纳米粒径检测仪

仪器信息网纳米粒径检测仪专题为您提供2024年最新纳米粒径检测仪价格报价、厂家品牌的相关信息, 包括纳米粒径检测仪参数、型号等,不管是国产,还是进口品牌的纳米粒径检测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米粒径检测仪相关的耗材配件、试剂标物,还有纳米粒径检测仪相关的最新资讯、资料,以及纳米粒径检测仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

纳米粒径检测仪相关的厂商

  • 苏州微流纳米生物技术有限公司供应欧美先进的微射流高压均质机、脂质体挤出器、激光粒度仪、纳米粒度仪以及配套的金刚石交互容器、径迹蚀刻膜和卫生级换热器等配件和技术服务,为脂肪乳、精细化工、细胞破碎、纳米粒、纳米脂质体、纳米纤维素、混悬液等领域客户提供了优质的材料纳米化、精致粒径控制解决方案。
    留言咨询
  • 400-860-5168转5085
    苏州微流纳米生物技术有限公司由海归工程师创立, 地处苏州工业园区生物纳米科技园内。公司技术团队具有十余年国内外纳米均质领域服务经验,一直与国外厂商保持了紧密的合作关系,公司是美国Genizer官方授权亚洲区总代理、美国BEE官方授权中国区总代理。  公司主营代理超高压均质、脂质体挤出等设备和技术,为脂肪乳 (丙泊酚、前列地尔、氯维地平等),精细化工(MLCC、锂电池、导电涂层等),细胞破碎,纳米粒(紫杉醇白蛋白等)、纳米脂质体(多柔比星、伊立替康)、纳米纤维素、混悬液(泊沙康唑、氯替泼诺等)等领域客户提供了优质的解决方案。公司致力于成为纳米均质服务领域的专家,“品质至上、效能优先”是我们的经营理念,公司将竭诚为您提供优质的服务与解决方案。  苏州微流纳米生物技术有限公司供应: 高压微射流均质机、高压均质机、微射流金刚石交互容腔、超高压均质机、纳米分散仪、纳米均质机、纳米破碎仪、脂质体挤出器、微流化器、纳米激光粒度仪、实验到生产型Genizer微射流超高压均质机、实验型和生产型脂质体挤出器、脂肪乳配液系统、脂质体工业化制备、石墨烯导电浆料、碳纳米管导电浆料、MLCC多层陶瓷电容导电涂层、电池导电浆料纳米化系统。
    留言咨询
  • 400-860-5168转3386
    安拓思纳米技术(苏州)有限公司(Antuos Nanotechnology(Suzhou)Co.,Ltd.),坐落于美丽的独墅湖畔——苏州生物纳米园。是一家集研发、加工、生产和代理为一体的先进制药设备供应商。自成立以来一直致力于自主研发及引进国外先进制药设备及技术,为国内外广大科研单位及制药企业提供先进的制药设备解决方案,深受国内外客户的好评,已经成为广大用户的重要选择! 安拓思公司专注于纳米制剂技术,生物工程技术,纳米化工技术。主要产品应用于脂质体药物的研发和生产,微球药物的研发和生产,生物疫苗,诊断试剂等等。供应的设备包括热熔挤出机,高压均质机,微射流均质机,微流控,脂质体挤出器,微球制备设备等。已经广泛的应用于国内各大科研单位及制药企业,行业涉及:生物行业(蛋白类药物,检测试剂,酶工程,人用疫苗,兽用疫苗等),制剂行业(脂肪乳,脂质体,纳米粒,微球等),食品行业(饮料,牛奶,食品添加剂等),化工行业(新能源电池,纳米纤维素,涂料,造纸,高分子材料等),目前在国内外的用户数量超过2000个。
    留言咨询

纳米粒径检测仪相关的仪器

  • BeNano 180纳米粒度仪是丹东百特仪器公司开发的采用背向散射技术用于检测纳米颗粒粒度及其分布的光学检测系统。它基于动态光散射原理,样品分散在样品池中,通过激光照射到样品上,光电检测器在背向173°角检测样品颗粒布朗运动造成的散射光强随时间的波动,再通过相关器进行自相关运算得出样品的自相曲线,结合数学方法就可以得到颗粒的扩散系数,进一步利用斯托克斯-爱因斯坦方程就得到样品的粒度结果。基本性能指标粒径测试原理动态光散射粒径范围0.3nm-10μm★样品量40μL-1mL★检测角度173°分析算法Cumulants、通用模式、CONTIN、NNLS分子量测试分子量范围342Da-2×107Da★趋势测量模式时间和温度微流变测试频率范围0.2-1.3×107rad/s★测试能力均方位移、复数模量、弹性模量、粘性模量、蠕变柔量粘度测试粘度范围0.01cp-100cp★系统参数温控范围-15°C-110°C,精度±0.1°C冷凝控制干燥的空气或氮气激光光源50mW高性能固体激光器,671nm相关器最快25 ns采样,最多4000通道,1011动态线性检测器APD,高性能雪崩光电二极管光强控制 0.0001%-100%,手动或自动 软件中文和英文符合21CFR Part 11 ★取决于样品和选件检测参数● 颗粒体系的光强、体积、面积和数量分布● 分子量● 分布系数PD.I● 扩散系数D● 流体力学直径DH● 颗粒间相互作用力因子kD● 溶液粘度检测技术● 动态光散射● 静态光散射相关技术相关应用
    留言咨询
  • Nicomp 3000 系列纳米激光粒度仪 专为复杂体系提供高精度粒度解析方案基本信息仪器型号:PSS Nicomp N3000 Plus工作原理:动态光散射(Dynamic Light Scattering, DLS)检测范围: 0.3nm-10.0μm Nicomp N3000系列纳米激光粒度仪是在原有的经典型号380DLS基础上升级配套而来,采用动态光散射(Dynamic Light Scattering, DLS)原理检测分析颗粒的粒度分布,粒径检测范围 0.3nm – 10μm。其配套粒度分析软件复合采用了高斯( Gaussian)单峰算法和的 Nicomp 多峰算法,对于多组分、粒径分布不均匀分散体系的分析具有独特优势。技术优势1、APD(LDC)超高灵敏度检测器;2、多角度检测(multi angle)模块;3、可搭配不同功率光源;4、精确度高,接近样品真实值;5、快速检测,可以追溯历史数据;6、结果数据以多种形式和格式呈现;7、符合USP,CP等个多药典要求;8、无需校准;9、复合型算法:(1)高斯(Gaussion)单峰算法与Nicomp多峰算法自由切换10、模块化设计便于维护和升级;(1)可自动稀释模块;(2)搭配多角度检测器;(3)自动进样系统(选配);Nicomp多峰分布概念 基线调整自动补偿功能和高分辨率多峰算法是Nicomp 3000系列仪器所独有的两个主要特点,Nicomp创始人Dave Nicole很早就认识到传统的动态光散射理论仅给出高斯模式的粒度分布,这和实践生产生活中不相符,因为现实中很多样本是多分散体系,非单分散体系,而且高斯分布灵敏性不足,分辨率不高,这些特点都制约了纳米粒度仪在实际生产生活中的使用。其开创性的开创了Nicomp多峰分布理论,大大提高了动态光散射理论的分辨率和灵敏性。图一:Nicomp多分分布数据呈现 如图一:此数据为Nicomp创始人Dave Nicole亲测其血液所得的真实案例。其检测项目为:高密度脂蛋白,低密度脂蛋白和超低密度脂蛋白,由图中可以看出,其血液中三个组分的平均粒径分别显示在7.0nm;29.3nm和217.5nm。由此可见,Nicomp分布模式可以有效反应多组分体系的粒径分布。Nicomp多峰分布优势 Nicomp系列仪器均可以自由在Gaussian分布模式和Nicomp多峰分布模式中切换。其不仅可以给出传统的DLS系统的结果,更可以通过Nicomp多峰分布模式体现样品的真实情况。依托于Nicomp系列仪器一系列优异的算法和高灵敏性的硬件设计,Nicomp纳米激光粒度仪可以有效区分1:2的多分散体系。图二:高斯分布及Nicomp多峰分布对比图 如图二:此数据为检测93nm和150nm的标粒按照1:2的比例混合后所测得的数据。左边为高斯分布(Gaussian)结果,右图为Nicomp多峰分布算法结果,两者都为光强径数据。从高斯分布可以得到此混合标粒的平均粒径为110nm-120nm之间,却无法得到实际的多组分体系结构。从右侧的Nicomp多峰分布可以得到结果为双峰,即如数据呈现,体系中的粒子主要分布于98.2nm以及190nm附近,这和实际情况相符。 为满足不同客户的实际检测需求,我司的Nicomp N3000会配备相应的配置,旨在为客户们在控制成本的基础上,得到需求的解决方案。产品优势模块化设计 Nicomp 3000纳米激光粒度仪是全球率先在应用动态光散射技术上的基础上加入多模块方法的先进粒度仪。随着模块的升级和增加,Nicomp 3000的功能体系越来越强大,可以用于各种复杂体系的检测分析。自动稀释模块 自动稀释模块消除了人工稀释高浓度样品带来的误差,且不需要人工不断试错来获得合适的测试浓度,这大大缩短了测试者宝贵时间,且无需培训,测试结果重现性好,误差率<1%。3000/HPLD大功率激光器 美国PSS粒度仪公司在开发仪器的过程中,考虑到在各种极端实验测试条件中不同的需求,对不同使用条件和环境配置了不同功率的激光发生器。大功率的激光器可以对极小的粒子也能搜集到足够的散射信号,使得仪器能够得到极小粒子的粒径分布。同样,大功率激光器在测试大粒子的时候同样也很有帮助,比如在检测右旋糖酐大分子时,折射率的特性会引起光散射强度不足。 因为大功率激光器的特性,会弥补散射光强的不足和衰减,测试极其微小的微乳、表面活性剂胶束、蛋白质以及其他大分子不再是一个苛刻的难题。即使没有色谱分离,Nicomp 3000纳米粒径分析仪甚至也可以轻易估算出生物高分子的聚集程度。雪崩二极管 (APD-LDC)超高灵敏度检测器 Nicomp 3000纳米粒径分析仪可以装配各种大功率的激光发生器和军品级别的雪崩二极管检测器(相比较传统的光电倍增管有7-10倍放大增益效果)。 APD通常被用于散射发生不明显的体系里来增加信噪比和敏感度,如蛋白质、不溶性胶束、浓度极低的体系以及大分子基团,他们的颗粒的一般浓度为1mg/mL甚至更低,这些颗粒是由对光的散射不敏感的原子组成。APD外置了一个大功率激光发生器模块,在非常短的时间内就能检测分析纳米级颗粒的分布情况。3000/MA多角度检测器 粒径大于100 nm的颗粒在激光的照射下不会朝着各个方向散射。多角度检测角器通过调节检测角度来增加粒子对光的敏感性来测试某些特殊级别粒子。Nicomp 3000可以配备范围在10°-175,步长0.7°的多角度测角器,从而使得单一90°检测角测试不了的样品,通过调节角度进行检测,改善对大粒子多分散系粒径分析的精确度。工作原理目录结构: 1.前言 2.动态光散射原理 3.动态光散射理论:光的干涉 小知识:光电倍增管(PMT) 小知识:光电二极管(APD) 5.粒子的扩散效应 6.Stoke-Einstein方程式 7.自相关函数原理 前言 近十几年来,动态光散射技术(Dynamic Light scattering, DLS),也被称为准弹性光散射(quasi-elastic light scattering, QELS)或光子相关光谱法(photon correlation spectroscopy, PCS),已经被证明是表征液体中分散体系的粒径分布(PSD)的极有用的分析工具。DLS技术的有效检测粒径范围——从5am(0.005微米)到10几个微米。DLS技术的优势相当明显,尤其是当检测到300nm以下亚微米的粒径范围时,在此区间,其他的技术手段大部分都已经失效或者无法得到准确的结果。因此,基于DLS理论的设备仪器被广泛采用用以表征特定体系的粒度分布,包括合成的高分子聚合物(如乳胶,PVCs等),水包油和油包水的乳剂,囊泡,胶团,微粒,生物大分子,颜料,燃料,硅土,金属晶体,陶瓷和其他的胶体类混悬剂和分散体系。动态光散射原理 下图所示为DLS系统的简单的示意图。激光照射到盛有稀释的颗粒混悬液的玻璃试管中。此玻璃试管温度恒定,每一个粒子被入射光击发后向各个方向散射。散射光的光强值和粒径的分子量或体积(在特定浓度下)成比例关系,再带入其他影响参数比如折射率,这就是经典光散射(Classic light scattering)的理论基础。 图1:DLS系统示意图动态光散射方法(DLS)从传统的光散射理论中分离,不再关注于光散射的光强值,而关注于光强随着时间的波动行为。简单来说,我们在一定角度(一般使用90°角)检测分散溶剂中的混悬颗粒的总体散射光信息。由于粒度的扩散,光强值不断波动,理论上存在有非常理想化的波动时间周期,此波动时间和粒子的扩散速度呈反比例关系。我们通过光强值的波动自相关函数的计算来获得随时间变化的衰减指数曲线。从衰减时间常量τ,我们可以获得粒子的扩散速度D。使用Stokes-Einstein 方程式,我们最终可以计算得出颗粒的半径(假定其是一个圆球形状)。动态光散射理论:光的干涉 为了容易理解什么叫做强度随时间波动,我们必须先理解相干叠加(coherent addition)或线性叠加(superposition)的概念,进一步要知道检测区域内的不同的粒子产生了很多独立散射光,这些独立的散射光相干叠加或互相叠加的最终结果就是光强。这种物理现场被称为“干涉”。下图是光干涉图样。 每一束独立的散射光波到达检测器和入射激光波长有相位关系,这主要取决于悬浮液中颗粒的精确定位。所有的光波在PMT检测器的表面的狭缝中混合在一起,或者叫干涉在一起,最终在特定的角度可以检测得到“净”散射光强值,在DLS系统中,绝大部分都使用90度角。 小知识——光电倍增管(PMT) 光电倍增管(Photomultiplier,简称PMT),是一种对紫外光、可见光和近红外光极其敏感的特殊真空管。它能使进入的微弱光信号增强至原本的108倍,使光信号能被测量。光电倍增管示意图小知识——光电二极管(APD) 光电倍增管是由玻璃封装的真空装置,其内包含光电阴极 (photocathode),几个二次发射极 (dynode)和一个阳极。入射光子撞击光电阴极,产生光电效应,产生的光电子被聚焦到二次发射极。其后的工作原理如同电子倍增管,电子被加速到二次发射极产生多个二次电子,通常每个二次发射极的电位差在 100 到 200 伏特。二次电子流像瀑布一般,经过一连串的二次发射极使得电子倍增,最后到达阳极。一般光电倍增管的二次发射极是分离式的,而电子倍增管的二次发射极是连续式的。 应用 光电倍增管集高增益,低干扰,对高频信号有高灵敏度的优点,因此被广泛应用于高能物理、天文等领域的研究工作,与及流体流速计算、医学影像和连续镜头的剪辑。雪崩光电二极管(Avalanche photodiodes,简称APDs)为光电倍增管的替代品。然而,后者仍在大部份的应用情况下被采用。 动态光散射理论: 粒子的扩散效应 悬浮的粒子并不是静止不动的,相反,他们以布朗运动(Brownian motion)的方式无规则的运动,布朗运动主要是由于临近的溶剂分子冲撞而引起的。因此,到达PMT检测区的每一束散射光随时间也呈无规则波动,这是由于产生散射光的粒子的位置不同而导致的无规则波动。因为这些光互相干涉在一起,在检测器中检测到的光强值就会随时间而不断波动。粒子很小的位移需要在相位上产生很大的变化,进而产生有实际意义的波动,最终这些波动在净光强值上反应出来。 DLS测量粒径技术的关键物理概念是基于粒子的波动时间周期是随着粒子的粒径大小而变化的。为了简化这个概念,我们现在假定粒子是均一大小的,具有相同的扩散系数(diffusion coefficient)。分散体系中的小粒子运动的快,将会导致光强波动信号变化很快;而相反地,大粒子扩散地毕竟慢,导致了光强值的变化比较慢。 图示4使用相同的时间周期来观测不同大小(小,中,大)的粒子产生的散射光强变化,请注意,横坐标是时间t。 我们需要再次强调,光强的波动并不是因为检测区域内粒子的增减引起的 而是大量的粒子的位置变动(位移)而引起的。 Stokes Einstein Equation DLS技术的目标是从原始数据(raw data)中确定粒子的扩散系数“D”。原始数据主要是指光强信号的波动,比如上述图4中所示。通过扩散系数D我们可以很容易的计算出粒子的半径,这时候就是广为人知的Stokes-Einstein方程式:D=kT/6πηR (2)这里k 指的是玻尔兹曼常数1.38 x 10-16 erg K-1;T是绝对温度;η是分散溶剂的额剪切粘度,比如20℃的水的η=1.002×10-2 泊; 从上述公式2中我们可以看到,通常情况下,粒子的扩散系数D会随着温度T的上升而增加。温度进而也会影响溶剂粘度η。例如,纯水的粘度在25℃下会落到0.890×10-2泊,和20℃下相比会有10%的改变。毫无疑问,溶剂的粘度越小,粒子的无规则扩散速度会越大,从而导致光强的波动也越快。因此,温度T的变化和粒径的变化是完全分不开的,因为他们都影响到了扩散系数D。正因为这个原因,样本的温度必须保持恒定,而且必须非常精确,这样才能获得有实际意义的扩散系数D。 从图4的“噪声”信号中无法直接提取出扩散系数。但是可以清楚地看到,信号b比信号c波动地快,但是比信号a波动地慢,因为,信号b地粒径一定在a和c之间,这只是很直观地得到一个结论而已。然而,量化此种散射信号是一个很专业地课题。幸而,我们有数学方法来解决这个问题,这就是自相关函数(auto-correlation)。自相关函数原理 现在让我们设定散射光强的自相关函数为IS(t),在上述图4中可以看到其随时间而波动。我们用C(t’)来标识自相关函数。C(t’)可以通过如下方程式3来表达:C(t’)= Is(t)*Is(t-t’) (3)括号 表示有很多个t和对应的Is值。也就是说,一次计算就是运行很多Is(t)*Is(t-t’) 的加和,所有都具有相同的间隔时间段t’。 图5是典型的Is(t)的波形图,通过这张图,我们可以认为C(t’)和Is(t)之间有简单的比例关系,这张图的意义在于通过C(t’)函数可以通过散射光强Is(t)的波动变化“萃取”出非常有用的信息。 自相关函数C(t’)其实是表征的不同大小的粒子随时间而衰变的规律。 点击下载工作原理仪器参数粒径检测范围0.3 nm - 10 μm分析方法动态光散射,Gaussian单峰算法和 Nicomp多峰算法pH值范围1-14温度范围0℃-90 ℃(±0.1℃控温精度,无冷凝)浓度40%w/v激光光源至少35mW激光光源检测角度多角度(10°- 175°,包含90°,步进0.7°)检测器APD-LDC(雪崩二极光电倍增管,可7-10倍增益放大)可用溶剂水相,绝大多数有机相样品池标准4 mL样品池(1cm×4cm,高透光,石英玻璃或塑料)1mL样品池(玻璃,高透光率微量样品池,微量进样10μL)分析软件必配科研级软件符合 21 CFR Part 11 规范分析软件(可选)验证文件有电压220 – 240 VAC,50Hz 或100 – 120 VAC,60Hz计算机配置要求Windows 7及以上版本windows操作系统,40Gb硬盘,1G内存,光驱,USB接口,串口(COM口)外形尺寸56 cm * 41 cm * 24cm辅助增益模块自动稀释模块自动进样器(选配)重量约26kg(与配置有关)配件大功率激光光源PSS使用一系列大功率激光二极管来满足更多更苛刻的要求。使用大功率激光照射,以便从小粒子出货的足够的入射光。15mW, 35mW, 50mW, 100mW — 波长为635nm 的红色二极管。20 mW 50 mW 和 100 mW 波长为 514.4nm的绿色二极管。雪崩光电二极管检测器(APD Detector)提供比普通光电倍增管(PMT)高7-10倍的灵敏度。自动稀释系统模块将初始浓度较高的样本自动稀释至可检测的的浓度,可稀释初始固含量为50%的原始样品,本模块可免除人工稀释样品带来的外界环境的干扰和数据上的误差,此技术被用于批量进样和在线检测的过程中。多角度检测系统模块提供多角度的检测能力。使用高精度的步进电机和针孔光纤技术可对散射光的接收角度进行调整,可为微粒粒径分布提供可高分辨率的多角度检测。对高浓度样品(≤40%)以及大粒子多分散系的粒径提供了提供15至175度之间不同角度上散射光的采集和检测自动滴定模块(选配)样品的浓度及PH值是Zeta电位的重要参数,搭配瑞士万通的滴定仪进行检测,真正实现了自动滴定,自动调节PH值,自动检测Zeta电位值。免除外界的干扰和数据上的误差,精确分析出样品Zeta电位的趋势。样品池标准4 mL样品池(1cm×4cm,高透光,石英玻璃或塑料);1mL样品池(玻璃,高透光率微量样品池,最小进样量10μL)。自动进样器(选配)批量自动进样器能实现60个连续样本的分析而无需操作人员的干预。因此它是一个非常好的质量控制工具,能增大样品的处理量。大大节省了宝贵的时间。应用领域 纳米载药纳米药物研究近些年主要着重在药物的传递方向并发展迅猛,纳米粒的大小可以有效减少毒性和副作用。所以,控制这些纳米粒的粒径大小是非常必要的。 磨料磨料既有天然的也有合成的,用于研磨、切削、钻孔、成形以及抛光。磨料是在力的作用下实现对硬度较低材料的磨削。磨料的质量取决于磨料的粗糙度和颗粒的均匀性。化学机械抛光液(CMP SLURRY)化学机械抛光是半导体制造加工过程中的重要步骤。化学机械抛光液是由腐蚀性的化学组分和磨料(通常是氧化铝、二氧化硅或氧化铈)两部分组成。抛光过程很大程度上取决于晶片表面构型。晶片的加工误差通常以埃计,对晶片质量至关重要。抛光液粒度越均匀、不聚集成胶则越有利于化学机械抛光加工过程的顺利进行。 陶瓷陶瓷在工业中的应用非常广泛,从砖瓦到生物医用材料及半导体领域。在生产加工过程中监测陶瓷颗粒的粒度及其粒度分布可以有效地控制产品的性能和质量。 粘土粘土是一种含水细小颗粒矿物质天然材料。粉砂与粘土类似,但粉沙的颗粒比粘土大。粘土中易于混杂粉砂从而降低粘土的等级和使用性能。ISO14688定义粘土的颗粒小于63μm。 涂料涂料种类繁多,用途广泛。涂料的颗粒大小及粒度分布直接影响涂料的质量和性能。污染物监测粒度检测分析在产品的污染监测方面起着重要作用,产品的污染对产品的质量影响巨大。绝大多数行业都有相应的标准、规程或规范,必须严格遵守和执行,以保证产品满足质量要求。化妆品无论是普通化妆品还是保湿剂、止汗剂,它们的性能都直接与粒度的大小和分布有关。化妆品的颗粒大小会影响其在皮肤表面的涂抹性能、分布均匀性能以及反光性能。保湿乳液(一种乳剂)的粒度小于200纳米时才能被皮肤良好吸收,而止汗剂的粒度只有足够大时才能阻塞毛孔起到止汗的作用。 乳剂乳剂是两种互不相溶的液体经乳化制成的非均匀分散体系,通常是水和油的混合物。乳剂有两种类型,一种是水分散在油中,另一种是油分散在水中。常见的乳剂制品有牛奶(水包油型)和黄油(油包水型),加工过程中它们均需均质化处理到所需的粒径大小以期延长保质期。 乳剂乳剂是两种互不相溶的液体经乳化制成的非均匀分散体系,通常是水和油的混合物。乳剂有两种类型,一种是水分散在油中,另一种是油分散在水中。常见的乳剂制品有牛奶(水包油型)和黄油(油包水型),加工过程中它们均需均质化处理到所需的粒径大小以期延长保质期。 食品食品的原料(粉末及液体)通常来源于不同的加工厂,不同来源的原料必须满足某些特定的标准以使制品的质量均一稳定。原料性质的任何波动都会对食品的口味和口感产生影响。用原料的粒度分布作为食品质量保证和质量控制(QA/QC)的一个指标可确保生产出质量均以稳定的食品制品。液体工作介质/油液体工作介质(如:油)越来越昂贵,延长液体介质的寿命是目前普遍关心的问题。机械设备运转过程中会产生金属屑或颗粒落入工作介质中(如:油浴润滑介质或液力传递介质),因此需要一种方法来确定介质(油)的更换周期。通过监测工作介质(油)中颗粒的分布和变化可以确定更换工作介质的周期以及延长其使用寿命。墨水随着打印机技术的不断发展,打印机用的墨水变得越来越重要。喷墨打印机墨水的粒度应当控制在一定的尺度以下,且分布均匀,大的颗粒易于堵塞打印头并影响打印质量。墨水是通过研磨方法制得的,可用粒度检测分析仪器设备监测其研磨加工过程,以保证墨水的颗粒粒度分布均匀,避免产生聚集的大颗粒。 胶束胶束是表面活性剂在溶液中的浓度超过某一临界值后,其分子或离子自动缔合而成的胶体尺度大小的聚集体质点微粒,这种胶体质点与离子之间处于平衡状态。乳液、色漆、制药粉体、颜料、聚合物、蛋白质大分、二氧化硅以及自组装TiO2纳米管(TNAs)等
    留言咨询
  • 纳米粒径及Zeta电位分析仪Nicomp Z3000介绍 NICOMP 380 Z3000纳米粒径与电位分析仪采用先进的设计理念优化结构设计,充分有效地融合了动态光散射(Dynamic Light Scattering, DLS)和电泳光散射(ELS)技术,即可以多角度(步长0.9μm )检测分析液态纳米颗粒系的粒度及粒度分布,又可以小角度测量Zeta电位。粒度测试范围:粒度测试范围:0.3 nm – 10 μm。 NICOMP 380 Z3000纳米粒径与电位分析仪通过检测分析胶体颗粒的电泳迁移率测量Zeta电位。Zeta电位是对颗粒之间相互排斥或吸引力的强度的度量,是表征胶体分散系稳定性的重要指标,Zeta电位(正或负)越高,体系越稳定。Zeta电位表征的是粒子之间的排斥力。由于大部分的水相胶体体系是通过粒子之间的静电排斥力来保持稳定的,粒子之间的排斥力越大,粒子越不容易发生聚集,胶体也会越稳定。NICOMP 380 Z3000结合了动态光散射技术(DLS)和电泳光散射法(ELS),实现了同机测试纳米粒子分布和Zeta电势电位。 应用行业:磨料、化学机械抛光液、陶瓷、粘土、涂料、污染监测、化妆品、乳剂、食品、液体工作介质/油、墨水、 乳液、色漆、制药粉体、颜料、聚合物、蛋白质大分、二氧化硅以及自组装TiO_2纳米管(TNAs)等 自动滴定仪NICOMP 380 Z3000纳米粒径与电位分析仪在增加自动滴定模块后,可以一次性使用同一样品在不同PH值或不同离子浓度的条件下进行一系列测试,实现了在等电点测试的技术难题。 相位分析光散射法PALS(Phase Analyze Light Scattering)技术PSS 于 2004 年推出ling先的 PALS 技术,用相位(Phase)变化的分析取代原 先频谱的漂移,不仅使 Zeta 电位分析的精度及稳定性有了显著的提高,而且突破了水相体系的限制,对油、有机物体系同样能提供 Zeta 电位的分析。NICOMP 380 Z3000 纳米粒径与电位分析仪特点同机测试悬浮液体的粒径分布以及ZETA电势电位Zeta电位运用了多普勒电泳迁移原理以及zui新的相位分析散射法可以测试水相和有机相的样品检测范围宽广,亚微米颗粒均可以被检测样品测试量小高辨析率结果重现性好,误差小于1%100 % 样品可回收li用可搭载自动滴定仪, 自动稀释器和自动进样器无须校准一次性进样,避免交叉污染样品可选配大功率激光发生器以及jun品级APD雪崩二极管检测器来检测粒径小于1nm的颗粒 技术参数:粒径检测范围粒度分析:0.3 nm - 10 μmZeta电位检测范围粒度0.3 nm-100 μm分析方法粒径:动态光散射,Gaussian 单峰算法和 Nicomp 无约束自由拟合多峰算法;电位:电泳光散射(ELS)技术和相位分析光散射法pH值范围2 - 12温度范围0℃ - 90 ℃激光光源(可选)5 mW氦氖光源;15 mW, 35 mW,50 mW激光光源;100 mW激光光源(红);20 mW,50 mW,100 mW激光光源(蓝/绿)检测角度(可选)90°或 多角度(10°- 175°,可选配)检测器(可选)PMT(光电倍增管),CMP(4倍增益放大)APD雪崩二极管(7倍增益放大)高浓度样品背散射175°背散射可用溶剂水相,绝大多数有机相样品池标准4 mL样品池(1cm×4cm,高透光,石英玻璃或塑料);1mL样品池(玻璃,高透光率微量样品池,zui小进样量10μL)选配模块高浓度背散射;自动稀释模块,自动进样器,多角度检测器,高能激光发生器,高增益检测器,21CFR PART11规范软件,在线模块。分析软件Windows 兼容软件;符合 21 CFR Part 11 规范分析软件(可选)验证文件有电压220 - 240 VAC,50Hz 或100 - 120 VAC,60Hz计算机配置要求Windows XP及以上版本windows操作系统,40Gb硬盘,1G内存,光驱,USB接口,串口(COM口)外形尺寸56 cm * 41 cm * 24cm重量约26kg(与配置有关)电泳光散射法(ELS)与粒子的动电(Zeta)电位: ELS 是将电泳和光散射结合起来的一种新型光散射。它的光散射理论基础是 准弹性碰撞理论,只是在实验时在式样槽中多加一个外电场,带电粒子即以固定 速度向与带电粒子电性相反的电极方向移动,与之相应的动力光散射光谱产生多普勒漂移,这一漂移正比于带电粒子的移动速度,因此实验测得谱线的漂移,就 可以求得带电粒子的电泳速度,从而求得ζ-电位。相位分析光散射法PALS(Phase Analyze Light Scattering)技术PSS 于 2004 年推出ling先的 PALS 技术,用相位(Phase)变化的分析取代原 先频谱的漂移,不仅使 Zeta 电位分析的精度及稳定性有了显著的提高,而且突破了水相体系的限制,对油、有机物体系同样能提供 Zeta 电位的分析。动态光散射原理 Nicomp 380纳米粒径分析仪采用动态光散射(Dynamic Light Scattering, DLS)原理来获得范围在0.3 nm到10 μm的胶体体系的粒度分布。DLS是通过一定波长的聚焦激光束照射在悬浮于样品溶液的粒子上面,从而产生很多的散射光波。这些光波会互相干涉从而影响散射强度,散射强度随时间不断波动,二者之间形成一定的函数关系。粒子的扩散现象(或布朗运动)导致光强不断波动。光强的变化可以通过探测器检测得到。使用自相关器分析随时间而变的光强波动就可以得到粒度分布系数(Particle size distribution, PSD)。单一粒径分布的自相关函数是一个指数衰减函数,由此可以很容易通过衰减时间计算得到粒子扩散率。zui终,粒子的半径可以很容易地通过斯托克斯(Stokes-Einstein)方程式计算得到。如下是Nicomp 380纳米粒径分析仪的检测原理简图: 大部分样品一般都不均匀,往往会呈现多分散体系状态,即测出来的粒径正态分布范围会比较大,直观的呈现是粒径分布峰比较宽。自相关函数是由多组指数衰减函数综合组成,每一个指数衰减函数都会因指数衰减时间不同而存在差异,此时计算自相关函数就变得不再简单。Nicomp 380纳米粒径分析仪巧妙运用了去卷积算法来转化原始数据,从而得出zui接近真实值的粒度分布。Nicomp 尤其适合测试粒度分布复杂的样品体系,li用一组独特的去卷积算法将简单的高斯正态分布模拟成高分辨率的多峰分布模式,这种去卷积分析方法,即得到PSS粒度仪公司独有的粒径分布表达方法—Nicomp分布(Nicomp Distribution)。有些仪器的高斯分析模式可以使用基线调整参数的功能,以此来补偿测试环境太脏而超出仪器灵敏度的问题。高斯分析模式也可以允许使用者指定“固体重量模式”或者“囊泡重量模式”来分析带有小囊泡的胶体体系,比如脂质体。Nicomp分析方法是一种专li的高分辨率的去卷积算法,它首次在1990年提出并应用于分析和统计粒径分布。在历史上已经证明Nicomp分析方法能够精确分析非常复杂的双峰样品分散体系(比如 2:1比例),甚至是三峰样品分散体系。在科学研究中,找到粒子聚集分布的杂峰是非常有用的。 NICOMP 380 Z3000纳米粒径与电位分析仪广泛适用于检测悬浮在水相和有机相的颗粒物。
    留言咨询

纳米粒径检测仪相关的资讯

  • Vasco Kin原位纳米粒度监测仪强劲来袭
    Vasco Kin原位纳米粒度监测仪强劲来袭 “Vasco Kin原位纳米粒度监测仪”强劲来袭,北京海菲尔格科技有限公司Hiferg Technology全自动化在线监测家族再添新势力。法国CORDOUA Technology是一家致力于先进的纳米体系颗粒尺寸及Zeta电位表征的制造商,拥有独特的专利和创新的技术,与IFPEN法国石油学院,KIT卡尔斯鲁厄理工学院、以及ICS查尔斯萨德龙学院等有紧密的合作,是全球非接触式原位监测和分析纳米尺寸材料的先进制造商。 “Vasco Kin原位纳米粒度监测仪”以广为熟知的DLS动态光散射技术为基石,集成了稳定的光学单元、灵敏的APD检测器和灵活的非浸入式探头,结合专用的分析软件和数学模型,开发出性能卓越的、针对各类纳米体系中颗粒尺寸的原位监测系统。“Vasco Kin原位纳米粒度监测仪”不但保持了传统DLS动态光散射仪器的高灵敏度(粒径范围0.5 nm ~ 10μm)和宽适应性(样品浓度1ppm ~ 40%,视样品而定),还开创性地采用了非接触远程式探头,将DLS技术带入原位过程监测的广泛应用场景,增加了创新的时间关联功能: &bull 时间分辨率:200 ms;&bull 时间切片,可选取监测曲线中的任意时间段进行粒径分析;&bull 高速原始数据采集,实时数据处理;数据可调用不同算法进行再分析&bull 流体动力学分析。相较于传统的实验室检测,“Vasco Kin原位纳米粒度监测仪”的原位过程监测具备众多优势:&bull 超低延时,无需频繁采样,原位监测纳米颗粒的变化过程;&bull 操作简便,非接触式远程式探头,无需批量稀释,无需样品预处理(视样品而定);&bull 适用于各种高温(500-1000度),低温,磁场,高压(100bar),超临界,流动相等应用的过程表征 和动力学监控&bull 方便快捷的和第三方设备连用,如反应釜,SAXS,SANS,HPLC,Microfluid Chip,NMR等…..&bull 测试灵活,可根据样品浓度及透光性调整工作距离和散射角;&bull 适用性好,配备背散射技术,原浓或深色的不透明样品同样适用;&bull 集成化程度高,无运动部件,减少维护,使用成本低;&bull 人性化设计,可更换探头,一机多能,一机多用。“Vasco Kin原位纳米粒度监测仪”可广泛应用于纳米级悬浮体系、各类脂质体、聚合物合成、结晶成核、纳米金属、原油萃取、凝胶质量改进、生物学研究和细胞分析等等,应用领域非常广泛。道达尔,赛诺菲,罗地亚、欧莱雅、CRPP、ENSPCI、INRS、陶氏化学、ARABLAB都是我们的用户。除了“Vasco Kin原位纳米粒度监测仪”外,法国CORDOUAN还提供如下实验室检测设备:&bull AMERIGOTM纳米粒径及Zeta电位分析仪 AMERIGOTM是一款创新的分析仪,用于表征纳米颗粒悬浮液的颗粒尺寸和Zeta电位。 粒度范围:0.5 nm~10 µ m Zeta电位范围:-500~500 mV 样品浓度范围:0.0001%~10%(w/%)&bull VASCOTM纳米粒径分析仪 VASCOTM是一款使用了专利背散射系统的纳米粒径分析仪,可测量无稀释的深色、原浓样品。 粒径范围:0.5 nm~10 µ m 样品浓度范围:0.0001%~40%(%vol)&bull WALLISTM Zeta电位分析仪 WALLISTM是一款基于LDE高级激光多普勒电泳技术的高分辨率Zeta电位分析仪,用于纳米颗粒和胶体的电荷表征,是研究胶体悬浮液的稳定性和纳米颗粒的电泳性能的理想工具。 Zeta电位范围:-500~500 mV 样品浓度范围:0.0001%~10%(w/%)
  • GRIMM发布1纳米粒径谱仪新品
    GRIMM气溶胶科技公司颗粒物粒径检测下限可达: 1.1 nm融合了Airmodus专利的纳米颗粒增大技术(PSM)和GRIMM 的扫描电迁移率粒径谱技术(SMPS+C)从1纳米至1微米完整测量 特点从1.1 纳米开始测量颗粒物的粒径分布融合了Airmodus 专利PSM技术和GRIMM SMPS+CAirmodus 专利的纳米颗粒增大技术(PSM)技术可使SMPS测量到最小的纳米颗粒和团簇2级CPC凝聚长大技术(二甘醇和正丁醇)为测量1纳米颗粒优化了DMA气路系统DMA可以选择扫描模式,步进模式或单一粒径筛分三种模式Airmodus PSM-A10 纳米颗粒增长器,第一级检测器工作溶液:二甘醇50%粒径检出限:1.5 纳米 (镍铬颗粒)采样流量:2.5 升/分钟真空要求:100—350 mbar NTP压缩气源要求:1.5—2.5 bar NTP, 除油/除水/除颗粒电源要求:100-240 VAC 50/60 Hz, 280 W通讯接口:USB或RS-232外观尺寸:29*45*46.5 cm重量:17 kg GRIMM 5417 CPC工作溶液:正丁醇50%粒径检出限:4 纳米 (氧化钨颗粒)采样流量:0.3升/分钟或0.6 升/分钟采样泵:内置检测浓度:单颗粒模式:1.5*10^5个/cm3,光度计模式:10^7个/cm3响应时间:T10—90 3s电源要求:90-264 VAC 47--63 Hz, 80--130 W通讯接口:USB,RS-232,模拟脉冲外观尺寸:40*25*29cm重量:12.4 kg 分级器DMA模式: GRIMM 维也纳型S-DMA或M-DMA,L-DMA粒径筛分范围:1.1—55纳米(10升/分钟鞘气流速 S-DMA) 2.8---155纳米(10升/分钟鞘气流速 M-DMA)粒径分辨率:步进模式: 45—255通道,可调 扫描模式:64通道每10倍粒径,对数间距 PSMPS数据输出:颗粒物数量浓度/粒径分布进样湿度:0—95%RH,非凝结采样压力:600—1050 mbar工作温度:15—30 oC工作湿度:0—95%RH,非凝结创新点:颗粒物粒径检测下限可达: 1.1 nm融合了Airmodus专利的纳米颗粒增大技术(PSM)和GRIMM 的扫描电迁移率粒径谱技术(SMPS+C)从1纳米至1微米完整测量1纳米粒径谱仪
  • 岛津携纳米粒径分析装置IG-1000参加2010中国颗粒学会盛会
    2010中国颗粒学会盛会于8月15日-18日在西安举行,这是国内颗粒分析行业最重要的学术会议,颗粒分析专家和年轻学者汇聚一堂,交流各自学术研究成果。作为分析仪器界最大供应商之一,颗粒分析仪器的知名专业生产厂商,岛津公司盛装出席,展出了岛津公司最新的纳米粒径分析装置IG-1000。会议上还通过报告的形式将岛津公司颗粒分析的最新技术和应用进展与与会专家学者进行了分享汇报。用户在岛津展台前就颗粒分析技术问题进行交流 此次会议上岛津的单纳米分析装置IG-1000备受关注。IG方法(Induced Grating method)是岛津公司开发的独一无二的纳米粒径测定技术,为此IG-1000获得了2009 Pittcon大奖,这是全球分析仪器界对于岛津公司先进粒度分析技术的充分肯定。 岛津公司纳米分析技术专家安国玉经理向与会的各位专家学者详细介绍了岛津IG-1000在纳米分析行业的最新应用以及IG-1000的测定优势所在。与目前采用散射光的动态光散射仪器(DLS)方法相比较, 优势明显。测定范围最低到0.5nm,在单一纳米颗粒领域可以获得十分良好的信噪比(S/N),灵敏度也非常高。即便样品中含有少量的粗大粒子时对测定也没有影响,分布广的样品可以得到正确的结果,克服了以往DLS产品耐污染性差的缺点。IG-1000不使用散射光,因此不受物理参数的限制,不要求输入折射率因子(refractive index)作为测量条件。IG-1000测定结果可以与其他纳米粒子测定手段如TEM和SEM等所得结果吻合。IG-1000的方便可靠之处还在于,可利用原始数据(衍射光强度对时间的变化)来进行测定结果的可靠性验证。 岛津公司纳米分析专家安国玉经理在进行IG-1000的报告 此次会议上岛津公司粒度分析仪器应用工程师冯旭先生也就其在卫生陶瓷洁具分析中的应用方法开发结果与各位进行了分享。卫生陶瓷洁具行业涉及到多种粉体原料的分析测试,粉体材料的粒径会影响到最终产品的外观美观度和耐用度,因为粉体原料的粒径分析至关重要,所以岛津公司近期就如何使用粒度分析仪器得到准确的结果进行了研究并与颗粒分析工作者进行分享。 岛津公司粒度分析仪器应用工程师冯旭先生在作报告 岛津公司粒度测定装置种类齐全,单一纳米粒径的新产品IG-1000可以与岛津其他多种型号的激光粒度仪联合使用,实现了从纳米到微米范围的可靠测定。

纳米粒径检测仪相关的方案

纳米粒径检测仪相关的资料

纳米粒径检测仪相关的论坛

  • 【每日分享一篇解决方案】BeNano 180 检测脂质纳米粒LNP的粒径

    【每日分享一篇解决方案】BeNano 180 检测脂质纳米粒LNP的粒径

    [align=center][font='arial'][size=21px][color=#548dd4]#[/color][/size][/font][font='arial'][size=21px][color=#548dd4]每日一篇分享一篇解决方案:[/color][/size][/font][/align][align=center][font='arial'][size=21px][color=#548dd4]今日行业领域:[/color][/size][/font][font='arial'][size=21px][color=#548dd4]制药[/color][/size][/font][/align][align=center][font='等线 light'][size=13px][color=#548dd4]BeNano[/color][/size][/font][font='等线 light'][size=13px][color=#548dd4] 180 [/color][/size][/font][font='等线 light'][size=13px][color=#548dd4]检测脂质纳米粒[/color][/size][/font][font='等线 light'][size=13px][color=#548dd4]LNP[/color][/size][/font][font='等线 light'][size=13px][color=#548dd4]的粒径[/color][/size][/font][/align][align=center]关键词:粒径、LNP、药物输送体系[/align]脂质纳米粒(Lipid Nanoparticles,LNP)是使用脂质形成纳米微粒的一种,作为一种高效、安全的药物递送体系,被广泛研究和应用,成为近年来发展最为迅速的制剂剂型之一,由于其制备过程需要进行特殊的工艺化定制,故而脂质纳米粒类制剂也被称为“高端复杂注射剂”。 在基因治疗领域,已经开始使用脂质纳米粒包裹核酸,如mRNA、siRNA、pDNA等,称为核酸脂质纳米粒。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201333444187_1210_5996718_3.jpeg[/img][/align]在这篇应用报告中,我们使用丹东百特仪器公司最新推出的BeNano 180纳米粒度电位仪检测了分散在水性环境中的LNP的粒径。原理 [size=13px] [/size][size=13px] [/size][size=13px]我们[/size]采用丹东百特公司的BeNano 180纳米粒度仪进行测试。仪器使用波长671 nm,功率50 mW激光器作为光源,设置在173[font='arial']°[/font]角的背向检测器进行散射光信号采集,测试过程中,BeNano 180根据样品的散射特点自动确认检测点位置。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201333446515_3271_5996718_3.jpeg[/img][/align]样品制备和测试条件该应用中检测了两个LNP采用微流控混合技术来制备核酸脂质纳米粒,该方法相对简便快速,条件温和,同时容易实现生产放大。1#和2#均为悬浮液,通过[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url]注入样品池后直接进行检测。通过BeNano 180内置的温度控制系统开机默认测试温度控制为25℃[font='宋体']±[/font]0.1℃,测试样品的光强、检测点位置、测试时间均通过预测试程序自动进行调节。每一个样品在放入样品池后进行至少三次测试,以检测结果的重复性和得到结果的标准偏差。测试结果和讨论表1. 动态光散射检测脂质体样品结果[table][tr][td]样品[/td][td]Z-均粒径[/td][td]PDI[/td][/tr][tr][td]1#[/td][td]215.9 [font='宋体']± [/font]3.54 nm[/td][td]0.303[/td][/tr][tr][td]2#[/td][td]144.6 [font='宋体']± [/font]0.43 nm[/td][td]0.129[/td][/tr][/table][align=center][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201333450955_6423_5996718_3.png[/img][/align]图1. 1#样品和2#样品多次测试的粒径分布曲线通过使用动态光散射技术,得到了样品的粒径和粒径分布信息。通过表1中结果可以看到所有样品的粒径都在100-250 nm范围内,粒径结果重复性良好。PDI均在0.1-0.7范围内,说明两个样品均为适中分布。1#样品明显粒径更高,PDI更大,检测的标准偏差也相对较高,说明1#样品的均匀度不如2#样品。[font='宋体'][size=20px][color=#4f5862]产品配置单:[/color][/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310201333451551_79_5996718_3.jpeg[/img][/align][align=center][url=https://www.instrument.com.cn/show/C476061.html]百特纳米 粒度仪BeNano 180[/url]([url=https://www.instrument.com.cn/netshow/SH100350/]丹东百特仪器有限公司[/url])[/align][align=center][/align][url=https://www.instrument.com.cn/application/Solution-949709.html][font='宋体'][size=16px]点击这里[/size][/font][/url][font='宋体'][size=16px][color=#000000]浏览[/color][/size][/font][font='宋体'][size=16px][color=#000000]或[/color][/size][/font][font='宋体'][size=16px][color=#000000]下载原[/color][/size][/font][font='宋体'][size=16px][color=#000000]文档,更多解决方案内容请浏览[/color][/size][/font][url=http://www.instrument.com.cn/application/][font='宋体'][size=16px][color=#0081d7]行业应用[/color][/size][/font][/url][font='宋体'][size=16px][color=#000000]栏目:[/color][/size][/font][align=left][url=http://www.instrument.com.cn/application/][font='宋体'][size=13px][color=#0081d7]http://www.instrument.com.cn/application/[/color][/size][/font][/url][font='宋体'][size=13px][color=#000000]行业应用栏目简介:[/color][/size][/font][font='宋体'][size=13px][color=#000000] [/color][/size][/font][font='宋体'][size=13px][color=#000000] [/color][/size][/font][font='宋体'][size=13px][color=#000000]【行业应用】[/color][/size][/font][size=13px][color=#333333]是仪器信息网[/color][/size][size=13px]专业的行业导购平台。汇聚了行业内国内外主流厂商的优质解决方案及相应的仪器设备。建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、石化等二十余个使用仪器相对集中的行业领域。并以样品和标准为主线,为用户查找仪器提供一个独特的维度,也为仪器产品提供一个全新的展示渠道。[/size][/align]

  • 求助!!!!纳米粒度测不了电位和粒径

    马尔的ZEN3700纳米粒度及zeta电位测试仪,突然测不出粒径和电位,时好时坏,测粒径就提示这个错误,有没有大神知道是啥问题[img]https://ng1.17img.cn/bbsfiles/images/2023/03/202303132043101126_9770_3570445_3.jpeg[/img]

纳米粒径检测仪相关的耗材

  • 纳米颗粒分析仪配件
    纳米颗粒分析仪配件用于观测和分析液体中的微小颗粒的布朗运动速率与尺寸分布相关,采用纳米颗粒跟踪分析(NTA)技术,通过激光散射装置(纳米观测)与超显微镜ultra-microscope和NTA软件的相结合,生成纳米颗粒图像,是全球领先的纳米粒度分析仪。纳米颗粒分析仪配件 纳米观测原理纳米颗粒分析仪使用纳米透视Nano-Insight 激光散射模块,可以通过顶眼超显微镜观测到液体中的纳米粒子。采用不同激光散射颗粒在矩阵中表现为模糊点。模糊点根据其各自的布朗运动而移动。液体中有不同的布朗运动粒子。小粒子比大粒子受到相邻粒子的影响更少。因此,在超显微图像中,较大的粒子有大的模糊外观。 NTA能够追踪粒子的相应路径。纳米观测模块纳米观测模块的设计,可以使其安装在超显微镜,顶眼纳米的底板。可以通过Mishell软件来控制该模块。Mishell软件控制着纳米观测模块以及照相机。根据应用决定在纳米观测模块装备一个或多个激光器。激光器以一种特殊的方式排列。左侧图片上展示的是纳米观测图。较小的粒子比较大的粒子移动更快。我们用摄像机同时跟踪每个粒子。顶眼超显微镜顶眼超显微镜将进入模糊点的散射光可视化。用适当的时间分辨跟踪,模糊云可被分配并与各自的粒径相关。粒子的布朗运动图像是唯一的。下面将给出例子。每个模糊点代表单个粒子。NTA 软件上图展示的是NTA分析的典型图像。散射激光被捕获到模糊点,要根据时间函数跟踪模糊点。我们跟踪每个模糊点。跟踪每个粒子的方法,得到的技术结果是高分辨率。我们正在寻找与图像相关的量,当我们知道相关的量后,我们就可以极其精确地确定各种粒子的浓度。该技术将会带起许多可能的应用。例如,可能也可以使用荧光激光器。使用荧光激光器,可以瞄准复杂的基质里的一个粒子。该技术带来的好处是,用户可以在视觉上检查并且通过观察相应图像验证所有可能的应用。MiNan是Mishell® 内的一个模块- 扩展图像分析软件包,被认为是市场上最先进的图像分析软件。MiNan是一个子程序,可以进行Morphious纳米粒子分析的全部描述。MiNan是自带Morphious纳米系统的软件,研发用于纳米粒子的可视化以及纳米粒子的大小、形状(形态)和浓度的测量。每个粒子是一个个体,但通过观测扩散同时被分析。这种一个粒子后接一个粒子的方法产生高分辨率的结果,即粒子的尺寸分布和浓度分辨率高,同时视觉验证让用户对数据有了额外的信心。当荧光模式检测标记粒子时,粒子尺寸和浓度,蛋白质聚集和粘度都可以被分析。纳米颗粒分析仪配件应用?在制药或复合产业研发药物?用于病毒筛查?用于开发纳米生物标记物或毒物筛查?用于蛋白质聚集的动力学模型研究?用于通过膜泡的表征研究疾病?用于促进纳米复合材料的发展纳米颗粒分析仪配件特色?在同一时间多粒子高通量表征?实时视觉展示粒子,允许用户评估试验,无需额外复杂性?方便和易于使用的软件,允许用户通过宏设置任何实验?添加像高通量自动采样器,泵或加热和制冷配件?自适应模块化系统构建任何复杂的应用程序,操作轻松舒适?超级高效和购买成本低?该系统提供高分辨率的粒度特性来研究复杂的多分散矩阵?激光波长可选择?通过给过滤器添加电动轮,得到自适应荧光分析纳米颗粒分析仪配件参数?尺寸10 nm - 2000 nm*?浓度 106 - 109 粒子/ mL?荧光检测纳米颗粒分析仪配件规格温度范围15-40 °C电源230V AC/115V AC, 50/60 Hz摄像机USB3 CMOS分辨率:1936x1216 161帧/秒,像素尺寸5.86μm:颜色校准模块功耗18W激光波长405nm(紫色),488nm(蓝),532nm(绿),642nm(红色)尺寸范围从10 nm到2000 nm (取决于材料)焦点电脑控制电动调焦个人计算机SDD亿康II SDSSDHII-120G-G25HDD西数蓝WD10EZEX1 TB|主板千兆字节GA-Z97X-UD3H|内存金士顿骇客神条怒黑| HX318C10FBK2/1616 GB DDR3-RAM处理器英特尔® 酷睿™ i7 i7-4790K四核4×4.0 GHz显卡 PNY VCQK2200-PB 4GB电源 酷冷至尊G750M 750w机箱 酷冷至尊黑软件Windows® &(或更高).由Mishell® 供电Mishell是Microptik BV公司的注册商标。Windows是微软公司的注册商标。MiNan尖端程序在Mishell下运行,以充分体现由Morphious纳米获得的纳米粒子尺寸(长×宽×高)20 x 18 x 30 cm重量10.5 kg
  • 纳米粒度分析仪 汇美科HMK-200
    纳米粒度分析仪简介HMK-200气流筛分仪(空气喷射筛)是一款用来测量粉体粒度分布的实验室用气流筛分仪器,由操作面板、筛盘、标准筛、喷嘴、电机及吸尘器组成。通过7寸液晶显示屏进行控制,实时显示仪器的工作状态。本仪器可以通过RS-232接口与电子称相连。内置微处理器可以对结果进行自动计算。仪器生产厂家与供应商为丹东汇美科仪器有限公司。型号为HMK-200的空气喷射筛分法气流筛分析仪采用国际先进筛分技术设计制造,仪器的主要参数性能与外国进口设备保持一致,而且该仪器价格合理,配套服务完善。汇美科已经成为世界实验室粒度气流筛分析及采购好品牌。工作原理具有专利技术的喷嘴将吸尘器产生的负压转化成动能,驱动粉体上升并与筛盖相碰撞,去除聚合颗粒的粉a体继而被负压吸向标准筛。较大颗粒被留在筛网上面,较小颗粒被吸入吸尘器,从而实现对粉体的理想筛分。技术参数测量范围:5-5,000 um筛分量:0.1-2,000 g标准筛直径:200 mm/75 mm喷嘴旋转速度:低、中、高或者0-35 rpm无级变速可调计时范围:固定模式2-10 min任选或者持续模式切换气压范围:0-10 Kpa喷嘴间隙:2 mm仪器尺寸:58x35x35 cm电压:220 V/50 Hz/25 W重量:14.8 Kgs产品特点7寸大屏,液晶显示,触屏点击精确控制筛分操作。负气压筛前标定,筛中实时监测,并可实时调节,保证筛分精度。喷嘴转速在合理区间内可任意设定,并可选中低高速,提高效率。筛分时间在常规时间内任选,并可设定循环筛分模式,方便操作。世界先进开筛(Open Mesh)功能,有效防止近筛颗粒堵塞筛网。筛分结束后自动计算出筛下物料百分比。国际先进的样品收集装置,使筛下颗粒收集率可达99.99%应用领域常规筛析无法分析的干粉体:粉体质量轻粉体易静电颗粒易团聚被广泛应用于筛分以下粉末:医药、面粉、调味料化学物质粉末水泥、石墨、煤灰、涂料、陶土粉树脂、橡胶、塑料等
  • 上转换发光纳米粒子
    上转换发光纳米粒子主要是由氧化物、氟化物、卤氧化物等基质掺杂三价稀土离子(如Er3+ , Eu3+ , Yb3+ , Tm3+ , Ho3+等)得到,通过多光子机制将红外光转换成可见光,为反Stokes发光;具有发射谱线窄,寿命长,发光稳定性好,不易受环境影响,生物毒性低,化学稳定性高等优点;广泛应用于生物荧光标记和成像、激光器、太阳能电池、防伪技术等领域。成分:NaYF4(Er/Tm, Yb)/NaYF4核壳结构激发波长:980 nm/ 808 nm发射峰:365 nm、475 nm、545 nm、655 nm、800 nm半峰宽:10 nm溶剂:溶于有机溶剂或水我们可根据客户需求,提供不同质量、膜尺寸的上转换高分子复合膜。由于此款产品为定制款,标价为参考价,具体价格请联系在线客服发射峰 & 吸收峰TEM测试图
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制