法,可以避免与糖基化相关的问题。最近发现了从PNGase A和PNGase H+到高活性的PNGase Dj和PNGase Rc,并应用于HDX的一系列有活性的耐酸酶。这些酶通常用于糖肽溶液中进行去糖基化。本文中作者将PNGase Dj固定在醛修饰的聚合物树脂上,并封装在HPLC保护柱中,该柱可直接并入典型的HDX平台。并应用该系统获得了S蛋白RBD的全序列覆盖,并显示了mAb S309的广泛作用位点,包括RBD的N343聚糖位点。  作者首先在大肠杆菌32中表达PNGase Dj,并将其固定在POROS树脂上,这是一种具有大表面积的聚合物树脂,HDX实验室通常使用这种树脂固定胃蛋白酶和其他蛋白酶。POROS 20 Al是一种醛修饰树脂,可以通过席夫碱形成和随后的氰硼氢化物还原与赖氨酸侧链偶联。虽然猪胃蛋白酶A通常固定在POROS树脂上,但它只含有1个赖氨酸,必须在pH 5.0固定,这低于偶联反应的最佳pH。作者认为含有7个赖氨酸且在中性pH下稳定的PNGase Dj可能更有效地与树脂偶联。在pH为6.5的条件下固定化树脂,洗涤后的树脂装入微孔保护柱中,然后PNGase Dj在树脂上的活性用酶解糖基化比色法测定。1 mg树脂对PNGase Dj的活性为0.79 μg [95% CI: 0.66, 0.92]。作者探究了不同的缓冲体系对于色谱柱活性的影响(图1)。固定化酶最容易受到胍HCl的抑制,并对还原剂TCEP表现出抗性。  图1. 固定化PNGase Dj的糖肽脱糖基化研究。(A)不同缓冲液中糖肽的去糖基化。x轴上的数字对应于去糖基化条件的列表。(B)在PNGase Dj处理的样品中,去糖基化肽的信号大大增强。(C)图中每对柱状图显示了chaotrope/TCEP注射后分别注射了参考缓冲液。(D)糖肽在50 mM NaH2PO4和25 mM TCEP中在12°C下的代表性EICs。强度根据每个地块进行缩放。  在确认PNGase Dj的活性后,作者评估了三种糖蛋白的去糖基化柱:HRP(horse radish peroxidase),牛胎蛋白A和AGP(α-1-acid glycoprotein)。由于糖肽的去糖基化速度比完整的蛋白质快,作者采用了双柱设置,蛋白质首先通过胃蛋白酶柱,然后进入去糖苷酶柱。为了简化设置,还使用了混合柱,其中单柱含有9:1的胃蛋白酶和PNGase Dj树脂混合物。与胃蛋白酶和PNGase Dj混合柱也可能促进蛋白质水解,去糖基化使胃蛋白酶进一步进入裂解位点。可以观察到N-聚糖位点的覆盖(图2),而这些位点在单独用胃蛋白酶消化时缺乏覆盖。用PNGase Dj处理的样品显示N-聚糖天冬酰胺脱酰胺,而单独用胃蛋白酶处理的样品未检测到脱酰胺肽。在所有情况下,PNGase Dj的加入提高了覆盖率,混合床的结果与双柱的结果相当。混合柱系统还显示末端靠近N-聚糖位点的肽,表明去糖基化可能允许胃蛋白酶在聚糖位点附近进一步切割。  图2. 糖蛋白AGP、胎蛋白A和HRP的LC - MS/MS肽覆盖。(A) AGP肽覆盖图。n -聚糖位点用箭头标记。(B)检测到的脱酰胺肽数。(C)每个糖蛋白序列的覆盖率百分比。  接下来,作者使用HDX-MS分析SARS-CoV-2 RBD序列与单克隆抗体的相互作用。S309是从先前感染SARS-CoV-1的患者的B细胞中分离出来的抗体,与SARSCoV-2交叉反应。S309与S三聚体之间的相互作用通过低温电子显微镜(cryo-EM)进行了表征,结果显示S309能够识别靠近N343聚糖的RBD上的一个表位,包括与聚糖本身的接触。作者用混合床胃蛋白酶/ PNGase Dj柱对RBD-Fc融合蛋白进行酶切,并与胃蛋白酶柱进行比较。发现混合柱可以完全覆盖RBD序列,而胃蛋白酶柱在N331和N343聚糖区域缺乏覆盖(图3)。  图3. 与单独使用胃蛋白酶相比,胃蛋白酶/PNGase Dj混合床的SARS-CoV-2 RBD肽覆盖率。多肽的Mascot ionscore≥20。胃蛋白酶消化在N331和N343聚糖附近没有覆盖。RBD-Fc蛋白的RBD区域如图所示。  随着RBD序列的全面覆盖,作者进行了差分HDX-MS实验,评估在存在和不存在S309的情况下RBD上的氘代情况。HDX-MS结果显示,在序列上的所有N-聚糖位点都检测到去糖基化肽,并且N343和N630两个位置都显示有多个重叠的去糖基化肽。S309的结合使得氘交换减少,这种保护作用最大程度的集中在N343聚糖周围,从残基338到350。ACE2受体结合基序(RBM,由438~506残基组成)边界上的434~441残基也有被保护效应。RBD以Fc融合蛋白的形式存在,但在Fc标签中没有观察到显著的HDX差异。这些结果与通过冷冻电镜鉴定的表位一致。该工作的作者鉴定出RBD残基337~344、356~361和440~444是S309的表位,此外,还观察到RBD的C端附近残基516~533的氘交换减少。虽然该序列不直接与S309相互作用,但RBD上的2个残基521~527与358~364广泛接触,这可能引起了S309结合后的变构变化。  总的来说,作者认为PNGase Dj固定在POROS树脂上提供了一种增加序列覆盖的直接方法,使得HDX-MS分析糖蛋白时,允许氢氘交换后去糖基化。这里采用的固定方法可能也适用于其他体系,例如PNGase Rc。此外,研究的结果显示,将PNGase Dj与胃蛋白酶混合使用的序列覆盖率要高于单独使用胃蛋白酶。PNGase Dj可以识别RBD中与S309结合的的糖基化表位,并且结果与冷冻电镜结构密切一致。  撰稿:李孟效  编辑:李惠琳  文章引用:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase  参考文献  1. O'Leary, T.R.R., Balasubramaniam, D., Hughes, K., et al. Hydrogen-deuterium exchange epitope mapping of glycosylated epitopes enabled by online immobilized glycosidase. Analytical Chemistry,2023.
  • 黄超兰与高福团队描绘新冠刺突蛋白糖基化图谱, 揭示“O-Follow-N”糖基化新规律
    CellRes. | 突破!黄超兰与高福团队描绘新冠刺突蛋白糖基化图谱,揭示“O-Follow-N”糖基化新规律  蛋白质糖基化修饰是生物体内最重要的翻译后修饰之一,发生在细胞50%-70%的蛋白上。病毒囊膜蛋白的糖基化修饰具有广泛的功能,包括调控蛋白质稳定性、病毒的趋向性、和保护潜在的抗原表位免受免疫监视等。深入了解新型冠状病毒(SARS-CoV-2)刺突蛋白(Spike, S)的糖基化修饰对于新型冠状病毒肺炎(COVID-19)发病机制的探索,疫苗和治疗药物的设计开发,以及检测试剂盒的生产具有重要意义。此前研究者在体外纯化表达的S蛋白胞外域和从病毒颗粒中提取的S蛋白中共鉴定到了22个N-糖基化修饰位点1,2。而由于技术和样本来源的限制,已有研究仅在纯化的S蛋白上鉴定到了一些O-糖基化修饰位点,截止目前,尚未进行病毒颗粒上S蛋白的O-糖基化修饰的研究。近日,北大-清华生命科学联合中心黄超兰团队,和中国科学院院士高福团队,中国科学院天津工业生物技术研究所高峰团队等开展合作研究,采用基于质谱的糖基化鉴定技术,首次揭示了病毒颗粒上提取的S蛋白O-糖基化修饰图谱,并提出了“O-Follow-N”的O糖基化修饰规律。该研究以“O-glycosylation pattern of the SARS-CoV-2 spike proteinreveals an “O-Follow-N” rule”为题于2021年8月2日线上发表在Cell Research期刊上。为获得天然状态下S蛋白的N-和O-糖基化修饰完整图谱,研究者从SARS-CoV-2病毒颗粒上获得S蛋白,用多种蛋白酶酶解成肽段,采用纳升液相色谱以及具有超高分辨率的Orbitrap Eclipse Tribrid三合一质谱联用仪,利用阶梯能量HCD (stepped collisional energy SCE),HCD (Higher-energy collisional dissociation) 以及HCDpdEThcD三种碎裂方法进行质谱分析。本研究中,研究者不但成功鉴定到了此前已报道的22个N-糖基化修饰位点,还首次从SARS-CoV-2病毒颗粒中提取的S蛋白上鉴定到了17个O-糖基化修饰位点。值得注意的是,研究者发现在这17个位点中,有11个位点位于糖基化的天冬酰胺(Asn)附近。研究者将NxS/T共有基序内糖基化的Asn每一侧的3个氨基酸定义为“N±1-3”。分析结果显示,11个O-糖基化修饰位点分布在“N±1-3”的位置上,位点信息确定的位点数有10个,其中7个位点分布在“N+2”的位置上。研究者还通过开展定点突变实验进一步证实Asn糖基化修饰的存在是“N±1-3”的位置上出现O-糖基化修饰的先决条件。综上,研究者提出SARS-CoV-2病毒S蛋白的糖基化修饰存在O-糖基化修饰追随N-糖基化修饰发生的现象,并将这一现象命名为“O-Follow-N”规律。  图. SARS-CoV-2病毒S蛋白的糖基化修饰遵循“O-Follow-N”规律 本研究基于前沿的质谱鉴定技术,揭示了S蛋白的O糖基化修饰谱,提出了O糖基化修饰的“O-Follow-N”规律,这一规律可能适用于其它蛋白,提示O-糖基化修饰具有潜在的新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。此前,黄超兰主任领衔的多组学中心团队还与高福院士领衔的多学科团队紧密合作,揭示早期的新冠感染患者存在显著的免疫抑制,并首次提出COVID-19的发病机制或存在“两阶段”模式3。多组学中心在黄超兰教授的带领下,将继续基于临床,前沿技术和基础学科的深度交叉融合,深耕前沿技术方法开发,为推动基础生物学和临床领域的创新研究提供最有质量保证的蛋白质组和质谱技术手段。中国科学院微生物研究所高福院士,北大-清华生命科学联合中心、北京大学医学部精准医疗多组学研究中心黄超兰教授,北京大学医学部精准医疗多组学研究中心陈扬副研究员,中国科学院天津工业生物技术研究所高峰教授为本文的共同通讯作者 北京大学医学部精准医疗多组学研究中心田文敏博士,中国科学院天津工业生物技术研究所李德林博士,北京大学医学部精准医疗多组学研究中心博士研究生张楠,中国科学院天津工业生物技术研究所博士研究生白桂杰、原恺博士为本文的共同一作。 原文链接:https://www.nature.com/articles/s41422-021-00545-2

外消旋叔丁氧羰基氟相关的仪器

  • 羰基硫(OCS)是大气中最稳定,含量最高的含硫气体。它来源于自然和人为来源,对于研究从大气中吸收多少二氧化碳(CO2)植物进行光合作用的科学家至关重要。仅靠测量CO2不能提供光合作用(吸收CO2)的估计值,因为植物还会通过呼吸释放CO2。OCS像CO2一样被吸收,但不会被呼吸释放,因此可以提供有关全球光合作用速率的有价值的信息。超高精度ProCeas羰基硫(COS)分析仪专为准确测量大气环境中低本底羰基硫(COS)而设计,具有检测低限低、测量精度高、漂移小的特点。ProCeas羰基硫(COS)分析仪是一款完全预校准的红外激光光谱气体分析仪,基于光反馈腔增强吸收光谱(OF-CEAS)来加强分析目标的特异性、分辨性、准确性和稳定性。该分析仪能以极高的精度测量羰基硫(COS)气体,具有较高的采集频率(1Hz),25ml的测量腔室有利于在较低的气体流速下获得较高的周转速率,更能保证获得准确的压力和温度控制,特殊设计的低吸附管路和测量腔能进一步提高设备的稳定性和数据的准确性。 ProCeas 羰基硫(COS)分析仪是一套完整、可靠、耐用、易操作的高精度的在线羰基硫(OCS)分析仪,可应用到植物单叶光合作用研究、也能应用到全球陆地生态系统碳循环模型研究。技术原理 腔增强吸收光谱(Cavity Enhanced Absorption Spectroscopy, CEAS)是基于传统光腔衰荡光谱技术(Cavity Ring-Down Spectroscopy,CRDS)技术基础上发展的一种高灵敏度检测技术。腔增强吸收光谱(CEAS)技术基于高品质光学谐振腔的弛豫效应,通过谐振来延长有限腔体内的光谱吸收有效路径,依据镜面反射率,其有效吸收路径可达几十千米,大大提高了检测灵敏度。与传统的CRDS不同,CEAS 测量的是经过谐振腔的透射光强,而CRDS 测量的是光强的衰减时间。CEAS在保持测量精度的同时,无需对激光进行快速关断,使得光谱分析仪结构更为简洁、系统更为稳定。光反馈(Optical-feedback,OF)是CEAS锁定的一种有效方法。 AP2E率先拥有OF-CEAS技术专利(WO03031949),同时拥有专利的低压采样技术(WO2010058107),二者的结合,为高品质气体采样和分析提供了技术保障。主要特点直接抽气测量,无需样品预处理具有自校准功能,无需跨度标准气结构简洁,系统稳定,无事实漂移专利的低压取样,防止冷凝水侵扰通过替代材料验证测量,品质优异运行平稳,以年为周期的维护需求性能指标 低本底COS测量 低检出限(3σ, 60秒) 2 ppb 精度(1σ) 0.6 ppb + 0.5%读数 零点漂移(72h) ± 0.20 ppb 测量间隔 1 s 响应时间/下降时间(10-90%) 60 s 测量范围 0 ~ 10 ppm 系统规格 技术原理 OF-CEAS (WO 03031949) 高反射镜 3面高反镜,反射率99.999% 测量腔温度控制 ± 0.002 K @ 1s & 0.00005 K @ 30 min 测量腔压力控制 ± 0.016 mbar 取样温度 -10 ~ 45 °C (temperature) 取样湿度 99% RH,无冷凝 取样流速 400 ml/min 数据输出 以太网,ModBus (TCP/IP, RS),模拟,USB 供电 110 ~ 230 VAC, 50 ~ 60 Hz 功耗 150 VA 尺寸 标准19英寸机架,4U 重量 20kg生产厂家:法国 AP2E
    留言咨询
  • MIRA OCS羰基硫分析仪 400-860-5168转2145
    MIRA OCS羰基硫分析仪——亚ppb级、中红外激光、超便携产品介绍MIRA OCS羰基硫分析仪使用创新的多通道吸收室与固态中红外激光技术相结合,检测室无反射镜,坚固和小巧,在60ml 的小空间里取得15m 的光程,同时测量OCS和H2O,使用独特的专有微分方法,可以消除温度引起的漂移,可实现亚ppb级别灵敏度,在1 分钟内达到35 ppt 的灵敏度,并且通过多次平均可以提升至10 ppt。用户能够自定义校准间隔,以实现特定应用的更高精度测量。分析仪可选配GPS,以输出.kml 格式的位置和浓度数据文件,可以很方便地在 Google Earth 中查看。MIRA OCS羰基硫分析仪可以实时高精度OCS 浓度测量,从而在土壤室研究或环境监测等一系列应用中进行现场测量。 OCS 是用于量化生物系统中光化学诱导的碳吸收的已知代理。传统上,OCS 使用更昂贵的系统来测量的,这些系统通常比MIRA OCS羰基硫分析仪大10倍,还有更高的功耗需求,使现场测量变得困难或不可能。作为一种基于中红外吸收的测量方法,MIRA OCS羰基硫分析仪在宽动态范围内实现了高精度和线性度,是一款真正意义上的便携式、高精度 OCS 分析仪,可实现实验室质量的测量。低成本,超紧凑,布放方式灵活,可便携、车载、机载、机架式安装。工作原理MIRA OCS羰基硫分析仪采用中红外波段,OCS在中红外的吸收是近红外的数千倍,从而显著提高了系统的测量精度和灵敏度。检测室无反射镜,坚固和小巧,在极小的体积 (60cc) 内实现了 15m 的吸收路径长度,从而实现了超高灵敏度、快速响应时间和低功耗。1min和10min间隔下的测量序列使用 MIRA Pico OCS 分析仪对旧金山海湾湿地OCS 水平进行自主监测。仪器以用户定义的时间间隔自动执行内置的定期校准,从而优化系统精度,通过30分钟内的信号平均获得10ppt级别的精度,数据显示了昼夜光化学诱导的 OCS 吸收循环,这在许多情况下与 CO2 吸收有关。产品选型MIRA OCS羰基硫分析仪共有4种型号可选,但其核心测量室都是一样的。MIRA pico OCS羰基硫分析仪MIRA Pico便携式OCS羰基硫分析仪为基础款,可移动式、车载测量,极低的功耗(15W),电池续航5-6h,亦可12-15V DC: 2A或110-220V AC: 0.5A供电 MIRA Ultra便携式&机架式OCS羰基硫分析仪MIRA Ultra系列OCS羰基硫分析仪相比于pico系列的不同为,Ultra系列升级为带有温控的(恒温42℃)检测室,具有毫开尔文级稳定性,以实现高灵敏度和超低漂移并避免样品冷凝,在许多情况下显著降低或完全消除校准要求。 图 Ultra便携式 图 Ultra机架式MIRA Strato机载式OCS羰基硫分析仪MIRA Strato 系列机载式OCS羰基硫分析仪,带电池重量仅为 2kg,内置GPS传感器,旨在在不牺牲性能的情况下打造更轻的气体分析仪。可搭载于无人机上用于OCS羰基硫监测,可使用电池供电(续航90min)或无人机供电。通信通常通过 RS-232 端口实现,该端口可以以高达 10Hz 的数据速率进行传输。 产品特征&bull ppt级灵敏度和精确度,1s响应速率,1min预热即用&bull 同时高精度测量CO2和H2O&bull 1Hz测量频率&bull 内置自动零点校准,免维护传感器&bull 30秒生成ppt级OCS气体的浓度报告&bull 优秀的线性响应,覆盖ppb到 ppm的浓度量级&bull 媲美DNPH-HPLC精度,无需样品制备和耗材&bull 数据通讯WIFI、RS-232、USB&bull 同步检测水汽背景,获取摩尔分数(干燥),无需干燥样气和数据修正。&bull 轻便小巧,野外应用可选配GPS组件,获取OCS “卫星图”&bull 超低功耗,内置锂电池可持续工作6小时,内置采样泵技术参数 测量方法 中红外激光吸收光谱技术 灵敏度 35ppt/min, 10ppt/15 minutes漂移 (σ) 50ppt (30s) 温度/湿度 10 ~ 40°C/10 to 95% RH (无冷凝) 浓度范围<1ppb-100ppm 尺寸(W*D*H) Pico: 11.5” x 8” x 3.75” Ultra便携:15” x 12” x 7”Ultra机架:17” x 11” x 5-3/8”Strato:7.5” x 7.5” x 3.5” 重量 Pico: 2.75kg Ultra便携:6.5kgUltra机架:9kgStrato:2kg 功耗Pico: 15W Ultra便携:25WUltra机架:25WStrato:17W 电源 直流电:12 ~ 15V,1.5A;交流电:110 ~ 220V,0.2A 数据通讯 WiFi, USB, RS232, 模拟输出 (可选) 内存 32GB(可扩展) 数据更新速率 1 or 2 Hz,最高10Hz
    留言咨询
  • 羰基硫分析仪 400-860-5168转1432
    植被吸收的OCS伴随着与光合过程中CO2的吸收,但是呼吸过程中不包含OCS,因此,同步测量OCS与二氧化碳可以作为研究总光合作用的有力工具。LGR的羰基硫分析仪可以高精度同步测量OCS与CO2,也可以同时测量H2O浓度以进行水分稀释效应修正。分析仪简单易用,可以在几分钟内安装完成,而且不需要额外进行制冷。LGR的OCS分析仪设计用于研究生态系统CO2交换,但是也用于其他应用领域,如痕量气体监测、涡度相关通量测量、箱式法通量测量及燃烧诊断。分析仪适合野外测量使用,其测量不受大气压力变化与其他气体的影响。分析仪采用了LGR专利技术的OA-ICOS技术&mdash &mdash 第4代光路增强吸收光谱技术。与传统的CRDS技术相比,具备测量速度更快,时间更短、对激光排列方式不敏感等优点。分析仪既有内置计算机,可以长期自动存储数据,并可通过模拟与数字接口连接数据采集器实时发送数据。同时提供多个可选件,可以提供改进响应时间、多路采集、远程控制等功能。 特点:同步测量OCS、CO2与H2O,光合作用研究的理想设备快速响应满足涡动相关通量测量的需求OCS测量精度:10 ppt(1秒采样间隔)CO2测量精度:0.1 ppm(10秒采样间隔)超宽量程,且全量程线性通过软件调整可以同步测量CO, CO2和H2O 性能指标:重复性/精度(1&sigma ,1 sec)OCS:10 ppt(标准型)OCS:5 ppt(EP型)CO:1.5 ppb(标准型)CO:1.0 ppb(EP型)CO2:0.3 ppmH2O:30 ppm测量速度:10 Hz(流速响应>1 Hz需要配置可选外置泵)最大漂移(EP型,15分钟平均,标准温度压力,24小时)OCS:3 pptCO:0.5 ppbCO2:0.1 ppmH2O:30 ppm或读数的1%,以较大者为准测量范围(满足所有技术指标情况下):OCS:0.2~400 ppbCO:50~40000 ppbCO2:10~10000 ppmH2O:4000 ppm~100% RH, 无冷凝可选量程:OCS:0~1 ppmCO:0~100 ppmCO2:0~10000 ppmH2O:0~100% RH, 无冷凝环境条件:样品温度:0~50 ℃操作温度:10~35 ℃(标准型)/ 0~45 ℃(EP型)环境湿度:0~100% RH,无冷凝温度控制精度(EP型):0.003 ℃压力控制精度(EP型):0.001 torr输出:数字(RS 232)、模拟、以太网、USB电力需求:115/230 VAC,50/60 Hz,180 W(标准型)/ 400 W(EP型)尺寸与重量:标准型:35.6 cm(H)x 48.3 cm(W)x 76.2 cm(D),36 kgEP型 :35.6 cm(H)x 43.2 cm(W)x 114.3 cm(D),68 kg 订货信息:型号(Model):907-0028(标准型,机架式)914-0028(EP型 ,机架式)可选件:908-0003-9001或MIU-377-16:16道多路器908-0003-9002或MIU-374-8:8道多路器908-0008-9009:N920 真空泵(气体更新时间1.2秒)908-0001-9011:N940 真空泵(气体更新时间0.5秒)907-0005-9002:动态稀释系统,可自动进行稀释并扩展量程100倍904-0002:数据采集软件(包含USB/RS 232线缆),可记录并同步多台LGR分析仪或者其他设备(如GPS、风速计等)输出的数据 制造商:美国Los Gatos Research
    留言咨询

外消旋叔丁氧羰基氟相关的耗材

  • 外旋式SBS冻存管
    产品特点►采用符合ISO 9001、ISO13485、2016质量体系认证,GMP10万级洁净车间生产►编码由激光蚀刻在管子底部和侧面,耐刮,不易脱落,高对比度易读取►利用三编码样式,为样本提供审计追溯能力►每管都经过严格的品质控制,确保可读性和唯一性►外旋管拥有更大的工作容积►适用于超低温储存,超高刚性增韧材料,耐候性佳►盖子跟管子由同一种材质制造,可有效防止冻融循环中产生的不均匀膨胀问题►无需从管架上取管子,即可读取二维代码►非硅胶密封,独特螺纹设计,可有效防止盖子被过度拧紧►管架与行业标准的SBS格式兼容产品参数0.5ml外旋管1ml外旋管1.9ml外旋管最大工作容积(ml)0.581.152.00管高(mm)26.8246.5938.43管加盖帽高度(mm)29.5849.3443.12内径(mm)6.56.59.6加盖帽外径(mm)8.78.712.8两管中心间距(mm)9.09.013.5最低温度(℃)-196-196-196管架格式96孔96孔48孔底座二维码√√√侧面条形码√√√管架编码√√√订购信息订货号容量描述盖子包装规格装箱数量双码管10-0260-110.26ml盒装,0.26ml外旋双码冻存管,96孔,SBS螺旋盖96支/盒,1盒/包,10包/箱960支10-0260-010.26ml盒装,0.26ml外旋双码冻存管,96孔,SBS无96支/盒,1盒/包,10包/箱960支10-0260-100.26ml散装,0.26ml外旋双码冻存管螺旋盖960支/包,1包/箱960支10-0900-110.9ml盒装,0.9ml外旋双码冻存管,96孔,SBS螺旋盖96支/盒,1盒/包,10包/箱960支10-0900-010.9ml盒装,0.9ml外旋双码冻存管,96孔,SBS无96支/盒,1盒/包,10包/箱960支10-0900-100.9ml散装,0.9ml外旋双码冻存管螺旋盖960支/包,1包/箱960支三码管10-0500-110.5ml盒装,0.5ml外旋三码合一冻存管,96孔,SBS螺旋盖96支/盒,1盒/包,10包/箱960支10-0500-010.5ml盒装,0.5ml外旋三码合一冻存管,96孔,SBS无96支/盒,1盒/包,10包/箱960支10-0500-120.5ml盒装,0.5ml外旋可标记三码合一冻存管,96孔,SBS螺旋盖96支/盒,1盒/包,10包/箱960支10-0500-100.5ml散装,0.5ml外旋三码合一冻存管螺旋盖960支/包,1包/箱960支10-1000-111.0ml盒装,1.0ml外旋三码合一冻存管,96孔,SBS螺旋盖96支/盒,1盒/包,10包/箱960支10-1000-011.0ml盒装,1.0ml外旋三码合一冻存管,96孔,SBS无96支/盒,1盒/包,10包/箱960支10-1000-121.0ml盒装,1.0ml外旋可标记三码合一冻存管,96孔,SBS螺旋盖96支/盒,1盒/包,10包/箱960支10-1000-101.0ml散装,1.0ml外旋三码合一冻存管螺旋盖960支/包,1包/箱960支10-1900-111.9ml盒装,1.9ml外旋三码合一冻存管,48孔,SBS螺旋盖48支/盒,1盒/包,10包/箱480支10-1900-011.9ml盒装,1.9ml外旋三码合一冻存管,48孔,SBS无48支/盒,1盒/包,10包/箱480支10-1900-121.9ml盒装,1.9ml外旋可标记三码合一冻存管,48孔,SBS螺旋盖48支/盒,1盒/包,10包/箱480支10-1900-101.9ml散装,1.9ml外旋三码合一冻存管螺旋盖480支/包,1包/箱480支
  • 用于羰基镍的活性炭A/B管
    使用硝酸过夜浸泡酸化的活性炭管可增强对羰基镍的吸附,再使用硝酸进行解析与离心,可实现羰基镍的测定。 ?Use for? ? NOISH METHOD:6007 Issue 2: 15 Auguest 1994 羰基镍 填料与克重:100mg/50mg 目数:20-40 外径×长度:6×80 最小包装:100支/盒
  • 用于羰基镍的活性炭A/B管
    使用硝酸过夜浸泡酸化的活性炭管可增强对羰基镍的吸附,再使用硝酸进行解析与离心,可实现羰基镍的测定。 ?Use for? ? NOISH METHOD:6007 Issue 2: 15 Auguest 1994 羰基镍 填料与克重:100mg/50mg 目数:20-40 外径×长度:6×80 最小包装:100支/盒
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制