黑升麻提取物标准品

仪器信息网黑升麻提取物标准品专题为您提供2024年最新黑升麻提取物标准品价格报价、厂家品牌的相关信息, 包括黑升麻提取物标准品参数、型号等,不管是国产,还是进口品牌的黑升麻提取物标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合黑升麻提取物标准品相关的耗材配件、试剂标物,还有黑升麻提取物标准品相关的最新资讯、资料,以及黑升麻提取物标准品相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

黑升麻提取物标准品相关的资料

黑升麻提取物标准品相关的论坛

  • 【求助】黑果花楸提取物中花青素

    求助于:黑果花楸提取物中花青素的质量, 已经尝试3次,没有办法重复!各位老师,版友, 请大家帮忙看看方法是否对头?谢谢提供建议.********************************************************黑果花楸提取物中花青素的质量检测标准操作规程[性状] 本品日光下目视为深紫色或红棕色粉末。[含量测定] 对照品溶液的制备:精密称取花青素对照品2.5mg,置10ml容量瓶中,加甲醇溶解,稀释并定容,摇匀。标准曲线的制备:精密吸取对照品溶液0.2ml、0.4ml、0.6ml、0.8ml、1.0ml,分别置具塞试管中,加甲醇补充至1ml,加2%硫酸铁胺酸性溶液(2g硫酸铁胺用2mol/L盐酸溶液定容到100ml)0.2ml、6ml正丁醇酸性溶液(95ml正丁醇与5ml盐酸定容100ml),摇匀后于95℃水浴加热40分钟,取出,立即用冷水冷却,于550nm处测定,以相应试剂为空白。照分光光度法(Q/SJ8824.3.M2-2003),以吸收度为纵坐标,浓度为横坐标,绘制标准曲线。测定法:精密称取样品25mg左右用甲醇溶解定容至100ml 容量瓶中,过滤后,吸取续滤液1ml置具塞试管中,加2%硫酸铁胺酸性溶液0.2ml、6ml正丁醇酸性溶液,摇匀后于95℃水浴加热40分钟,取出,立即用冷水冷却,于550nm处测定,空白同步。 本品以干燥品计算,含花青素应不低于标示量。计算公式:T%=(A*K+X)/Wt*100公式说明: “A”表示供试品的吸收度值;“K”表示标准曲线方程中的系数;“X”表示标准曲线方程中的常数项;“Wt”表示供试品的质量。

黑升麻提取物标准品相关的方案

黑升麻提取物标准品相关的资讯

  • 中国医药保健品进出口商会发布团体标准《植物提取物中麦芽糊精的测定》
    根据《中华人民共和国标准化法》以及《团体标准管理规定》,经组织专家委员会审查,现批准发布团体标准T/CCCMHPIE 1.92—2023《植物提取物中麦芽糊精的测定》。标准自2023年8月30日发布,2023年9月5日起实施,现予以公告。 中国医药保健品进出口商会2023年8月30日中国医药保健品进出口商会团体标准发布公告.pdf
  • 药点笔记 | 一次性生产组件标准化的可提取物研究方法
    p style=" text-align:center line-height:50px" strong span style=" font-family:宋体 color:#4F6B72" 药点笔记 /span /strong strong span style=" font-family:& #39 & amp color:#4F6B72" | /span /strong strong span style=" font-family:宋体 color:#4F6B72" 一次性生产组件标准化的可提取物研究方法 /span /strong strong /strong /p p style=" text-align:left" span style=" font-family:& #39 & amp color:#4F6B72" img src=" https://img1.17img.cn/17img/images/202008/uepic/81ab8e72-9dc6-48a3-85fc-5f0cd138a2d2.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080638696952.jpg" title=" image001.jpg" / br/ /span strong span style=" font-family:宋体 color:#4F6B72" 药点笔记 /span /strong strong span style=" font-family:& #39 & amp color:#4F6B72" | /span /strong strong span style=" font-family:宋体 color:#4F6B72" 一次性生产组件标准化的可提取物研究方法 /span /strong span style=" font-family:& #39 & amp color:#4F6B72" br/ & nbsp /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" i span style=" font-family:& #39 & amp color:#A0A0A0" “ /span /i i span style=" font-family:宋体 color:#A0A0A0" 如果一项决定没有强有力的科学依据, /span /i strong i span style=" font-family:宋体 color:black" 赛多利斯 /span /i /strong i span style=" font-family:宋体 color:#A0A0A0" 将通过科学研究来支持该依据 /span /i i span style=" font-family:& #39 & amp color:#A0A0A0" ” /span /i span style=" font-family:& #39 & amp color:#4F6B72" br/ br/ /span span style=" font-family:宋体 color:#A0A0A0" 作者 /span span style=" font-family:& #39 & amp color:#A0A0A0" |& nbsp Hovery Yin /span span style=" font-family:宋体 color:#A0A0A0" 、 /span span style=" font-family:& #39 & amp color:#A0A0A0" Elin Sun br/ /span span style=" font-family:宋体 color:#A0A0A0" 编辑 /span span style=" font-family:& #39 & amp color:#A0A0A0" | Johnson& nbsp Wang /span span style=" font-family:宋体 color:#A0A0A0" 、 /span span style=" font-family:& #39 & amp color:#A0A0A0" Hester Pan /span span style=" font-family:& #39 & amp color:#4F6B72" br/ br/ & nbsp /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:& #39 & amp color:#565656" 2020 /span span style=" font-family:宋体 color:#565656" 年 /span span style=" font-family:& #39 & amp color:#565656" 6 /span span style=" font-family:宋体 color:#565656" 月 /span span style=" font-family:& #39 & amp color:#565656" 2 /span span style=" font-family:宋体 color:#565656" 日,国家药监局药品评审中心发布了《化学药品注射剂生产所用的塑料组件系统相容性研究技术指南(征求意见稿)》,阐述一种基于科学和风险的研究思路来开展注射剂生产过程中使用的塑料组件系统的相容性研究。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 赛多利斯作为一家引领了可提取物科学 sup ( /sup /span sup span style=" font-family:& #39 & amp color:#565656" 2?10 /span /sup sup span style=" font-family: 宋体 color:#565656" ) /span /sup span style=" font-family:宋体 color:#565656" 并持续 /span span style=" font-family:& #39 & amp color:#565656" 20 /span span style=" font-family:宋体 color:#565656" 多年为我们的产品发布可提取物数据的供应商,在多年的研究中发展,完善并建立了能够充分满足各个药品监管机构标准的内部方法来对一次性组件进行可提取物分析,用可提取物数据和服务来支持生物制药客户实施一次性产品。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 为了定义我们的研究方法,我们需要询问和回答几个与研究目的、提取溶液、提取条件和分析方法有关的问题。其他考虑因素包括要提取的批次数量、报告限的定义和第三方组件。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" strong span style=" font-family:& #39 & amp color:black" “ /span /strong strong span style=" font-family:宋体 color:black" 如果一项决定没有强有力的科学依据,赛多利斯将通过科学研究来支持该依据。 /span /strong strong span style=" font-family:& #39 & amp color:black" ” /span /strong /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#4F6B72" 各种可提取物方法的所有差异都源于一项研究的既定目的以及由此产生的数据的后续使用。例如,考虑讨论哪些特定的提取液应用于可提取物研究: /span span style=" font-family:& #39 & amp color:#4F6B72" br/ span img src=" https://img1.17img.cn/17img/images/202008/uepic/35b728c6-4035-4bb1-aaf8-02c541e73e11.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080638943968.jpg" title=" image002.jpg" / /span br/ & nbsp /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" i span style=" font-family:宋体 color:#4F6B72" 如果某个版本的维恩图没有显示浸出物是可提取物的子集,则可提取物和浸出物的介绍将不完整。在图 /span /i i span style=" font-family:& #39 & amp color:#4F6B72" 1 /span /i i span style=" font-family:宋体 color:#4F6B72" 中,我们包含了一个针对工艺相关可提取物的中间类别。我们确定内部方法时,我们认为维恩图的最大部分应由供应商负责。 /span /i /p p style=" margin-top:auto margin-bottom: auto text-align:left" i span style=" font-family:宋体 color:#4F6B72" 我们需要定义表征研究组件的潜在可提取物的范围,并在材料选择、早期毒理学风险评估和变更控制方面提供帮助。这个意图驱动了我们整个方法的定义。 /span /i span style=" font-family:& #39 & amp color:#4F6B72" br/ br/ /span span style=" font-family:宋体 color:#565656 background:white" 如果目的是生成数据以模拟生物工艺条件,那么实际的溶液(例如缓冲液)可能是正确的提取液。然而,如果一项研究的目的是对组件进行化学表征,那么更具侵蚀性、提取能力更高的溶液可能更为合适。在确定新的可提取物方法的过程中,这个逻辑驱动了许多决策。 /span span style=" font-family:& #39 & amp color:#4F6B72" br/ br/ & nbsp /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" strong span style=" font-family:& #39 & amp color:#4F6B72" 1. /span /strong strong span style=" font-family:宋体 color:#4F6B72" 一次性组件的风险评估与分类 /span /strong /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 赛多利斯对可能留在工艺流体中并最终转移到活性药物成分( /span span style=" font-family:& #39 & amp color:#565656" API /span span style=" font-family:宋体 color:#565656" )的化合物的提取进行了风险评估。该评估是根据 /span span style=" font-family:& #39 & amp color:#565656" Merseburger /span span style=" font-family:宋体 color:#565656" 等人发表的行业和权威观点进行的 /span span style=" font-family:& #39 & amp color:#565656" (11, 12) /span span style=" font-family:宋体 color:#565656" 。确定了风险因素,如温度、表面积与体积的比值、接触时间、与靠近患者的因素等,因为它们影响生物制药工艺中一次性组件的可提取物浓度。同时考虑了可能稀释、浓缩或去除工艺流中浸出物的所有纯化步骤。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 提取溶剂的影响不属于本风险评估的一部分。可提取物研究的目的是寻求全面的信息。因此,赛多利斯对适当溶剂的选择进行了深入的研究 /span span style=" font-family:& #39 & amp color:#565656" (4) /span span style=" font-family:宋体 color:#565656" 。 /span span style=" font-family:& #39 & amp color:#565656" br/ span img src=" https://img1.17img.cn/17img/images/202008/uepic/992b3d42-f595-48d2-a3bc-94e30a51b72e.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080639044648.jpg" title=" image003.jpg" / /span /span span style=" font-family:& #39 & amp color:#4F6B72" br/ /span span style=" font-family:宋体 color:#565656 background:white" 为了确定每个因素的风险值(表 /span span style=" font-family:& #39 & amp color:#565656 background:white" 1 /span span style=" font-family:宋体 color:#565656 background:white" ),我们考虑在整个生物制程中使用一个一次性组件。通过将每个风险值乘以 /span span style=" font-family:& #39 & amp color:#565656 background: white" 1 /span span style=" font-family:宋体 color:#565656 background:white" 、 /span span style=" font-family:& #39 & amp color:#565656 background: white" 5 /span span style=" font-family:宋体 color:#565656 background:white" 或 /span span style=" font-family:& #39 & amp color:#565656 background: white" 10 /span span style=" font-family:宋体 color:#565656 background:white" 来计算每个一次性组件的风险分数。最后,将风险分为三类:低风险( /span span style=" font-family:& #39 & amp color:#565656 background: white" L /span span style=" font-family:宋体 color:#565656 background:white" )、中等风险( /span span style=" font-family:& #39 & amp color:#565656 background: white" M /span span style=" font-family:宋体 color:#565656 background:white" )和高风险( /span span style=" font-family:& #39 & amp color:#565656 background: white" H /span span style=" font-family:宋体 color:#565656 background:white" )(表 /span span style=" font-family:& #39 & amp color:#565656 background: white" 2 /span span style=" font-family:宋体 color:#565656 background:white" )。 /span span style=" font-family:& #39 & amp color:#565656 background: white" br/ span img src=" https://img1.17img.cn/17img/images/202008/uepic/1480ef4d-a675-4645-993f-0a7a0873b8c2.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080639067596.jpg" title=" image004.jpg" / /span /span /p p style=" margin-top:auto margin-bottom:auto" span style=" font-family: 宋体 color:#4F6B72" 对工艺应用中的一次性组件确定了不同的风险分类(表 /span span style=" font-family:& #39 & amp color:#4F6B72" 2 /span span style=" font-family:宋体 color:#4F6B72" )。为可提取物研究设置参数时考虑了这些风险等级。根据风险评估,确定了以下提取时间: /span /p p style=" margin-top:auto margin-bottom:auto" span style=" font-family:& #39 & amp color:#4F6B72" ●& nbsp /span span style=" font-family:宋体 color:#4F6B72" 对于低风险和中等风险的一次性组件,除菌级过滤器和无菌连接器使用一次较短的接触时间( /span span style=" font-family:& #39 & amp color:#4F6B72" 1 /span span style=" font-family:宋体 color:#4F6B72" 天、 /span span style=" font-family:& #39 & amp color:#4F6B72" 7 /span span style=" font-family:宋体 color:#4F6B72" 天或 /span span style=" font-family:& #39 & amp color:#4F6B72" 21 /span span style=" font-family:宋体 color:#4F6B72" 天)。 /span /p p style=" margin-top:auto margin-bottom:auto" span style=" font-family:& #39 & amp color:#4F6B72" ● /span span style=" font-family:宋体 color:#4F6B72" 对于高风险一次性组件,储存袋和管道有两个长期接触的时间点( /span span style=" font-family:& #39 & amp color:#4F6B72" 21 /span span style=" font-family:宋体 color:#4F6B72" 或 /span span style=" font-family:& #39 & amp color:#4F6B72" 70 /span span style=" font-family:宋体 color:#4F6B72" 天)。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" strong span style=" font-family:& #39 & amp color:black" 2. /span /strong strong span style=" font-family:宋体 color:black" 提取液 /span /strong /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 其目标是确定最少种类的提取溶液,产生全面的数量和质量的可提取物,能够在不溶解组件的基础聚合物,同时对给定一次性组件的预期用途的情况下。尽管赛多利斯已经为不同的目的进行了数千项研究,但没有单一项研究试图确定最少提取液种类,以确定在生物制药工艺使用条件下潜在可提取物的范围。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 对于可提取物研究, /span span style=" font-family:& #39 & amp color:#565656" Dorey /span span style=" font-family:宋体 color:#565656" 等人 /span span style=" font-family:& #39 & amp color:#565656" (6) /span span style=" font-family:宋体 color:#565656" 选择纯乙醇和纯水,在 /span span style=" font-family:& #39 & amp color:#565656" 40° C /span span style=" font-family:宋体 color:#565656" 下不溶解聚合物。纯乙醇显示出很强的提取能力,这是材料表征所必需的;而纯水对亲水性化合物显示出良好的提取能力,可应用于各种分析方法。 /span span style=" font-family:& #39 & amp color:#565656" 1 M /span span style=" font-family:宋体 color:#565656" 氢氧化钠和 /span span style=" font-family:& #39 & amp color:#565656" 1 M /span span style=" font-family:宋体 color:#565656" 盐酸可增加小分子靶向有机化学品的极性,提高其溶解度和其可检测性。 /span span style=" font-family:& #39 & amp color:#565656" br/ span img src=" https://img1.17img.cn/17img/images/202008/uepic/343daa16-82fb-44ca-8ddf-207416d35824.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080639163992.jpg" title=" image005.jpg" / /span br/ span img src=" https://img1.17img.cn/17img/images/202008/uepic/425e8943-3a68-4473-8d9a-3f38f4e2cf24.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080639176816.jpg" title=" image006.jpg" / img src=" https://img1.17img.cn/17img/images/202008/uepic/9f8e73e6-db29-4030-a0a9-55e8526ba109.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080639188252.jpg" title=" image007.jpg" / /span /span span style=" font-family:& #39 & amp color:#4F6B72" br/ /span span style=" font-family:宋体 color:#565656 background:white" 与原料生产过程中使用的酸性和碱性溶液(如缓冲液)相比,所选择的提取溶液被认为是最坏的情况,它们还能够覆盖浓酸性和碱性溶液的储存应用。选择了这组溶剂,就可以从生物制程应用中的各种一次性组件中提取所有潜在的可提取物。因为在实际应用中,灌装针头通常只接触中性 /span span style=" font-family:& #39 & amp color:#565656 background: white" pH /span span style=" font-family:宋体 color:#565656 background:white" 值的溶液,所以只用纯水和纯乙醇进行测试。 /span span style=" font-family:& #39 & amp color:#565656 background: white" br/ span img src=" https://img1.17img.cn/17img/images/202008/uepic/4b8fdb8d-85b5-41bf-8ede-ccd8c52c952f.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080639202440.jpg" title=" image008.jpg" / /span /span span style=" font-family:& #39 & amp color:#4F6B72" br/ /span strong span style=" font-family:& #39 & amp color:black" 3. /span /strong strong span style=" font-family:宋体 color:black" 提取条件 /span /strong /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 我们研究的目的要求明显超出实际使用条件及在实验室研究中仍然可行的提取条件。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" strong span style=" font-family:宋体 color:black" 表面积 /span /strong strong span style=" font-family:& #39 & amp color:black" / /span /strong strong span style=" font-family:宋体 color:black" 体积比( /span /strong strong span style=" font-family:& #39 & amp color:black" SA/V /span /strong strong span style=" font-family:宋体 color:black" ) /span /strong span style=" font-family: & #39 & amp color:#565656" : USP & lt 661& gt /span span style=" font-family:宋体 color:#565656" 要求每毫升提取液中待提取组件的 /span span style=" font-family:& #39 & amp color:#565656" SA/V /span span style=" font-family:宋体 color:#565656" 为 /span span style=" font-family:& #39 & amp color:#565656" 6 cm2/mL(13) /span span style=" font-family: 宋体 color:#565656" 。尽管这一比率的设定依据没有记录在案,但它确实明显夸大了实际应用中的预期 /span span style=" font-family:& #39 & amp color:#565656" SA/V /span span style=" font-family:宋体 color:#565656" ,并且已证明接近实验室环境中可行的最大 /span span style=" font-family:& #39 & amp color:#565656" SA/V /span span style=" font-family:宋体 color:#565656" 。对于过滤器,接受的 /span span style=" font-family:& #39 & amp color:#565656" SA/V /span span style=" font-family:宋体 color:#565656" 为 /span span style=" font-family:& #39 & amp color:#565656" 1cm /span sup span style=" font-family:& #39 & amp color:#4F6B72" 2 /span /sup span style=" font-family:& #39 & amp color:#565656" /mL, /span span style=" font-family:宋体 color:#565656" 这也被夸大了,但实际可行 /span span style=" font-family:& #39 & amp color:#565656" (14) /span span style=" font-family:宋体 color:#565656" 。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 因此,对于过滤器、切向流装置和膜吸附器,我们将 /span span style=" font-family:& #39 & amp color:#565656" SA/V /span span style=" font-family:宋体 color:#565656" 确定为 /span span style=" font-family:& #39 & amp color:#565656" 1 cm sup 2 /sup /mL /span span style=" font-family:宋体 color:#565656" ,对于所有其他组件, /span span style=" font-family:& #39 & amp color:#565656" SA/V /span span style=" font-family:宋体 color:#565656" 确定为 /span span style=" font-family:& #39 & amp color:#565656" 6 cm sup 2 /sup /mL /span span style=" font-family:宋体 color:#565656" 。我们要强调的是, /span span style=" font-family:& #39 & amp color:#565656" SA/V /span span style=" font-family:宋体 color:#565656" 比对可提取物浓度的影响取决于接触时间和给定化合物的物理性质 /span span style=" font-family:& #39 & amp color:#565656" (15) /span span style=" font-family:宋体 color:#565656" 。在不超过 /span span style=" font-family:& #39 & amp color:#565656" 7 /span span style=" font-family:宋体 color:#565656" 天的短期提取过程中,可提取化合物的释放受聚合物内扩散的控制(图 /span span style=" font-family:& #39 & amp color:#565656" 2 /span span style=" font-family:宋体 color:#565656" 和图 /span span style=" font-family:& #39 & amp color:#565656" 3 /span span style=" font-family:宋体 color:#565656" )。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 因此,对于短期提取,可提取物的浓度将由 /span span style=" font-family:& #39 & amp color:#565656" SA/V /span span style=" font-family:宋体 color:#565656" 的比率控制。对于长期接触提取,平衡浓度不再受扩散控制,而是受聚合物与溶剂的分配控制。在分配系数较大( /span span style=" font-family:& #39 & amp color:#565656" Kp/l /span span style=" font-family:宋体 color:#565656" )的化合物中,浓度与 /span span style=" font-family:& #39 & amp color:#565656" SA/V /span span style=" font-family:宋体 color:#565656" 比无关 /span span style=" font-family:& #39 & amp color:#565656" (15) /span span style=" font-family:宋体 color:#565656" 。 /span span style=" font-family:& #39 & amp color:#565656" br/ span img src=" https://img1.17img.cn/17img/images/202008/uepic/918f986c-3118-4653-aa71-ffec5eb16f81.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080639273280.jpg" title=" image009.jpg" / /span /span span style=" font-family:& #39 & amp color:#4F6B72" br/ & nbsp /span /p p style=" margin-top:auto margin-bottom:auto" strong span style=" font-family:宋体 color:black" 提取温度 /span /strong span style=" font-family:宋体 color:#565656" :提取温度应允许在不损害组件物理和化学完整性的情况下全面提取化合物。 /span /p p style=" margin-top:auto margin-bottom:auto" strong span style=" font-family:宋体 color:black" 第一个基本原理 /span /strong span style=" font-family:宋体 color:#565656" :选择的温度是加速提取的温度 /span span style=" font-family:& #39 & amp color:#565656" (17, 18) /span span style=" font-family:宋体 color:#565656" 。 /span /p p style=" margin-top:auto margin-bottom:auto" strong span style=" font-family:宋体 color:black" 第二个基本原理 /span /strong span style=" font-family:宋体 color:#565656" :最坏情况下的温度由组件的最高工作温度确定,而不影响其完整性 /span span style=" font-family:& #39 & amp color:#565656" (18) /span span style=" font-family:宋体 color:#565656" 。 /span /p p style=" margin-top:auto margin-bottom:auto" span style=" font-family: 宋体 color:#565656" 提取温度低(例如 /span span style=" font-family:& #39 & amp color:#565656" 23° C /span span style=" font-family:宋体 color:#565656" )导致可提取物浓度低(低至无法测量)。相比之下,随着提取温度的升高(例如 /span span style=" font-family:& #39 & amp color:#565656" 60° C /span span style=" font-family:宋体 color:#565656" )和提取时间的延长(大于 /span span style=" font-family:& #39 & amp color:#565656" 70 /span span style=" font-family:宋体 color:#565656" 天),大多数化合物的可提取物产量增加。在动力学研究中 /span span style=" font-family:& #39 & amp color:#565656" —— /span span style=" font-family:宋体 color:#565656" 本文未给出的结果是基于对高效液相色谱紫外检测峰强度和气相色谱质谱( /span span style=" font-family:& #39 & amp color:#565656" GC-MS /span span style=" font-family:宋体 color:#565656" )分析峰强度的定性评估 /span span style=" font-family:& #39 & amp color:#565656" —— /span span style=" font-family:宋体 color:#565656" 结果表明,在少数情况下,浓度在长时间( /span span style=" font-family:& #39 & amp color:#565656" 70 /span span style=" font-family:宋体 color:#565656" 天)内降低。具体而言,对储存袋(图 /span span style=" font-family:& #39 & amp color:#565656" 2 /span span style=" font-family:宋体 color:#565656" )和囊氏滤器(图 /span span style=" font-family:& #39 & amp color:#565656" 3 /span span style=" font-family:宋体 color:#565656" )的动力学研究表明,浓度明显依赖于温度和接触时间。 /span span style=" font-family:& #39 & amp color:#565656" GC-MS /span span style=" font-family:宋体 color:#565656" 数据(图 /span span style=" font-family:& #39 & amp color:#565656" 3 /span span style=" font-family:宋体 color:#565656" )表明,在 /span span style=" font-family:& #39 & amp color:#565656" 70 /span span style=" font-family:宋体 color:#565656" 天的提取时间后,所有测试温度( /span span style=" font-family:& #39 & amp color:#565656" 23° C /span span style=" font-family:宋体 color:#565656" 、 /span span style=" font-family:& #39 & amp color:#565656" 40° C /span span style=" font-family:宋体 color:#565656" 和 /span span style=" font-family:& #39 & amp color:#565656" 60° C /span span style=" font-family:宋体 color:#565656" )下,所有检测化合物的浓度之和到平衡。采用气相色谱 /span span style=" font-family:& #39 & amp color:#565656" - /span span style=" font-family:宋体 color:#565656" 质谱扫描法,检测和鉴定了广泛的化学物质。 /span /p p style=" margin-top:auto margin-bottom:auto" span style=" font-family: 宋体 color:#565656" 在 /span span style=" font-family:& #39 & amp color:#565656" 60° C /span span style=" font-family:宋体 color:#565656" 下提取是不可行的,因为在提取过滤囊式过滤器时会发生泄漏。对于所有提取时间点,在 /span span style=" font-family:& #39 & amp color:#565656" 20° C /span span style=" font-family:宋体 color:#565656" 到 /span span style=" font-family:& #39 & amp color:#565656" 40° C /span span style=" font-family:宋体 color:#565656" 之间可以看到提取效率的有效加速因子约为 /span span style=" font-family:& #39 & amp color:#565656" 2 /span span style=" font-family:宋体 color:#565656" (图 /span span style=" font-family:& #39 & amp color:#565656" 2 /span span style=" font-family:宋体 color:#565656" 和图 /span span style=" font-family:& #39 & amp color:#565656" 3 /span span style=" font-family:宋体 color:#565656" )。根据结果和我们的基本原理,提取温度设定为 /span span style=" font-family:& #39 & amp color:#565656" 40° C /span span style=" font-family:宋体 color:#565656" 。 /span /p p style=" margin-top:auto margin-bottom:auto" strong span style=" font-family:宋体 color:black" 提取时间 /span /strong span style=" font-family:宋体 color:#565656" :接触时间是相关的,以确保组件材料与提取溶剂之间的相互作用,从而产生高提取物浓度进行分析 /span span style=" font-family:& #39 & amp color:#565656" (16, 17) /span span style=" font-family:宋体 color:#565656" 。通过对储存袋膜材料进行动力学研究(图 /span span style=" font-family:& #39 & amp color:#565656" 2 /span span style=" font-family:宋体 color:#565656" 和图 /span span style=" font-family:& #39 & amp color:#565656" 3 /span span style=" font-family:宋体 color:#565656" ),我们观察到延长接触时间可提高可提取物水平。了解每个组件的预期用途和预期的过程中接触时间,我们可以确定夸大实际使用时间的提取时间。此外,对于滤膜,动力学研究表明,在 /span span style=" font-family:& #39 & amp color:#565656" 40° C /span span style=" font-family:宋体 color:#565656" 下提取 /span span style=" font-family:& #39 & amp color:#565656" 21 /span span style=" font-family:宋体 color:#565656" 天和 /span span style=" font-family:& #39 & amp color:#565656" / /span span style=" font-family:宋体 color:#565656" 或 /span span style=" font-family:& #39 & amp color:#565656" 70 /span span style=" font-family:宋体 color:#565656" 天可检测到大量可提取物(未显示详细数据)。大多数可提取物在 /span span style=" font-family:& #39 & amp color:#565656" 40° C /span span style=" font-family:宋体 color:#565656" 下大约 /span span style=" font-family:& #39 & amp color:#565656" 70 /span span style=" font-family:宋体 color:#565656" 天后达到平衡浓度。表 /span span style=" font-family:& #39 & amp color:#565656" 7 /span span style=" font-family:宋体 color:#565656" 显示了每种组件类别的提取时间。 /span /p p style=" margin-top:auto margin-bottom:auto" strong span style=" font-family:宋体 color:black" 试样制备 /span /strong span style=" font-family:& #39 & amp color:#565656" : /span span style=" font-family:宋体 color:#565656" 较高剂量的伽马辐射对可提取物含量的增加有已知的影响 /span span style=" font-family:& #39 & amp color:#565656" (19) /span span style=" font-family:宋体 color:#565656" 。根据 /span span style=" font-family:& #39 & amp color:#565656" ISO 11137 (20) /span span style=" font-family:宋体 color:#565656" ,我们采用了 /span span style=" font-family:& #39 & amp color:#565656" 25 kGy /span span style=" font-family:宋体 color:#565656" 的最小剂量对一次性系统进行灭菌,典型的最大辐照剂量为 /span span style=" font-family:& #39 & amp color:#565656" 45 kGy /span span style=" font-family:宋体 color:#565656" 。因此,我们需要一个目标剂量来预处理 /span span style=" font-family:& #39 & amp color:#565656" 50kGy /span span style=" font-family:宋体 color:#565656" 提取的组件,并且我们在一次性组件的 /span span style=" font-family:& #39 & amp color:#565656" γ /span span style=" font-family:宋体 color:#565656" 射线照射和提取开始后采用了最长 /span span style=" font-family:& #39 & amp color:#565656" 6 /span span style=" font-family:宋体 color:#565656" 周的时间间隔。 /span /p p style=" margin-top:auto margin-bottom:auto" strong span style=" font-family:宋体 color:black" 批数 /span /strong span style=" font-family:宋体 color:#565656" :下一个评估 /span span style=" font-family:& #39 & amp color:#565656" —— /span span style=" font-family:宋体 color:#565656" 设置研究用物品的数量 /span span style=" font-family:& #39 & amp color:#565656" —— /span span style=" font-family:宋体 color:#565656" 是评估不同过滤器和滤膜批(中间精密度)和一批内(重复性)可提取物结果的变异性。影响整个提取研究变异性的最重要参数是提取过程、样品制备和分析过程(包括分析方法)。如果所用分析方法的重复性优于提取研究中的批次间的重复性,则有可能在提取研究中检测到一次性组件之间的批次间变化。 /span span style=" font-family:& #39 & amp color:#565656" br/ span img src=" https://img1.17img.cn/17img/images/202008/uepic/68482f2c-274a-4671-adbc-c763c69af196.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080639304676.jpg" title=" image010.jpg" / /span /span span style=" font-family:& #39 & amp color:#4F6B72" br/ /span span style=" font-family:宋体 color:#565656 background:white" 在本研究中,使用高效液相色谱 /span span style=" font-family:& #39 & amp color:#565656 background:white" / /span span style=" font-family:宋体 color:#565656 background:white" 紫外光谱、气相色谱 /span span style=" font-family:& #39 & amp color:#565656 background:white" - /span span style=" font-family:宋体 color:#565656 background:white" 质谱和总有机碳( /span span style=" font-family:& #39 & amp color:#565656 background:white" TOC /span span style=" font-family:宋体 color:#565656 background:white" )分析来测定批次间的变化。这些分析技术的重复性和中间精密度实验数据低于 /span span style=" font-family:& #39 & amp color:#565656 background: white" 10% /span span style=" font-family:宋体 color:#565656 background:white" (表 /span span style=" font-family:& #39 & amp color:#565656 background: white" 3 /span span style=" font-family:宋体 color:#565656 background:white" )。然而,必须指出的是,对于某些用 /span span style=" font-family:& #39 & amp color:#565656 background: white" GC-MS /span span style=" font-family:宋体 color:#565656 background:white" 分析的化合物,其中间精密度可达 /span span style=" font-family:& #39 & amp color:#565656 background: white" 25% /span span style=" font-family:宋体 color:#565656 background:white" 。 /span span style=" font-family:& #39 & amp color:#565656 background: white" img src=" https://img1.17img.cn/17img/images/202008/uepic/103db15b-f0ee-4ce1-831f-8040289c09fe.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080639337020.jpg" title=" image011.jpg" / /span span style=" font-family:& #39 & amp color:#4F6B72" br/ & nbsp /span /p p style=" margin-top:auto margin-bottom:auto" span style=" font-family: 宋体 color:#565656" 例如, /span span style=" font-family:& #39 & amp color:#565656" Menzel /span span style=" font-family:宋体 color:#565656" 等人报道的三种常见可提取化合物的 /span span style=" font-family:& #39 & amp color:#565656" GC-MS /span span style=" font-family:宋体 color:#565656" 分析数据 /span span style=" font-family:& #39 & amp color:#565656" (5) /span span style=" font-family:宋体 color:#565656" 表明重复性和中间精密度在同一水平上(十二烷分别为 /span span style=" font-family:& #39 & amp color:#565656" 1.2% /span span style=" font-family:宋体 color:#565656" 和 /span span style=" font-family:& #39 & amp color:#565656" 5.6% /span span style=" font-family:宋体 color:#565656" ),低于 /span span style=" font-family:& #39 & amp color:#565656" 10% /span span style=" font-family:宋体 color:#565656" (表 /span span style=" font-family:& #39 & amp color:#565656" 4 /span span style=" font-family:宋体 color:#565656" )。即使在单一化合物之间,一个批次内的重复性(十二烷为 /span span style=" font-family:& #39 & amp color:#565656" 1.2% /span span style=" font-family:宋体 color:#565656" , /span span style=" font-family:& #39 & amp color:#565656" 2,4 /span span style=" font-family:宋体 color:#565656" 二 /span span style=" font-family:& #39 & amp color:#565656" - /span span style=" font-family:宋体 color:#565656" 叔丁基苯酚为 /span span style=" font-family:& #39 & amp color:#565656" 6.5% /span span style=" font-family:宋体 color:#565656" )也与中间精密度(十二烷为 /span span style=" font-family:& #39 & amp color:#565656" 5.6% /span span style=" font-family:宋体 color:#565656" , /span span style=" font-family:& #39 & amp color:#565656" 2,4- /span span style=" font-family:宋体 color:#565656" 二 /span span style=" font-family:& #39 & amp color:#565656" - /span span style=" font-family:宋体 color:#565656" 叔丁基苯酚为 /span span style=" font-family:& #39 & amp color:#565656" 7.7% /span span style=" font-family:宋体 color:#565656" )处于同一水平。分析系统的重复性相当于过滤器的批次间变化。因此,分析方法不显示任何批次间变化。基于这些数据,在进行可提取物研究时,不需要对多个批次进行相关测试。 /span span style=" font-family:& #39 & amp color:#565656" TOC /span span style=" font-family:宋体 color:#565656" 和高效液相色谱 /span span style=" font-family:& #39 & amp color:#565656" - /span span style=" font-family:宋体 color:#565656" 紫外检测结果也得出了同样的结论。重复性和中间精密度显示相同的水平。未检测到囊氏滤器的批次间变化。从这些数据中得出的结论是可提取物研究只需测试一批一次性组件。可将多个批次的提取物混合起来进行分析。 /span /p p style=" margin-top:auto margin-bottom:auto" span style=" font-family:& #39 & amp color:#4F6B72" & nbsp /span /p p style=" margin-top:auto margin-bottom:auto" strong span style=" font-family:宋体 color:black" 提取条件和提取物的处理 /span /strong span style=" font-family:宋体 color:#565656" :通过浸泡或灌装一次性组件(袋或管)来提取一次性组件。刚性一次性组件,如过滤器和外壳,通过摇动彻底湿润,以降低一次性组件和溶剂之间的界面阻力,并使表面易于接触溶剂。只要有可能达到所需的 /span span style=" font-family:& #39 & amp color:#565656" SA/V /span span style=" font-family:宋体 color:#565656" 比,一次性组件就可无须分割整个使用。不执行切碎等操作。按照预期用途对组件进行处理:对于使用前可能经过辐照和高压灭菌的组件,提供每个预处理步骤的数据。按照说明书冲洗用于保存一次性组件的液体(如切向流盒、膜吸附器)。使用已清洁的设备进行提取。空白样品、样品制备和测量细节见 /span span style=" font-family:& #39 & amp color:#565656" Menzel /span span style=" font-family:宋体 color:#565656" 等人的文章 /span span style=" font-family:& #39 & amp color:#565656" (5) /span span style=" font-family:宋体 color:#565656" 。关于根据实验室工作的基本原则处理提取物的其他建议可在文献中找到 /span span style=" font-family:& #39 & amp color:#565656" span (17, 18, 21) /span /span span style=" font-family:宋体 color:#565656" 。 /span span style=" font-family:& #39 & amp color:#565656" img src=" https://img1.17img.cn/17img/images/202008/uepic/93308a80-54f0-4669-87bf-d6d42f93dfd2.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080639363796.jpg" title=" image012.jpg" / /span span style=" font-family:& #39 & amp color:#4F6B72" br/ /span strong span style=" font-family:& #39 & amp color:black" 4. /span /strong strong span style=" font-family:宋体 color:black" 分析方法 /span /strong /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 我们结合了最先进的分析技术,用于检测、鉴定和定量挥发性、半挥发性和非挥发性可提取物,包括元素。我们的分析方法如表 /span span style=" font-family:& #39 & amp color:#565656" 5 /span span style=" font-family:宋体 color:#565656" 所示。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" strong span style=" font-family:宋体 color:black" 报告限的定义 /span /strong span style=" font-family:宋体 color:#565656" :美国药典第 /span span style=" font-family:& #39 & amp color:#565656" & lt 1663& gt /span span style=" font-family:宋体 color:#565656" 章提到 /span span style=" font-family:& #39 & amp color:#565656" “ /span span style=" font-family:宋体 color:#565656" 表征是发现、鉴定和量化超过规定水平或阈值的提取物中存在的每个有机和无机化学实体。这些阈值可以基于患者安全考虑、材料考虑、分析技术能力等 /span span style=" font-family:& #39 & amp color:#565656" ”(16) /span span style=" font-family:宋体 color:#565656" 。许多文献描述了用不同分析方法测定可提取化合物的检出限( /span span style=" font-family:& #39 & amp color:#565656" LoD /span span style=" font-family:宋体 color:#565656" )和定量限( /span span style=" font-family:& #39 & amp color:#565656" LoQ /span span style=" font-family:宋体 color:#565656" )的适用方法 /span span style=" font-family:& #39 & amp color:#565656" (22, 23) /span span style=" font-family:宋体 color:#565656" 。 /span span style=" font-family:& #39 & amp color:#565656" Jenke /span span style=" font-family:宋体 color:#565656" 等人报道了一次性组件中约 /span span style=" font-family:& #39 & amp color:#565656" 500 /span span style=" font-family:宋体 color:#565656" 种不同的潜在可提取化合物 /span span style=" font-family:& #39 & amp color:#565656" (24) /span span style=" font-family:宋体 color:#565656" 。由于所列可提取化合物的极性和挥发性的化学多样性,不能期望 /span span style=" font-family:& #39 & amp color:#565656" LoD/LoQ /span span style=" font-family:宋体 color:#565656" 值在相同或甚至相似的水平上。美国药典第 /span span style=" font-family:& #39 & amp color:#565656" & lt 1663& gt /span span style=" font-family: 宋体 color:#565656" 章讨论了定性可提取物评估,并建议至少有一种浓度为 /span span style=" font-family:& #39 & amp color:#565656" 5µ g/mL /span span style=" font-family:宋体 color:#565656" 的可提取化合物来进行结构确证。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 在可提取物研究中,扫描方法允许检测浓度范围为十亿分之几( /span span style=" font-family:& #39 & amp color:#565656" ppb /span span style=" font-family:宋体 color:#565656" )到百万分之几( /span span style=" font-family:& #39 & amp color:#565656" ppm /span span style=" font-family:宋体 color:#565656" )的潜在可提取化合物。为了能够稳健地报告可提取物结果(包括定性和定量),定义每种分析方法的报告限( /span span style=" font-family:& #39 & amp color:#565656" RL /span span style=" font-family:宋体 color:#565656" )是一个实用步骤。这些限值是主观定义的,对于单一化合物可以高于定量限,并且可以克服实验室间定量限的差异。 /span span style=" font-family:& #39 & amp color:#565656" RL /span span style=" font-family:宋体 color:#565656" 可以从特定分析技术的单个化合物的 /span span style=" font-family:& #39 & amp color:#565656" LoQ /span span style=" font-family:宋体 color:#565656" 数据中得到。这一概念允许报告来自不同实验室的可重复的可提取物信息。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 在研究中,从提取样品中检测到的所有峰,如果峰面积超过对照峰(空白)峰面积的 /span span style=" font-family:& #39 & amp color:#565656" 50% /span span style=" font-family:宋体 color:#565656" ,则视为可提取化合物。 /span span style=" font-family:& #39 & amp color:#565656" RL /span span style=" font-family:宋体 color:#565656" 不是固定的,代表分析设备的性能(表 /span span style=" font-family:& #39 & amp color:#565656" 6 /span span style=" font-family:宋体 color:#565656" )。进一步的改进和新的耐用的分析系统和技术可以导致较低的报告限。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" strong span style=" font-family:宋体 color:black" 赛多利斯的一次性组件提取方案 /span /strong span style=" font-family:宋体 color:#565656" :表 /span span style=" font-family:& #39 & amp color:#565656" 7 /span span style=" font-family:宋体 color:#565656" 显示了应用于一次性组件的提取方案。赛多利斯在其标准、可配置和自定义一次性组装中使用了许多第三方组件,包括连接器和管道。为了向我们的客户提供我们的一次性系统的全面可提取物信息,我们实施了一个全面的计划,根据我们新的内部程序测试我们组件库的一个子集(包括此类第三方组件)。 /span span style=" font-family:& #39 & amp color:#4F6B72" br/ br/ /span span strong span style=" font-size: 12px font-family: 宋体 color: rgb(10, 44, 132) background: rgb(242, 242, 242) " 赛多利斯已经开发出一种可提取物研究的实用方法,以表征用于生物制药工艺的一次性组件的潜在可提取物。同时建立了一个测试程序,以评估提取过程中物理和化学参数的影响,并推导出不同一次性组件提取物研究设计的相关条件。通过采用标准化提取参数和最先进的分析方法对一次性组件进行的最差情况提取研究的结果,赛多利斯能够帮助您获得全面的定性和定量可提取物数据。 /span /strong /span /p br/ p span & nbsp /span /p p span style=" font-family:宋体" 查询原文 /span /p p span & nbsp /span /p p span Pahl I., Dorey S., Uettwiller I., Hoffmann Ch., Priebe P., Menzel R., & amp Hauk A. Development of a Standardized Extractables Approach for Single-Use Components -General Considerations and Practical Aspects. Bioprocess Int. 2018 16(10). /span /p p span & nbsp /span /p p span style=" font-family:宋体" 以上作者均来自赛多利斯 /span /p p span & nbsp /span /p p span & nbsp /span /p p span style=" font-family: 宋体 color: rgb(127, 127, 127) " 参考文献 /span /p p span style=" color: rgb(127, 127, 127) " 1.Reif OW, Sö lkner P, Rupp J. Analysis and Evaluation of Filter Cartridge Extractables for Validation in Pharmaceutical Downstream Processing. PDA J. Pharm. Sci. Technol. 50(6) 1996 399–410. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 2.Fichtner S, et al. Determination of “Extractables” on Polymer Materials by Means of HPLC-MS. PDA J. Pharm. Sci. Technol. 60, 2006 291–301. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 3.Pahl I, et al. Analysis and Evaluation of Single-Use Bag Extractables for Validation in Biopharmaceutical Applications. PDA J. Pharm. Sci. Technol. 68(5) 2014: 456–471 doi:10.5731/ pdajpst.2014.00996. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 4.Menzel R, et al. Comparative Extractables Study of Autoclavable Polyethersulfone Filter Cartridges for Sterile Filtration. PDA J. Pharm. Sci. Technol. 72(3) 2018: 298–316 doi:10.5731/pdajpst.2017.008367. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 5.Dorey S, et al. Theoretical and Practical Considerations When Selecting Solvents for Use in Extractables Studies of Polymeric Contact Materials in Single-Use Systems Applied in the Production of Biopharmaceuticals. Ind. Eng. Chem. Res. 57, 2018 7077–7089 doi:10.1021/acs.iecr.7b04940. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 6.Hauk A, et al. On the “Fate of Leachables” in Biopharmaceutical Up-Stream and Down-Stream Processes. Single-Use Technologies II: Bridging Polymer Science to Biotechnology Applications. ECI Conference Series: 7–10 May 2017, Tomar, Portugal. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 7.Gaston F, et al. FTIR Study of Ageing of γ-Irradiated Biopharmaceutical EVA Based Film. Polym. Degrad. Stab. 129, 2016 19–25 doi:10.1016/j.polymdegradstab.2016.03.040. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 8.Audran G, et al. Degradation of γ-Irradiated Polyethylene-Ethylene Vinyl Alcohol-Polyethylene Multilayer Films: An ESR Study. Polym. Degrad. Stab. 122, 2015 169– 179 doi:10.1016/j.polymdegradstab.2015.10.021. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 9.Gaston F, et al. Impact of γ-Irradiation, Ageing and Their Interactions on Multilayer Films Followed By AComDim. Anal. Chim. Acta 981, June 2017: 11–23 doi:10.1016/j.aca.2017.05.021. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 10.Gaston F, et al. One Year Monitoring By FTIR of γ-Irradiated Multilayer Film PE/EVOH/PE. Radiat. Phys. Chem. 125, 2016: 115–121 doi:10.1016/j. radphyschem.2016.03.010. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 11.Merseburger T, et al. A Risk Analysis for Production Processes with Disposable Bioreactors. Disposable Bioreactors 2. Eibl D, Eibl R, Eds. Springer: Berlin–Heidelberg, 2013: 273– 288 doi:10.1007/10_2013_244. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 12.Merseburger T, et al. Recommendation for a Risk Analysis for Production Processes with Disposable Bioreactors. DECHEMA, Gesellschaft fü r Chemische Technik und Biotechnologie eV: Frankfurt am Main, Germany, 2015. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 13.& lt 661& gt Plastic Packaging Systems and Their Materials of Construction. United States Pharmacopeia 40(1) 2017. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 14.& lt 665& gt DRAFT. Polymeric Components and Systems Used in the Manufacturing of Pharmaceutical and Biopharmaceutical Drug Products. US Pharmacopeial Convention, Inc.: Rockville, MD, 2017 /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 15.Plastic Packaging: Interactions with Food and Pharmaceuticals. Piringer OG, Barner AL, Eds. Wiley span style=" color: rgb(127, 127, 127) font-family: 宋体 " ‐ /span VCH: Weinheim, Germany, 2008. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 16. & lt 1663& gt Assessment of Extractables Associated with Pharmaceutical Packaging/Delivery Systems. United States Pharmacopeia 38, 2015: 7166–7180. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 17.Leachables and Extractables Handbook: Safety Evaluation, Qualification, and Best Practices Applied to Inhalation Drug Products. Ball DJ, et al., Eds. John Wiley & amp Sons, Inc.: Hoboken, NJ, 2012. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 18.Jenke D. Compatibility of Pharmaceutical Products and Contact Materials: Safety Considerations Associated with Extractables and Leachables. John Wiley & amp Sons, Inc.: Hoboken, NJ, 2009. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 19.Dorey S, et al. Reconciliation of pH, Conductivity, Total Organic Carbon with Carboxylic Acids Detected By Ion Chromatography in Solution After Contact with Multilayer Films After γ-Irradiation. Eur. J. Pharm. Sci. 117, 23 February 2018 216–226 doi:10.1016/j.ejps.2018.02.023. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 20.ISO 11137-1:2006. Sterilization of Health Care Products — Radiation — Part 1: Requirements for Development, Validation, and Routine Control of a Sterilization Process for Medical Devices. International Organization for Standardization: Geneva, Switzerland, 2016. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 21.Jenke D, et al. Extractables Characterization for Five Materials of Construction Representative of Packaging Systems Used for Parenteral and Ophthalmic Drug Products. PDA J. Pharm. Sci. Technol. 67(5) 2013 448–511 doi:10.5731/ pdajpst.2013.00933. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 22.Shrivastava A, Gupta V. Methods for the Determination of Limit of Detection and Limit of Quantitation of the Analytical Methods. Chronicles Young Sci. 2(1) 2011 21–25 doi:10.4103/2229-5186.79345. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 23.ICH Q2(R1). Validation of Analytical Procedures: Text and Methodology. US Fed. Reg. 62(96) 1997: 27463–27467 www.ich.org/fileadmin/Public_Web_Site/ICH_Products/ Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 24.Jenke D, Carlson T. A Compilation of Safety Impact Information for Extractables Associated with Materials Used in Pharmaceutical Packaging, Delivery, Administration, and Manufacturing Systems. J. Pharm. Sci. Technol. 68(5) 2014: 407–55 doi:10.5731/pdajpst.2014.00995. /span /p p br/ /p
  • 天然提取物:现代化妆品的健康新趋势
    在当前消费者越来越注重产品成分天然健康的市场环境下,植物提取物因其独特的功效和相对较低的副作用风险,成为化妆品研发的重要方向。化妆品中的天然提取物以其绿色、自然和健康的特性,在现代化妆品行业中的应用日益广泛,据不完全统计,天然化妆品在整个化妆品中的比例已经达到40%。本文汇总了天然提取物在美白祛斑、防晒、抗衰老、保湿、乳化、防腐、透皮吸收促进、香料等8个方面的应用情况,供大家阅读参考。1、天然提取物-美白剂传统美白剂有稳定性不佳,刺激,功效显现缓慢等劣势。而天然来源的美白剂可结合多成分、多靶点与多功效的优势,同时还兼具温和、安全、持久的特点,已成为美白化妆品行业的一个趋势。常见的天然美白成分有金银花、茶多酚、石榴、花青素、珍珠等。化妆品常见天然美白提取物汇总2、天然提取物-抗衰剂以天然提取物为原料的抗衰老化妆品同样越来越多的被应用于化妆品中。根据衰老学说,天然提取物的抗衰机制主要有以下几点:①通过提取物中的抗氧化组分,减少皮肤的自由基损伤,来调节皮肤免疫和提高自我保护作用。②通过抑制MMP表达,或促进组织型抑制剂(TIMP)表达来维持真皮层的结构。此外,防晒组分可有效防止紫外线对皮肤的伤害。而由于天然物种中组分较为复杂,往往能够多靶点协同作用起到抗衰老的效果,因此备受市场欢迎。常见天然抗衰剂有番红花素、人参皂苷、姜黄提取物、丹参酮、牡丹花等。化妆品常见天然抗衰提取物汇总3、天然提取物-保湿剂天然提取物在保湿方面的机制一般为:1、天然多酚羟基与水以氢键形式结合,形成锁水膜。2、其中的神经酰胺成分可以修护皮肤屏障,从而提高锁水能力。3、抑制透明质酸酶活性,减少皮肤保湿剂-HA的降解。常见的天然保湿成分有白及成分、竹叶黄酮、甘草提取物、芦荟有机酸、百合提取物等。化妆品常见天然保湿提取物汇总4、天然提取物-防晒剂目前市面上的防晒产品多为物理紫外屏蔽剂、化学紫外吸收剂,这两种类型的防晒剂均会给皮肤造成不同程度的负担,同时对水体生态环境也是造成了不小的压力。天然来源的防晒剂则具有广谱防晒、副作用小等特点。我国目前已将芦荟、黄岑、甘草、桂皮、沙棘等用于防晒产品中。化妆品常见天然防晒剂汇总5、天然提取物-毛发用剂发用化妆品中添加一些中药提取物已经比较常见,主要是可以使头发柔软、促进头发生长等。如何首乌、五味子、黑芝麻、人参、侧柏叶等都具有不错的养发护发的功效。此外,有一部分的收涩药含有的有机酸和鞣质能与美发剂中的铁、铜结合,用于染发剂的制备。化妆品常见天然护发剂汇总6、天然提取物-防腐剂化妆品中常用的防腐剂有尼泊金酯类、咪唑烷基脲、苯甲酸及其衍生物、醇类及其衍生物类等。安全的天然防腐剂一直成为化妆品研究的热点。常用的天然防腐剂有芦荟、益母草、黄岑、月见草、金缕梅等。化妆品常见天然防腐剂汇总7、天然提取物-香精天然香料是指以自然界存在的动植物的芳香部位为原料提取加工而成的原态香材天然香料。动物香料常用的有香、龙涎香、灵猫香、海狸香和香鼠香等,一般作定香剂使用,价格比较昂贵。植物性香料由植物的花、果、叶、茎、根、皮或者树木的木质茎、叶、树根和树皮中提取的易挥发芳香组分的混合物。常见的天然香精有玫瑰、薰衣草、苦橙叶、迷迭香、茉莉等。化妆品常见天然香精汇总8、天然提取物-其他功能① 乳化乳化剂是化妆品的重要辅助原料,具有乳化作用的天然提取物一般含有皂苷、树胶、蛋白质、胆固卵磷脂、明胶等。② 头皮吸收促进剂如月桂氮卓酮之类的化学合成促进剂,毒性大,长时间会对皮肤造成伤害。对比之下,天然的促进剂如薄荷油、桉油、丁香油、蛇床子油、当归挥发油、川芎挥发油等则有促渗作用强,不良反应小等特点。9、品牌天然提取物及功效举例

黑升麻提取物标准品相关的仪器

  • 冠亚中药材提取物水分检测仪深圳冠亚牌SFY系列中药材提取物水分检测仪是由深圳市冠亚公司研发并生产,SFY商标:8931081。该仪器具有温度设定、微调温度补偿及自动控制等功能, 采用目前国际通用的热解原理研制而成的新一代卤素快速水分测定仪器。引进进口自动称重显示系统,人性化系统操作, 无需特殊培训,自动校准功能、自动测试模式,取样、干燥、测定一机化操作。中药提取物水分测定仪应变式混合气体加热器,短时间内达到加热功率,在高温下样品快速被干燥,测定精度高、时间短、无耗材、操作简便,不受环境、时漂、温漂因素影响,无需辅助设备等优点。客户可根据所测样品(样品如燕窝、纤维、烟草等)状态不同而调整测试空间,片状、颗粒、粉末一机操作,中药提取物水分测定仪检测效率、测试准确度远远高于**标准方法。计算机、打印机连接功能可即时打印或者记录、储存终点自动判定模式锁定的终水分值。深圳冠亚牌SFY系列中药材提取物水分检测仪技术指标: 1、称重范围:0-60g 2、水分测定范围:0.01-**★★JK称重系统传感器 3、样品质量:0.5-60g 4、加热温度范围:起始-180℃★★加热方式:应变式混合气体加热器★★微调自动补偿温度15℃ 5、水分含量可读性:0.01% 6、中药提取物水分测试仪显示7种参数:★★ 水分值,样品初值,样品终值,测定时间,温度初值,终值,恒重值★★红色数码管独立显示模式 7、双重通讯接口:RS 232(打印机) RS 232(计算机) 8、外型尺寸:380×205×325(mm) 9、电源:220V±10% 10、频率:50Hz±1Hz 11、净重:3.7Kg中药天然提取物品种在80种以上,可分为3类:单味中药天然提取物,如黄芪、蒺藜、厚朴、五味子、枳实、当归、贯叶、连翘、山楂、灵芝、刺五加、绿茶、大蒜、银杏叶等提取物;复方中药天然提取物,如补中益气方提取物等;纯化提取物,包括活性部位和单体化合物,如茶叶儿茶素、白藜芦醇、大豆异黄酮、人参皂苷、石杉碱甲等。中药材的水分控制是非常严格的,控制不当容易造成药材发霉等问题,从而失去使用价值。
    留言咨询
  • 植物提取物蒸发光检测器检测包含:浙贝流浸膏蒸发光散射检测器检测贝母素甲、银杏叶提取物蒸发光散射检测器检测萜类内酯(白果内酯),知母提取物脂肪肝散射检测器检测、黄芩提取物蒸发光散射检测器检测.Omnitor 蒸发光散射检测器(Evaporative Light Scattering Detector)作为一种通用型质量检测器,可检测挥发性低于流动相的任何样品,而无需发色基团。三为科学提供sanotac色谱软件和数模转换器,有效实现蒸发光散射检测仪ELSD与高效液相色谱、制备液相色谱、中压制备色谱等分离纯化设备的的联用方案。蒸发光散射检测器技术特点:紧凑的结构——独创的全新光散射光路和卧式仪器结构,并且对仪器内部温度场进行合理设计,仪器结构紧凑合理安全、长寿命——16项仪器自检,多重安全设计,避免流动相进入检测室检测性能优异——定量重复性达到RSD6≤1.5%,基线噪声低至0.01 mV,漂移小方便用户使用——10组方法存储管理(25个参数),多重报警模式,雾化管前置,便于用户观察和清洗智能温控——漂移管辅助快速降温系统可以完成不同方法间的快速切换,喷嘴加热及雾化管角度调整功能为高端用户提供个性化实验参数定制需求灵活的输出——0.3 ~ 30倍的连续增益调整,提供输出自动归零功能,-1000 mV ~ 1000 mV的偏置模拟输出,并且提供数字输出功能控制采集软件——色谱系统软件符合FDA 21CFR Part 11要求,具有审计追踪功能,可以与任何主流HPLC系统联用多重通讯模式——RS232,RS-485,USB,LAN(TCP/HTTP),可编程外部事件接口绿色节能——提供待机模式,检测器低功耗状态,同时节省50%以上氮气消耗,多重方式开启待机模式(内部、远程、定时器)蒸发光散射检测器技术参数:型号ELSD9000ELSD6000检测光源650 nm, 30 mW半导体激光器检测器原件光电倍增管蒸发温度范围室温~ 150℃(调整步长1℃)室温~ 130℃(调整步长1℃)雾化温度范围室温~ 60℃(调整步长1℃)室温~ 56℃(调整步长1℃)温度控制准确度±1℃温度调节增量1℃气体要求洁净空气或氮气气体输入压力范围2 bar -5 bar气体压力检测精度0.01bar气体流量范围1 L/min -4L/min气体流量控制及准确度质量流量计 ≤1%或0.02 L/min流动相流量范围0.01 mL/min ~ 3 mL/min基线噪声≤ 0.01 mV≤ 0.03 mV基线漂移≤ 0.2 mV / 30 min≤ 0.3 mV / 60 min最小检测浓度0.5ng1ng典型定量范围0.1μg ~30μg定量重复性≤ 1.5%≤ 2 %模拟输出 -1200 mV ~ 1200 mV增益线性增益,0.3 ~ 30连续调整输出设置输出自动归零,输出偏置(-1000 mV ~ 1000 mV)数字输出速率20 Hz方法保存10组25个参数,自动调用可编程外部事件调零,关断激光器,气体阀门和加热输入和显示10键键盘和16×2高亮度屏接口RS-232, RS-485, USB, LAN(TCP/HTTP)RS-232, USB数据采集软件sanotac专用色谱软件符合FDA 21CFR Part 11要求,具有审计追踪功能电源及功耗85 ~ 264VAC , 50Hz尺寸(W×H×D)260×190×460 mm重量10 kg
    留言咨询
  • 上海那艾实验仪器设备[那艾仪器厂家]网站 全国送货厂家一手货! 品质保证!实验仪器非电子产品,使用效率和售后服务很重要。我们同品质比价格,同价格比效率,同效率比售后。设备仪器属于精密设备 客户订单录档案 免费1年质量保质,任何问题提供配件保养维护上海那艾仪器专注以实验仪器设计、研发,生产,销售为核心的仪器企业,目前销售生产有一体化蒸馏仪,中药二氧化硫蒸馏仪,COD消解仪,高氯COD消解仪,硫化物酸化吹气仪,全自动液液萃取仪,挥发油测定仪等等。实验室为了加快反应速度很慢或难以进行的化学反应,常常采用回流与冷凝装置,保证反应进行完全,并防止反应物、产物或溶剂挥发逸出体系。那艾智能水浴冷凝回流提取仪(沸水浴加热回流装置)采用智能恒温水浴替代传统水浴锅,标配12个加热单元,满足大样品量的需求;内置四个测温点和耐高温循环水泵来保证水浴温控均匀;一键启动,自动控温,且缺水自动补水,可自动排水,避免长时间菌类滋生。适用于食品及食品包装物部分项目的检测前处理,中药科研单位、加工企业、生产企业等样品浸出物、含量测定、理化鉴别等实验。适用标准(仅部分展示)《中国药典》浸出物的测定法中醇溶性热浸法 脂肪与脂肪油测定法中药浸提回流法GB 5009.168-2016 食品安全国家标准 食品中淀粉总酸维生素A、D、E脂肪酸的测定GB 31604.5-2016 食品安全国家标准 食品接触材料及制品 树脂中提取物的测定GB/T 5009.127-2003 食品包装用聚酯树脂及其成型品中锗的测定GB/T 8021-2003 石油产品皂化值测定法GB/T 17817-2010 饲料中维生素 A 检测皂化GB/T 10345-2022 白酒分析方法(总酯和酸酯总量的测定)土壤分析技术规范 甲亚胺-H比色法 土壤中硼的测定(提硼回流装置-石英冷凝回流提取仪)主要特征1、仪器机身采用框架一体式设计,稳固牢靠,主体采用品牌冷轧板配合静电粉末涂装,更加耐磨、耐腐蚀;2、从空开到触点,继电保护器到按钮开关等,选用正泰/德力西或同级别品牌电气,保证仪器品质和的使用寿命;3、PLC控制,性能强劲稳定,7寸触控屏操作和显示一触即达,所有功能设置均集成于屏幕中;4、全自动水位控制,缺水自动补水(蜂鸣报警),可自动排空水槽(内置保护机制40°以下才能启动),避免长时间菌类滋生;5、12位样品同步操作,水温可达100℃,满足沸水浴回流的温度要求,内置循环泵系统保证水浴温度均匀恒定; 6、冷凝管正后方标配3位大功率风扇,实验结束后对锥形瓶进行快速降温; ☆7、内置4个测温点,加热温度和时间任意设置; 一键加热回流冷凝,回流过程自动完成,结束自动断电停止加热(蜂鸣提醒);☆8、标配风冷毛刺冷凝管,也可选配大头水冷毛刺冷凝管(可外接冷水机,提高冷凝回流效率);☆9、除单段控温外,提供五段程序控温模式,带有温度曲线记录功能,实验结束后可倒查; 10、水槽口上配有12个塑料圈套盖板减少蒸汽溢出,不用的加热孔位配有6个不锈钢密封盖板,节能减耗;☆11、机器顶部配有可折叠的冷凝管支撑架,更方便安全拿取锥形瓶;12、触控屏内自带说明书和服务中心二维码,手机扫码自动查看电子说明书和一键链接服务中心。 技术参数产品型号NAI-HL12S版本类型风冷款水冷款冷凝管毛刺回流冷凝管大头水冷毛刺回流冷凝管冷水机无需可选配CW5200控制系统PLC+7寸触摸屏加热方式内循环加热水浴,水浴温度均匀恒定控温方式单段控温,支持五段程序控温,带温度曲线测温方式4路探头加热单元12位加热样品标配250ml三角烧瓶水浴控制自动进水、自动排水、缺水自动报警补水样品降温风扇3位大功率塑料圈套盖板12个冷凝管支撑架12位(可折叠)时间控制0-999min空开保护有整机功率2500W额定电压220V/50HZ
    留言咨询

黑升麻提取物标准品相关的耗材

  • 绿百草科技专业提供分析酒精饮料中香气提取物的色谱柱Kromasil C18
    绿百草科技专业提供分析酒精饮料中香气提取物的色谱柱Kromasil C18,货号为100-5-C18 10× 250 关键词:Kromasil C18色谱柱,100-5-C18 10× 250,酒精饮料中的香气提取物,绿百草科技 绿百草科技专业提供Kromasil C18色谱柱。货号为100-5-C18 10× 250的色谱柱Kromasil C18可用来分析酒精饮料中的香气提取物。流动相是水:乙醇,流速是2mL /min,检测器为UV 220nm。绿百草科技可提供详细的操作条件和谱图。 需要详细的信息请和绿百草科技联系:010-51659766 登录网站获得更多产品信息: www.greenherbs.com.cN
  • 复杂蛋白质组学标准品
    用于LC/MS 分析的蛋白质组学试剂安捷伦复杂的蛋白质组学标准品是含有1500 种蛋白的Pfu 蛋白提取物。与我们的TPCK-处理的蛋白质组学级胰蛋白酶一起使用,为LC/MS 生物标志物发现和其它蛋白质组学研究提供了理想的工作流程验证组合。订货信息:
  • 标准口索氏提取器
    多孔玻板吸收管,标准口塞气泡吸收瓶,多孔玻柱吸收管,大小包氏吸收瓶,撞击式气体采样瓶,二氧化硫吸收瓶,氮氧化物吸收瓶,标准口索氏提取器,KD浓缩器,砷化氢发生与吸收装置,水蒸气蒸馏装置,BOD培养瓶(双套磨口),COD回流装置,标准口蒸馏器,标准口氨氮蒸馏器,新型硫化物反应吹气吸收装置等一系列环保玻璃仪器!

黑升麻提取物标准品相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制