胰腺粉淀粉酶标准品

仪器信息网胰腺粉淀粉酶标准品专题为您提供2024年最新胰腺粉淀粉酶标准品价格报价、厂家品牌的相关信息, 包括胰腺粉淀粉酶标准品参数、型号等,不管是国产,还是进口品牌的胰腺粉淀粉酶标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合胰腺粉淀粉酶标准品相关的耗材配件、试剂标物,还有胰腺粉淀粉酶标准品相关的最新资讯、资料,以及胰腺粉淀粉酶标准品相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

胰腺粉淀粉酶标准品相关的资料

胰腺粉淀粉酶标准品相关的论坛

  • 测定α-淀粉酶活性的两种方法的比较研究

    α-淀粉酶活性是衡量小麦穗发芽的一个生理指标,为此提出了对小麦α-淀粉酶活性的快速测定方法的研究。α-淀粉酶活性的测定方法有多种,本文仅探讨了常用的3,5-二硝基水杨酸法和凝胶扩散法。结果表明,两种方法的测定结果差异不显著,而且两者呈显著正相关;从变异系数上看,后者的变异程度较低,其精度较高;从误差来源上看,前者引起误差的因素较后者多;后者较为简便快速,准确度较高,重复性较好,可用于大批量样品的分析。关键词: 小麦, α-淀粉酶活性, 3,5-二硝基水杨酸法,凝胶扩散法1 材料和方法1.1 材料和试剂(1)萌芽的小麦:取当年小麦种子,按小麦萌发试验培养,两天后用于测验.(2)1%淀粉溶液.(3)0.4N NaOH.(4)pH5.6的柠檬酸缓冲液:A. 称取柠檬酸20.01克,溶解后稀释至1升;B.称取柠檬酸钠29.41克,溶解后稀释至1升。取A液13.7毫升与B液26.3毫升混匀,即为pH5.6的缓冲液.(5)3,5-二硝基水杨酸: 精确称取3,5-二硝基水杨酸1克溶于20毫升1N氢氧化钠中,加入50毫升蒸馏水,再加入30克酒石酸钾钠,待溶解后,用蒸馏水稀释至100毫升,盖紧瓶塞,勿使二氧化碳进入.(6)麦芽糖标准液:称取麦芽糖0.100克溶于少量蒸馏水中,仔细移入100ml容量瓶中,用蒸馏水稀释至刻度.(7)α_淀粉酶提取缓冲液:20mmol/L醋酸钠(2.7216g/L),1mmol/L氯化钙(0.11099g/L),pH 5.5.(8)%5(V/V)碘—碘化钾溶液:1.95gKI+0.65gI2溶解在100毫升蒸馏水中.(9)α_淀粉酶36.18u/mg (Sigma公司):逐级稀释10, 2.5,0.625 ,0.15625,0.03906, 0.009765mg/mL系列标准液.(10)20%冰乙酸,琼脂糖,可溶性淀粉.1.2 方法1.2.1 3.5一二硝基水杨酸测定法酶液提取从五个培养皿的发芽小麦中,各随机称取1克于研钵中,加少许α_淀粉酶提取缓冲液,研磨至匀浆,倒入离心杯中,于4000rpm离心10分钟,取上清液并并定容至25ml,即为酶提取液,备用。α_淀粉酶活性测定(1)取试管,注明对照管,测定器,每样品三个重复.(2)于每试管中各加酶液1ml,加70℃恒温水浴中加热15分钟,此期间β_淀粉酶受热钝化(3)每管中各加入1毫升pH5.06的柠檬酸缓冲液.(4)对照管中加入4毫升0.4NnaOH.(5)测定管与对照管置40℃水浴中保温10分钟,再向各管加入40℃下预热的淀粉溶液2毫升摇匀,立即放入40℃水浴中准确保温5分钟取出,向各测定管迅速加入4毫升0.4N的氢氧化钠,以终止酶活动.麦芽糖测定取以上各管中酶作用后的溶液及对照管中溶液各2毫升,分别放入25毫升试管中,再加2毫升3,5-二硝基水杨酸,混匀,置水浴中5分钟,冷却后定容至25毫升,混匀,用分光光度计在520nm波长下进行比色记录消光值,取麦芽糖标准液(1ml/mg)0,0.2,0.6 ,1.0,1.4,1.8,2.0ml。按上述同样方法比色后,将测得的消光值与麦芽糖标准液进行直线回归后,代入求得样品的麦芽糖含量,并换算成每克种子α_淀粉酶的活力单位。1.2.2 凝胶扩散测定法凝胶板制备取一长方形优质玻璃,除一宽边外,其余三边边缘各边一条透明胶片,再在上面盖一同等大小玻璃,两块玻璃两侧用夹子固定,放温箱中预热50-60℃,取三角烧杯,加30毫升α-淀粉酶提取缓冲液,0.36克琼脂糖和0.30克可溶性淀粉(作反应底物),在电炉上加热煮沸至透明后,冷却至70℃左右,将预热的玻璃胶片框架斜放在桌面上30℃,用预热的移液管吸取凝胶液,从玻璃架高一端空隙中均匀注入,直至其流遍整个胶片表面为止,不能有气泡。用量约25毫升冷却后形成凝胶板,贮存在4℃冰箱备用。α_淀粉酶活性测定取出预制冷藏的凝胶板,揭开上面一块玻璃,用塑料打孔器在凝胶板上每隔一定距离打一个1.33毫米的孔,用微量移释管向每孔内注入提取液。上述1.2.1制得的酶液于70℃水浴加热15分钟后钝化β-淀粉酶后备用。同时,在每块凝胶板孔中加入淀粉酶系列标准液(重复两次)。将凝胶板置10℃恒温箱中反应24小时后,取出,将胶板浸入I-KI溶液中染色5min,加入冰乙酸酸化终止反应。用蒸馏水淋洗3min,洗净染色液,由于加α_淀粉酶孔周围淀粉被分解,因而染色后出现未能染色的圆。未与α-淀粉酶反应的呈蓝色,用直径测量仪测圆直径。用α_淀粉酶标准液浓度对数与褪色圈直径直线回归,计算每克样品含α-淀粉酶活力单位数。2 结果和分析2.1 两种方法标准曲线2.1.1 麦芽糖标准曲线麦芽糖标准液含量越高,比色后记录的OD值越大,麦芽糖标准液比色后,测得的OD值(x)与麦芽糖浓度(y)进行直线回归,结果为:y=1.0240x+0.0897,r=0.9998,相关系数极显著,表明麦芽糖标准液含量与消光值呈直线关系,通过此直线方程可进一步测得酶活性;即将各样品的消光值代入回归方程,求得样品麦芽糖含量,然后计算可得每克种子的α_淀粉酶活力。2.1.2 α-淀粉酶标准曲线α_淀粉酶标准液浓度越高,其褪色圈直径越大,5个样品的褪色圈直径也有明显差异。将α-淀粉酶标样所测得褪色圈直径(x)与α-淀粉酶浓度对数(y)进行直线回归。结果为:y=2.4659x-3.8994, r=0.9860,相关系数极显著,表明褪色圈直径与淀粉酶标准液的浓度对数呈直线关系,通过此直线方程可进一步测得酶活性,即将各样品的褪色圈直径代入回归方程,求得各样品的α_淀粉酶浓度,然后换算成每克种子中α_淀粉酶的活力单位。2.2 两种方法测定结果比较对5个样品的淀粉酶活性,用两种方法测定,并记录了测定结果(表1)。表1 3,5-二硝基水杨酸法和凝胶扩散法结果 样品 3,5-二硝基水杨酸法 凝胶扩散法 消光值 酶活性 (u/g) 直径 酶活性(cm) (u/g) 1 0.1010 2.191.20 4.03 2 0.1580 6.701.35 6.72 3 0.1460 5.241.27 5.06 4 0.1667 6.961.45 7.14 5 0.1477 5.481.28 5.86对两组样本进行t测验,测定结果为:t=1.2855, t0.05=2.0776,|t|r0.05,表明两种结果相关系数显著,即两种方法从其中之一测定结果可以推算出另一方法的测定结果。2.3 两种方法的精度比较表2 两种方法变异数分析结果 方法 平均数(u/g) 标准差(u/g) 变异系数CV(%) 3,5-二硝基水杨酸法 5.314 [

  • 【金秋计划】直链淀粉含量对α淀粉酶酶解效率的影响

    [b]将玉米直链淀粉标准品与玉米支链淀粉标准品按不同比例混合,进行α-淀粉酶酶解反应,除直链淀粉与支链淀粉比例不同以外,其他条件均相同,结果见下图。 由图可知,淀粉中直链淀粉的含量影响α-淀粉酶酶解效率,直链淀粉含量越高,酶解速率越慢,酶解程度越低。 反应后,纯直链淀粉酶解产物的值为47% ,而纯支链淀粉酶解产物的值则达到56%。 Rendleman的研究结果也表明,玉米直链淀粉的α-淀粉酶酶解效率要明显低于支链淀粉,但张力田等人却得到相反的结果, 这可能是由于淀粉的酶解性能受多种因素影响,如分子量、直链淀粉脂质复合结构等。 原淀粉中直链含量较高的马铃薯淀粉和豌豆淀粉的α-淀粉酶酶解效率都较高,与图结果并不一致,这说明直链淀粉的含量可能不是导致几种淀粉酶解性能差异的主要因素,而结构更为复杂的支链淀粉则可能是其主要因素[/b]

  • 【原创大赛】【仪器故事】使用酶标仪测定淀粉酶抑制率的方法

    【原创大赛】【仪器故事】使用酶标仪测定淀粉酶抑制率的方法

    [align=center][b]使用酶标仪测定α-淀粉酶抑制率方法的研究[/b][/align][align=left][b]1.实验原理[/b][/align][align=left] 淀粉的消化主要有α-淀粉酶与α-葡萄糖苷酶的参与,α-淀粉酶水解α-1,4-连接键,消化的产物主要有麦芽糖、麦芽三糖、α-糊精,这些物质的进一步消化要在小肠上靠α-葡萄糖苷酶进行,α-葡萄糖苷酶主要包含麦芽-葡糖淀粉酶与蔗糖-异麦芽糖酶,α-葡萄糖苷酶水解的产物是葡萄糖。因此,通过抑制淀粉酶或葡萄糖苷酶的活性,阻碍食物中碳水化合物的水解与消化,减少糖分的吸收,以达到控制体内血糖浓度水平。[/align][align=left] 本实验是针对淀粉酶水解淀粉溶液而导致溶液中浑浊度的变化,测定溶液吸光度值的变化,以抑制剂阿卡波糖作为参照标准,抑制淀粉酶的能力以阿卡波糖当量来表达。[/align][align=left][b]2.实验方法与数据处理[/b] 将空白、样品或标准抑制剂Acarbose(阿卡波糖)与α-淀粉酶溶液混合均匀,37℃保温孵育15min,然后再加入淀粉溶液,快速振荡后在660nm迅速开始测定,利用酶标仪配备软件记录吸光度OD,初始吸光度值记为f1,以后每隔一段时间测定一个点,吸光度分别记为f1, f2 …,抑制剂作用下衰减曲线下的积分面积,扣除无抑制剂的空白曲线下面积,得出抑制剂的曲线下净面积(Net AUC)。衰退曲线下面积AUC可以近似看作各梯形面积之和,可以表达为:AUC=0.5×(f[sub]1[/sub]+f[sub]2[/sub])×ΔT+0.5×(f[sub]2[/sub]+f[sub]3[/sub])×ΔT+...+0.5×(f[sub]x[/sub]+f[sub]x+1[/sub])×ΔT+...+0.5×(f[sub]n-1[/sub] +f[sub]n[/sub])×ΔT=0.5×[2×(f[sub]1[/sub] +f[sub]2[/sub] +...+ f[sub]n-1[/sub] +f[sub]n[/sub])-f[sub]1[/sub] -f[sub]n[/sub]]×ΔT其中f[sub]n[/sub]代表第n个测定点时的吸光度,ΔT为相邻两个测定点之间的时间间隔,因本实验测定方法中ΔT设定为2min,一共有61测定点,因此该公式可以简化为:AUC=2×(f[sub]2[/sub]+f[sub]3[/sub]+...+f[sub]60[/sub])+ f[sub]1[/sub] + f[sub]61[/sub]以Acarbose当量μmol Acarbose equivalent/g (μmol AE/g)表达。[/align][align=left][b]3.试剂溶液的制备3.1 磷酸盐缓冲溶液3.1.1 CaCl[sub]2[/sub]溶液[/b]准确称取CaCl[sub]2[/sub]2H[sub]2[/sub]O粉末0.25g溶于100 mL ddH[sub]2[/sub]O,即为CaCl[sub]2[/sub]溶液2500mg/L。[b]3.1.2缓冲溶液工作液[/b]分别称取8.9g Na[sub]2[/sub]HPO[sub]4[/sub]2H[sub]2[/sub]O与6.9g NaH[sub]2[/sub]PO[sub]4[/sub]H[sub]2[/sub]O于1000 mL容量瓶中,再量取CaCl[sub]2[/sub]溶液20 mL,混合后用ddH[sub]2[/sub]O定容至1000 mL,这样得到0.1M,pH 6.9的缓冲溶液,冰箱下贮存。[b]3.2 玉米淀粉溶液[/b]玉米淀粉储备液:准确称取约1.0000g大米淀粉,加入50mL缓冲液,磁力搅拌数分钟后置于78℃左右水浴10分钟,于磁力搅拌器中搅拌自然冷却至室温,即为2%的淀粉溶液(20mg/mL);玉米淀粉工作液:将储备液用缓冲溶液依次分别稀释至1.0-10mg/mL的工作液。[b]3.3 α-淀粉酶溶液[/b]准确称取α-淀粉酶固体粉末(23U/mg)40mg,用缓冲溶液定容至10 mL,即为4mg /mL的α-淀粉酶储备液,再依次稀释至0.2、0.1、0.05、0.04、0.025 mg /mL的α-淀粉酶工作液。[b]3.4 Acarbose标准溶液的配制[/b]0.1g acarbose定容到100 mL磷酸缓冲液中,得到1mg /mL贮备液,然后用磷酸缓冲溶液依次稀释成的工作液0.01、0.02、0.03、0.04、0.05 mg /mL。[b]4.研究步骤[/b][/align][align=left][b]4.1 淀粉溶液的线性范围[/b] 由于本实验是对样品中浑浊度的变化来进行,而对浑浊度的测量不像紫外-可见分光光度计那样有理想的波长以及会出现明显的特征峰,根据文献大多数浑浊度的测量波长在620-700nm之间。为了确定玉米淀粉溶液的线性,我们选择玉米淀粉溶液的浓度在0-10mg/mL,波长选择660、700、800、900、970nm进行比较。使用玉米淀粉工作液0-10mg/mL,分别在660nm、700nm、800nm、900nm、970nm波长下测定其吸光度,重复测定3次。不同波长下淀粉溶液浓度与其OD值之间的线性关系图如下:[/align][align=left][img=,589,333]https://ng1.17img.cn/bbsfiles/images/2018/10/201810171420555396_7331_1613776_3.png!w589x333.jpg[/img][/align][align=left][table][tr][td][align=center]波长/nm[/align][/td][td][align=center]线性相关系数R[sup]2[/sup][/align][/td][td][align=center]线性斜率[/align][/td][td][align=center]空白OD值[/align][/td][td][align=center]LOD检测限[/align][/td][td][align=center]LOQ定量限[/align][/td][/tr][tr][td][align=center]660[/align][/td][td][align=center]0.9910[/align][/td][td][align=center]0.0561[/align][/td][td][align=center]0.038±0.001[/align][/td][td][align=center]0.048[/align][/td][td][align=center]0.159[/align][/td][/tr][tr][td][align=center]700[/align][/td][td][align=center]0.9917[/align][/td][td][align=center]0.0534[/align][/td][td][align=center]0.038±0.001[/align][/td][td][align=center]0.052[/align][/td][td][align=center]0.174[/align][/td][/tr][tr][td][align=center]800[/align][/td][td][align=center]0.9922[/align][/td][td][align=center]0.0478[/align][/td][td][align=center]0.041±0.002[/align][/td][td][align=center]0.093[/align][/td][td][align=center]0.310[/align][/td][/tr][tr][td][align=center]900[/align][/td][td][align=center]0.9923[/align][/td][td][align=center]0.0432[/align][/td][td][align=center]0.051±0.002[/align][/td][td][align=center]0.108[/align][/td][td][align=center]0.361[/align][/td][/tr][tr][td][align=center]970[/align][/td][td][align=center]0.9923[/align][/td][td][align=center]0.0404[/align][/td][td][align=center]0.145±0.002[/align][/td][td][align=center]0.138[/align][/td][td][align=center]0.458[/align][/td][/tr][/table]从上图及上表中可以知道,玉米淀粉浓度在0-10mg/mL时的线性关系均较好,相关系数均在0.99以上。虽然线性相关系数较低,但在波长660nm下的线性斜率高于其他波长下的线性斜率,且LOD检测限与LOQ定量限均是最小,因此选择波长660nm作为测定波长。[/align][align=left][b]4.2 淀粉酶的活力[/b] 将20μL的缓冲溶液与20μL的不同浓度α-淀粉酶溶液混合均匀,37℃保温孵育15min,然后再加入60μL的2%淀粉溶液,快速振荡后在660nm迅速开始测定其吸光度值。以不同浓度的淀粉酶浓度0.4、0.2、0.1、0.05、0.04、0.025 mg /mL,底物选择20mg/mL的淀粉溶液进行试验,在660nm下测定其吸光度值的变化曲线。660nm下其吸光度值的衰退曲线图:[/align][align=left][img=,672,359]https://ng1.17img.cn/bbsfiles/images/2018/10/201810171423163167_2471_1613776_3.png!w672x359.jpg[/img][/align][align=left]从上图,在660nm波长下,不同淀粉酶浓度使淀粉溶液的吸光度下降,而且淀粉酶浓度越大,吸光度下降的越快。AUC与淀粉酶浓度成负相关关系,随着酶浓度的增大,曲线下面积AUC逐渐减小。[/align][align=left][b]4.3 抑制剂阿卡波糖活力[/b] 采用不同浓度的阿卡波糖浓度0.01、0.02、0.03、0.04、0.05 mg /mL分别进行试验(n=3),淀粉溶液的浓度选择20mg/mL,淀粉酶浓度选择0.2mg /mL。通过试验,各个不同浓度的阿卡波糖抑制曲线图如下:[/align][align=left][img=,687,390]https://ng1.17img.cn/bbsfiles/images/2018/10/201810171426550249_8100_1613776_3.png!w687x390.jpg[/img][img=,668,320]https://ng1.17img.cn/bbsfiles/images/2018/10/201810171426580379_7253_1613776_3.png!w668x320.jpg[/img][/align][align=left]从上图看出,阿卡波糖浓度 在0.01-0.05 mg /mL之间与其曲线下净面积Net AUC的线性较好,相关系数R[sup]2[/sup]=0.9972。[/align][align=left][b]4.4 线性研究[/b] 以不同浓度的阿卡波糖0.01、0.02、0.03、0.04、0.05、0.06、0.07mg /mL分别进行试验,淀粉溶液的浓度选择20mg/mL,淀粉酶浓度选择0.2mg /mL。通过试验,各个不同浓度的阿卡波糖抑制曲线图如下:[/align][align=left][img=,690,359]https://ng1.17img.cn/bbsfiles/images/2018/10/201810171427557847_1976_1613776_3.png!w690x359.jpg[/img][/align][align=left]不同浓度的阿卡波糖与其曲线下净面积Net AUC的线性关系图如下(重复试验7次):[/align][align=left][img=,690,359]https://ng1.17img.cn/bbsfiles/images/2018/10/201810171427580179_2403_1613776_3.png!w690x359.jpg[/img][/align][align=left][table][tr][td][align=center]n[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][td][align=center]6[/align][/td][td][align=center]7[/align][/td][td][align=center]av[/align][/td][td][align=center]SD[/align][/td][td][align=center]%RSD[/align][/td][/tr][tr][td][align=center]R[sup]2[/sup][/align][/td][td][align=center]0.9909[/align][/td][td][align=center]0.9806[/align][/td][td][align=center]0.9788[/align][/td][td][align=center]0.9942[/align][/td][td][align=center]0.9934[/align][/td][td][align=center]0.991[/align][/td][td][align=center]0.9932[/align][/td][td][align=center]0.9889[/align][/td][td][align=center]0.0064[/align][/td][td][align=center]0.6477[/align][/td][/tr][tr][td][align=center]SLOPE[/align][/td][td][align=center]4433.9[/align][/td][td][align=center]4850.1[/align][/td][td][align=center]4500[/align][/td][td][align=center]4219.3[/align][/td][td][align=center]5675.1[/align][/td][td][align=center]4468[/align][/td][td][align=center]5110.9[/align][/td][td][align=center]4751[/align][/td][td][align=center]503.27[/align][/td][td][align=center]10.593[/align][/td][/tr][/table]从上表看出,不同浓度的阿卡波糖与其曲线下净面积Net AUC之间的线性相关系数R[sup]2[/sup]在0.9889±0.0064之间,相对标准偏差0.65%;斜率在4751±503.3之间,相对标准偏差10.6%。[/align][align=left][b]4.5 提取溶剂的影响[/b]对提取溶剂(丙酮:乙醇:水的混合溶剂)进行研究,即以提取溶剂代替缓冲溶液进行试验,并与缓冲溶液进行比较。[/align][align=left][img=,609,340]https://ng1.17img.cn/bbsfiles/images/2018/10/201810171437196510_7149_1613776_3.png!w609x340.jpg[/img][/align][align=left]其中:BLK——20μL缓冲溶液+20μL淀粉酶+60μL淀粉;BLK1——20μL提取溶剂+20μL淀粉酶+60μL淀粉;Emp——40μL缓冲溶液+60μL淀粉;Emp1——40μL提取溶剂+60μL淀粉。[/align][align=left]通过对提取溶剂稀释10、100、1000、10000倍后再进行同样试验(如下图):[/align][align=left][img=,657,362]https://ng1.17img.cn/bbsfiles/images/2018/10/201810171438035079_1244_1613776_3.png!w657x362.jpg[/img][/align][align=left]从图上看出,通过对提取溶剂稀释10、100、1000、10000倍后试验,基本对测定无影响。[/align][align=left][b][b]4.6 样品检测[/b][/b][/align][align=left][b] 将[/b]样品提取液代替阿卡波糖加入到淀粉酶溶液中,37℃保温孵育15min,然后再加入淀粉溶液,快速振荡后在660nm迅速开始测定。通过计算得出样品中的AE(阿卡波糖当量)。也可以通过比较抑制率IC50,来判断样品中的淀粉酶抑制率强弱。[/align][align=left][b]5.小结[/b] 通过以上对α-淀粉酶抑制率试验方法进行研究,实验表明,该方法适用于样品中α-淀粉酶抑制率的筛选。[/align][align=left]注意事项:[/align][align=left]1. 标准溶液或者样品与淀粉酶溶液混合后需在37℃保温孵育15min,再加入淀粉溶液;[/align][align=left]2. 加入淀粉溶液让后需要快速振荡后在660nm迅速开始测定;[/align][align=left][b]6.参考文献[/b]1. LEE WAH KOH, LIN LING WONG, YING YAN LOO, STEFAN KASAPIS, AND DEJIAN HUANG. J. Agric. Food Chem. 2010, 58, 148-1542. ALVIN ENG KIAT LOO AND DEJIAN HUANG. J. Agric. Food Chem. 2007, 55, 9805-98103. Elena Lo Piparo, Holger Scheib,Nathalie Frei, Gary Williamson, Martin Grigorov, and Chieh Jason Chou. J. Med. Chem. 2008, 51, 3555-35614. TOSHIRO MATSUI, TAKASHI TANAKA, SATOMI TAMURA, ASAMI TOSHIMA,KEI TAMAYA,YUJI MIYATA,KAZUNARI TANAKA, AND KIYOSHI MATSUMOTO. J. Agric. Food Chem. 2007, 55, 99-105[/align]

胰腺粉淀粉酶标准品相关的方案

胰腺粉淀粉酶标准品相关的资讯

  • 卫生部办公厅发布《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准征求意见函
    卫生部办公厅关于征求《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)意见的函   卫办监督函〔2012〕441号   各有关单位:   根据《食品安全法》及其实施条例的规定,我部组织制定了《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)。现征求你部门意见并向社会公开征求意见,请于2012年7月16日前以传真或电子邮件形式反馈我部。   传  真:010-67711813   电子信箱:gb2760@gmail.com   二○一二年五月十六日 食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿) 编号 标准名称 1 食品添加剂 醋酸酯淀粉 2 食品添加剂 磷酸酯双淀粉 3 食品添加剂 氧化淀粉 4 食品添加剂 酸处理淀粉 5 食品添加剂 乙酰化二淀粉磷酸酯 6 食品添加剂 羟丙基淀粉 7 食品添加剂 羟丙基二淀粉磷酸酯 8 食品添加剂 乙酰化双淀粉己二酸酯 9 食品添加剂 氧化羟丙基淀粉 10 食品添加剂 辛烯基琥珀酸铝淀粉 11 食品添加剂 磷酸化二淀粉磷酸酯 12 食品添加剂 淀粉磷酸酯钠 13 食品添加剂 羧甲基淀粉钠 14 食品添加剂 松香甘油酯和氢化松香甘油酯 15 食品添加剂 天门冬氨酸钙 16 食品添加剂 凹凸棒粘土  附件:16项食品安全国家标准(征求意见稿).rar
  • 淀粉中凯氏氮标准测定方法的改善
    1.国际标准相关测定方法《ISO 3188-1978 淀粉及其衍生物氮含量测定滴定法》详细测定实验过程如下: 1.1原理在催化剂存在下,用硫酸裂解淀粉及其衍生物,然后碱化反应产物,并进行蒸馏使氨释放。同时用硼酸溶液收集,再用已标定的硫酸溶液滴定,得到硫酸体积耗用数即能转化成氮含量。1.2试剂和材料在测定过程中,只可使用分析纯的试剂和蒸馏水,或至少纯度相当的水。1.2.1 浓硫酸:96%(m/m)、ρ20为1.84g/mL。1.2.2氢氧化钠溶液:40%(m/m)、ρ20为1.43g/mL。1.2.3 硼酸溶液:20g/L。1.2.4催化剂:由97g硫酸钾和3g无水硫酸铜组成。1.2.5 硫酸:约0.02mol/L或0.1mol/L的标准溶液。1.2.6指示剂:由二份在50%(V/V)乙醇溶液中的中性甲基红、冷饱和溶液与一份在50%(V/V)乙醇溶液中浓度为0.25g/L亚甲蓝溶液混合而成。配制之后贮入棕色玻璃瓶内。1.3仪器和设备1.3.1 天平:感量为 1mg。1.3.2 定氮蒸馏装置。1.3.3 自动凯氏定氮仪。1.4分析步骤1.4.1试样处理:所测样品应充分混合,放在密封干燥的容器内。对葡萄糖浆,在混合前应先除去表层约5mm。对块状样品必须研磨,使之全部过筛,不留下剩余样品。1.4.2取样:样品量称取至多为10g样品,精确至0.0001g,然后倒入干燥凯氏烧瓶内,注意不要将样品沾在瓶颈内壁上。对粘状或糊状样品,则可用一个小玻璃盛器或不产生氮的铝片纸或塑料上称重,或氮含量已知的盛器,盛品留在瓶内,如盛器产生氮的话,应做空白测定后折算。1.4.3消煮:加入催化剂10g,并用量筒加入体积为4倍样品重量计算的毫升浓硫酸。轻轻摆动烧瓶,混合瓶内样品,直至团块消失,样品完全湿透,加入防沸物(如玻璃珠)。烧瓶放到消化架上,装上排气装置,开始加热裂解。小心加热液体,使之逐渐沸腾,待液体澄清后继续加热1小时。2.化验室试验方法(国标检测方法改善后测定方法)2.1仪器设备2.1.1分析天平2.1.2 JKZ10-恒温加热消煮炉(济南精密)2.1.3JK9870全自动凯氏定氮仪(济南精密)2.2试样处理:①、使用滴管称取约2g左右的淀粉样品,15ml浓硫酸,2g左右的催化剂(硫酸铜硫酸钾),静置半小时。②、放置于消煮炉上,正常升温至100℃(开始变黑)。③、100℃持续10分钟,升至150℃(完全变黑,并开始出现泡沫)。④、升温至200℃过程中,同时加入10滴30%的过氧化氢溶液。⑤、200℃稳定5分钟,加入10滴30%的过氧化氢溶液。⑥、升至250℃,同时加入10滴30%的过氧化氢溶液。⑦、稳定10分钟,升至300℃,同时加入5滴30%的过氧化氢溶液。⑧、稳定10分钟,升至400℃,同时加入5滴30%的过氧化氢溶液。⑨、间隔10分钟加入5滴30%的过氧化氢溶液,直至溶液中固体(黑色泡沫)完全溶解。 ⑩、等待溶液变为透明的蓝绿色时继续加热1小时。2.3测定:消解完之后将样品冷却至室温,即可使用凯氏定氮仪(济南精密 JK9870)测定凯氏氮含量,得到的氮含量乘以相对应的系数可得到蛋白质的含量。3.本化验室实验方法与国标方法的改善之处①. 消解过程使用消煮炉缓慢升温,控制消解过程炭化的黑色泡沫附着在管壁,以减小对测定结果的影响②. 消解过程加入双氧水来减弱炭化产生的泡沫,以加快消煮的效率 4.改善方法的解释与方法的论证数据4.1.消化过程控制升温速率以及加入双氧水加快消化速率样品当中含有大量的含碳化合物,故在消化时候加入浓硫酸以后加热时产生碳化,会有黑色泡沫出现,由于消煮炉配套使用的消化管管径相比于标准方法中定氮烧瓶较细,极易出现黑色泡沫附着在消化管管壁,导致样品的消化不完全。降低升温速率会减弱浓硫酸碳化样品的程度,减少黑色泡沫的出现,进而降低消化时的误差出现。而双氧水时氧化性极强的强氧化剂,能加速样品中有机物的氧化,从而进一步减弱碳化过程黑色泡沫的产生,致使样品的消化速率进一步提升,加速样品的消解,缩短样品的消化时间。以下表格是针对加入双氧水消化和未加双氧水消化的样品消化时间、氮含量测定结果的比对:序号重量g双氧水加入碳化黑色泡沫情况消化耗时氮含量%11.8882否严重4h0.036322.0153否严重4h0.035831.9067否严重4h0.035841.8384是明显减弱3.5h0.036351.7305是明显减弱3.5h0.037361.8376是明显减弱3.5h0.0372备注:滴定稀硫酸浓度0.0678mol/L 消解催化剂:15ml浓硫酸硫酸铜硫酸钾(1:10)混合指示剂2g上述数据说明消化过程加入双氧水对测定结果没有影响,能明显加快消解的速率,减弱碳化过程黑色泡沫的产生,从而避免了黑色泡沫附着在消化管管壁,进而减少了消化过程的误差,增加了实验结果的稳定性。5.改善方法实验数据的准确性论证为了验证改善优化后方法的准确性,选取了不同凯氏氮含量的淀粉分别使用优化后的方法(使用济南精密JK9870)和国标方法进行对比,对比数据如下表所示: 样品名称凯氏氮检测结果/%平均值偏差/%国标方法改善优化后方法样品10.0360.035两种方法的平均值偏差为0.42%样品20.0290.028样品30.0410.042样品40.0500.051样品50.0270.029样品60.0240.024样品70.0320.031由以上表格数据可以整理归纳出,改善优化(使用JK9870凯氏定氮仪)后的实验方法与国标方法检测结果偏差在0.5%以内,检测结果没有明显差异。6.使用凯氏定氮仪(济南精密 JK9870)与传统手工滴定法的对比论证使用凯氏定氮仪测定样品中蛋白质(凯氏氮)含量,更能与消煮炉的消化高效的结合起来,相比传统的手工滴定法结果更稳定,误差更小,尤其是待测样品数量较多时,凯氏定氮仪来测定更适合改善优化后实验方法。为了验证凯氏定氮仪的检测结果准确性,采用了同一样品相同的消解方法,消解完成后定容取等量体积的样品稀释液分别使用凯氏定氮仪(济南精密 JK9870)和传统手工滴定法(国标方法)进行样品蛋白质含量的检测。检测数据如下表所示:样品序号蛋白质检测结果/%JK9870法测试手工滴定法测试10.17810.179420.18190.181330.17750.176940.18630.183850.17630.176960.17860.1816上表数据可以看出使用凯氏定氮仪(济南精密 JK9870)和传统手工滴定法(国标方法)进行淀粉样品蛋白质含量的检测时检测结果的偏差微乎其微,检测结果没有明显差异,并且使用凯氏定氮仪(济南精密 JK9870)检测起来效率更高滴定更快,能够加快实验进程。采用改善优化后的化验室实验方法进行氮含量、蛋白质含量的检测时,双氧水催化剂的使用更能加快消煮的速度,更能减弱碳化现象,有效的促进了消煮淀粉样品,消化后的样品不需要定容即可直接使用凯氏定氮仪(济南精密 JK9870)测定,并且检测结果和国标方法对比无差异,准确度高,改善优化后的实验方法可作为淀粉凯氏氮含量、蛋白质含量检测的通用方法。7.改善优化后实验方法的要点淀粉类样品的凯氏氮、蛋白质含量检测,最重要的环节是淀粉样品消化过程,消煮过程控制好升温速率,适量加入双氧水来加快消煮能更好更快速的完成消煮实验。选择采用凯氏定氮仪(济南精密 JK9870)测定相比传统的标准方法测定更方便,加快实验的效率。
  • 《食用变性淀粉》国家标准通过审定
    3月12日,经国家标准委批复,由中国商业联合会提出、诸城市兴贸玉米开发有限公司等11家单位负责起草的《食用变性淀粉》国家标准在诸城通过审定。   变性淀粉是原淀粉经过某种方法处理,不同程度地改变其原来的物理或化学特性后的产品。由于变性淀粉具有许多优良的性能,所以被广泛应用于食品、纺织、造纸、饲料等诸多领域,在食品中被广泛用于饮料、冷冻米面食品、调味品、糖果等。目前,美国、加拿大、欧洲等发达国家和地区对食品中使用变性淀粉都制定了相关条款,规定了食品中使用变性淀粉的品种和使用量。这次《食用变性淀粉》国家标准的审定,为确保变性淀粉作为食品添加剂的安全性提供了保障。

胰腺粉淀粉酶标准品相关的仪器

  • SmartStarch是安东帕MCR流变仪中专门设计用于测试淀粉糊化特性的测量模块,具有完整的淀粉湖化测量和分析方法,搅拌桨系统可以防止样品的沉淀,可以实现精确的糊化特性测量,软件可自动计算以下参数:糊化温度、峰值黏度、峰值时间、最低黏度、最终黏度、衰减值、回生值等参数,除此之外,作为流变仪还可以测试各种流体、半流体、固体样品的黏度、流动曲线、粘温曲线、屈服应力、触变性等,如油脂、牛奶、奶酪、巧克力、番茄酱、大豆蛋白、糖等等。标准配置为常压测试系统,可以测试100℃以下的糊化过程;如果需要测试100℃以上的糊化过程,可以配置密闭加压测试模块,可以实现加压测量,模拟一些实际加工工艺过程中的糊化过程,最高压力可达30bar,温度可达160℃。SmartStarch可以选择配置MCR92或 MCR102型号的流变仪作为主机,除了可以配备常压淀粉糊化测量单元、高压淀粉糊化测量单元外,还可以根据需要选择配置同轴圆筒测试系统、平行平板测试系统、锥板测试系统等等。
    留言咨询
  • BASTAK,淀粉酶测定仪,降落数值仪品牌:BASTAK,型号5100。该设备能自动测定小麦和面粉中酶的活性。FN 测量模式用于测量天然的α-淀粉酶。F FN 测量模式用于确定总的α-淀粉酶(含微生物的及天然的)。该设备能根据海拔高度自动调节沸腾温度。安装阶段需要输入的公司信息有:公司名称,地址,电话,传真及网址保存在设备上。测试的样品名称也可输入。 每次打印输出,结果都将包含公司信息。在测试样品时,会计算出平均值。该设备也能确定加入面粉中的麦芽值。能自动计算出面粉和小麦样品的搅拌速率。当给设备输入一个样品的水份值,他将给出样品测试时以克为单位的称重量。如果样品量为校正,可以根据水分校正测量值作为测试的结果。设备能计算样品的液化系数。设备显示在打印输出上同时显示测量值和依据海拔高度的校正值。设备带蓝色图形LCD显示屏。设备含有28个功能键。 设备屏幕上将显示:日期,时间, 环境温度, 样品名称及设备的运行状态 (正运行, 正打印, 停止… 等)。 外形尺寸:550x470x190 mm 重量27 kg。
    留言咨询
  • HT-FN-2型降落数值测定仪 产品介绍:降落数值测定仪 是测定谷物中淀粉酶活性的仪器,可准确判断谷物的发芽损伤程度,适用于谷物、尤其是小麦粉的测定,是粮食贮藏、面粉加工、食品加工等领域中进行质量检测的仪器。用户可根据实际需要选择带打印和不带打印功能。 降落值测定仪的方法原理:   谷物粉(如小麦粉)的悬浮液在沸水浴中迅速煳化,并因其中α—淀粉酶活性的不同而使煳化物的淀粉不同程度的被液化,液化程度不同,搅拌器在煳化物中下降速度不同,降落值的高低也就表明了相应的α—淀粉酶活性的差异。降落值愈低表明α—淀粉酶的活性愈高。降落值是以搅拌棒在煳化液自由下降一段特定高度所需的秒数来表示的 降落值测定仪技 术 参 数:(执行新国标GB/T10361-2008)1、水浴装置:由整体加热单元,冷却系统和水位指示器组成2、电子计时器:计时3、粘度搅拌器:金属制,能在硬橡胶塞孔上下自如转动。4、精致粘度管:由特种玻璃制成内径 21.00mm±0.02mm外径 23.80mm±0.25mm内高 220.0mm±0.3mm降落值测定仪5、橡胶塞:与粘度管配合6、加热管功率:600W7、重复性:要求在同一实验室,由同一操作者使用相同设备,按相同测试方法,并在短时间内对同一被测对象相互du立进行测试,两次du立测试结果的差值不应超过8%8、工作电压:AC220V±10% 50Hz9、仪器尺寸:420×340×350mm10、仪器重量:23kg
    留言咨询

胰腺粉淀粉酶标准品相关的耗材

  • 碘化钾-淀粉试纸
    【品 名】:碘化钾淀粉试纸【产品用途】:碘化钾能被氧化剂氧化而释出游离的碘,与淀粉作用而呈蓝色。 用于检验氯和亚硝酸等氧化剂的存在。一本80张 使用方法、撕下一试纸条,取一滴要测试的溶液滴于试纸条上本试纸需储存于避光干燥处
  • 淀粉总量酶法分析试剂盒(分光光度计)
    1、产品介绍产品名称:淀粉总量酶法分析试剂盒(分光光度计)英文名称:Total Starch Assay Kit(SP)货号:RP014FG 产品规格:50T/100T酶法分析是利用酶的专一性、催化效率高等特点来进行食品生化分析的分析方法。常用于复杂组分中结构和物理化学性质比较相近的同类物质的分离、检测和分析,目前主要广泛应用于医药、临床、食品和生化分析检测中。 饲料中淀粉含量检测的酶法,可以测定旋光法不适用的饲料样品,是对饲料中淀粉含量的检测方法的有力补充。2、PriboFast检测试剂盒可提供如下产品:试剂盒产品检测范围D-葡萄糖(D-Glucose)酶法分析试剂盒135T0-5g/L淀粉总量(Total Starch)酶法分析试剂盒100T0-1000mg/gL-苹果酸(L-Malic acid)酶法分析试剂盒135T0-3g/LL-乳酸(L-Lactic acid)酶法分析试剂盒135T0-1.5g/L乙酸(Acetic acid)酶法分析试剂盒135T0-1g/L甘油(Glycerol)酶法分析试剂盒135T0-1g/L酒石酸(Tartaric acid)酶法分析试剂盒130T0-12g/LD一葡萄糖酸(Gluconic acid)酶法分析试剂盒135T0-4g/L柠檬酸(Citric acid)酶法分析试剂盒135T 0-1g/LL一抗坏血酸(L-AScorbic acid)酶法分析试剂盒80T0-0.3g/L 3、关于普瑞邦 普瑞邦(Pribolab)专注于食品检测产品的研发与应用,以认证认可的检测实验室为技术依托,先后建立四个专业性技术研发与产品应用平台,产品覆盖真菌毒素、蓝藻/海洋毒素、食品过敏原、转基因、酶法食品分析、维生素、违禁添加物等领域。尤其在生物毒素类标准品、稳定同位素内标(13C,15N)、免疫亲和柱、多功能净化柱、ELISA试剂盒/胶体金检测试纸及样品前处理仪器等产品在不同行业得到广泛应用和认可。 Pribolab始终以持续创新的态度,致力于食品安全每一天!4、联系我们:电话:400-6885349/0532-84670748官网:https://www.pribolab.cn/邮箱:info@pribolab.cn
  • 淀粉总量(Total Starch)酶法分析试剂盒
    1、产品介绍产品名称:淀粉总量(Total Starch)酶法分析试剂盒英文名称:Total Starch Assay Kit货号:RP014 产品规格:50T/100T酶法分析是利用酶的专一性、催化效率高等特点来进行食品生化分析的分析方法。常用于复杂组分中结构和物理化学性质比较相近的同类物质的分离、检测和分析,目前主要广泛应用于医药、临床、食品和生化分析检测中。 饲料中淀粉含量检测的酶法,可以测定旋光法不适用的饲料样品,是对饲料中淀粉含量的检测方法的有力补充。2、PriboFast检测试剂盒可提供如下产品:试剂盒产品检测范围D-葡萄糖(D-Glucose)酶法分析试剂盒135T0-5g/L淀粉总量(Total Starch)酶法分析试剂盒100T0-1000mg/gL-苹果酸(L-Malic acid)酶法分析试剂盒135T0-3g/LL-乳酸(L-Lactic acid)酶法分析试剂盒135T0-1.5g/L乙酸(Acetic acid)酶法分析试剂盒135T0-1g/L甘油(Glycerol)酶法分析试剂盒135T0-1g/L酒石酸(Tartaric acid)酶法分析试剂盒130T0-12g/LD一葡萄糖酸(Gluconic acid)酶法分析试剂盒135T0-4g/L柠檬酸(Citric acid)酶法分析试剂盒135T 0-1g/LL一抗坏血酸(L-AScorbic acid)酶法分析试剂盒80T0-0.3g/L 3、关于普瑞邦 普瑞邦(Pribolab)专注于食品检测产品的研发与应用,以认证认可的检测实验室为技术依托,先后建立四个专业性技术研发与产品应用平台,产品覆盖真菌毒素、蓝藻/海洋毒素、食品过敏原、转基因、酶法食品分析、维生素、违禁添加物等领域。尤其在生物毒素类标准品、稳定同位素内标(13C,15N)、免疫亲和柱、多功能净化柱、ELISA试剂盒/胶体金检测试纸及样品前处理仪器等产品在不同行业得到广泛应用和认可。 Pribolab始终以持续创新的态度,致力于食品安全每一天!4、联系我们:电话:400-6885349/0532-84670748官网:https://www.pribolab.cn/邮箱:info@pribolab.cn

胰腺粉淀粉酶标准品相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制