纳米结构直写机

仪器信息网纳米结构直写机专题为您提供2024年最新纳米结构直写机价格报价、厂家品牌的相关信息, 包括纳米结构直写机参数、型号等,不管是国产,还是进口品牌的纳米结构直写机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米结构直写机相关的耗材配件、试剂标物,还有纳米结构直写机相关的最新资讯、资料,以及纳米结构直写机相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

纳米结构直写机相关的厂商

  • 400-860-5168转4830
    魔技纳米科技创立于2017年,是一家纳米级三维光刻加工设备制造与服务提供商、国家高新技术企业、省专精特新企业。研发团队拥有十余年微纳三维制造技术经验,在光学、电气、机械、软件、材料等方面,拥有完整的自主开发能力,可以为多行业应用场景提供专业的一体化解决方案。企业推出了高精度纳米级3D打印设备、超快激光加工中心、无掩膜直写光刻设备三大系列及多款光刻胶产品,其中自主研发的商用纳米级三维激光直写系统,可实现70纳米精度的三维结构加工。凭借高精度、高速度、大幅面和长时稳定性等技术优势,实现了科研探索到商业化应用的跨越,有力推动了微纳三维制造在生物医疗、光电通信、新材料、微纳器件、航空航天等领域的规模化工业生产。
  • 南京牧科纳米科技有限公司目前主要由10位具有海外留学经历和国内顶尖研究课题组多年研究经验的博士团队组成。牧科是国内唯一一家专门从事二维材料单晶CVD合成和二维半导体纳米片溶液及冷干粉末合成的(类石墨烯类材料)合成与研发的专业技术咨询和服务的纳米科技公司。公司现有产品主要包括:(1)各类人工合成二元、三元和四元二维单晶材料;单层机械剥离二元、三元和四元二维单晶材料,及定制类相关拓扑绝缘二维材料;(2)CVD法生长各类单层类石墨烯二维半导体材料MoS2,WS2,MoSe2,WSe2以合金CVD定制, CVD-BN薄膜定制,定做横向,纵向结构二维异质节(3) CVD生长二六族(Zn,Cd)+(S,Se,Te), 三五族(Ga,In)+(Sb,As,P) 纳米线以及异质节结构;(4)石墨烯单晶系列100um-2mm,5mm,1cm 大六边形单晶 (5)氧化石墨烯溶液、氧化石墨烯干粉,石墨烯干粉,石墨烯溶液,热还原石墨烯干粉,碳纳米管阵列衬底。(6)CdSe, CdSe/ZnS, CdSe/Cds,ZnSe-ZnS量子点/近红外PbS量子点/InP-ZnS量子点/水溶性发光量子点/上转换发光纳米粒子/LED用量子点 全光谱量子点溶液,(7)有机无机杂化钙钛矿单晶。尺寸可根据需要定制。(8)基团修饰氧化铁、四氧化三铁、三氧化二铁、聚苯乙烯磁性粒子、金纳米棒、三角纳米笼、银纳米颗粒生物制剂(8)实验用SIO2/SI,掺杂硅,本征硅衬底,镀金衬底,M面,C面,R面蓝宝石衬底,MgO、Zno、GGG晶体,TiO2等单晶衬底,激光切割等服务等亦可提供最先进相关测试服务(AFM,SEM,TEM ,XPS,Raman,BET,XRD,常温及变温PL,紫外-可见-近红外吸收/反射/透射光谱等常规测试服务)。如需获得更多的了解,欢迎您咨询QQ:2984216964 025-66171690 18052095282,或者A直接访问我们的公司网址是:http:www.mukenano.com
    留言咨询
  • 苏州海兹思纳米科技有限公司成立于2009年,是全球领先的扫描探针显微镜(SPM)专业制造商/供应商,是国家高新技术企业、中国教育装备行业协会会员、江苏省教育装备行业协会会员。公司致力于为纳米微观技术的研究生产领域,并提供一流的微纳米测试、加工与计量解决方案。本公司拥有一支业界国内外领先的开发和科学技术顾问团队,凭借十多年的扫描探针显微镜开发经验,不断地在技术及工艺上改进和积累,依靠先进的技术提高产品的质量。公司注重于产、学、研方面广泛的合作,能根据用户的需求订制特殊的显微镜系统。2010年与教育部教育装备研究与发展中心合作,2011年被瑞士Nanosurf 公司注资成为中瑞合资公司,并引进超微型扫描隧道显微镜(STM)的技术,研发生产专用于国内中学教学用的STM产品。 本公司作为苏州工业园区苏州纳米城内的微纳装备重点企业,得到政府相关政策的大力支持,与国内外先进技术高校、科研所、企业合作,大力研发、生产SPM产品。本公司的产品应用于纳米材料、物理化学、生物与生命科学、制药、半导体、LED和太阳能电池等多个领域。主要产品为Nanofirst 3000型多模式原子力显微镜(AFM)、Nanofirst 3600型台式一体化原子力显微镜、实用型原子力显微镜(Nanosurf easyScan2 AFM)、多模式原子力显微镜(Nanosurf easyScan2 FlexAFM)、全自动大样品原子力显微镜(Nanosurf Nanite)、镜头式原子力显微镜(Nanosurf Lens AFM)、生物I型原子力显微镜(Nanosurf Inverted Microscopy AFM)、生物II型原子力显微镜(Nanosurf FluidFM)和超微型扫描隧道显微镜(Nanosurf Teaching STM)等。世界首款LensAFM将光学显微镜与原子力显微镜完结结合,触及材料的特性,获取三维表面结构数据。FluidFM作为目前唯一实现微纳米流体和AFM准确定位以及力敏感的结合体,利用中空式探针,实现分配&传输、注入&抽取、吸附&放置等小体积局部液体传输/收集或物体操纵,应用在生物细胞,生物传感器,纳米图案,电路印刷,光学等领域。本公司原子力显微镜销往国内几十所大学,并与国内外重点高校科研所建立技术服务中心,如清华大学、上海理工大学、上海大学、南京大学、西安工业大学、天津大学、中国科学技术大学等都建有本公司的技术服务中心。 2013年开始,本公司在教育部教育装备研究与发展中心和苏州纳米城的大力支持下,与苏州承祚纳米科技有限公司携手并肩,加大力度,在全国推广中学纳米科技创新实验室和纳米智慧课堂项目,携带着中学专用的教学型扫描隧道显微镜和原子力显微镜等前沿的纳米科技产品开始走向中学教育市场,深受广大中学老师和学生的欢迎。短短时间,就已在北京、上海、广州、贵州、苏州、南通、清远等地的多所中学建立了纳米创新实验室,开展了丰富多彩的中学纳米科技教学活动,在专家团队和中学老师们的帮助下,编撰完成三册中学纳米科技教材,协助全国共4所中学完成了国内或省内的纳米科技公开实验课,协助苏州两间中学分别建立了全国首个纳米科技课程基地和全国首个纳米科技特色学校,得到了教育部教育装备研究与发展中心的肯定。
    留言咨询

纳米结构直写机相关的仪器

  • 3D纳米结构高速直写机 — —纳米光刻与微米光刻兼顾的联合图形化工艺方案 NanoFrazor光刻技术,衍生于IBM Research研发的热扫描探针光刻技术——快速、地控制纳米针的移动及温度,利用热针实现对热敏抗刻蚀剂的快速刻写,从而为纳米制造提供了许多新颖的、特的可能性。NanoFrazor Explore以高的速度、精度和可靠性运行,在目前所有扫描探针光刻技术中属于速度快、应用广泛的一种。NanoFrazor Explore配备了先进的硬件和软件,以合适的方式控制可加热的NanoFrazor悬臂梁,以便进行书写和成像,实现基于闭环光刻技术的各种高精度图案化工艺。2019年,Explore增配了激光直写模块,有效加快了特征线宽在微米或亚微米水平的图形的加工速度,成为纳米光刻与微米光刻兼顾的联合图形化工艺方案。由此,在针对同一抗刻蚀层的图案化工艺中,实现了纳米刻写与微米刻写的无缝衔接。从而可以根据不同的图案特征线宽,采用不同精度的刻写技术,兼顾精度与速度。 主要特点:★ 利用加热针直接刻写图案,分辨率优于15 nm;★ 利用激光热挥发实现图案化,分辨率优于1 μm;★ 高速直写 10 mm/s★ 高速原位AFM轮廓成像;★ 样品尺寸100×100 mm2;★ 闭环光刻;★ 灰度曝光,分辨率及精度达到2 nm;★ 利用原位AFM实现的对准,从而实现无掩膜套刻及写场拼接;★ 的隔音及隔振性能;★ 无需洁净间,亦无特殊的实验室环境要求闭环光刻NanoFrazor光刻系统是基于热扫描探针光刻技术,其核心部件是一种可加热的、非常锐的针,利用此针可以直接进行复杂纳米结构的刻写并且同时探测刻写所得结构的形貌。加热的针通过热作用,直接挥发局部的抗刻蚀剂,从而实现对各类高分辨纳米结构的制备。此外,NanoFrazor的光刻技术能够与各类标准的图形转移方案(如lift-off、刻蚀)兼容,从而实现各类材料的图形化制备。“闭环光刻”技术确保图形化工艺的高度纳米光刻与微米光刻兼顾的图形化工艺方案自2019年开始,NanoFrazor Explore增配了激光直写模块,由此在保障纳米分辨率图案刻写精度的同时,大大提升了NanoFrazor Explore对微米分辨率图形的刻写速度。激光刻写基于激光的热作用,以亚微米精度,快速、直接地挥发抗刻蚀剂,从而实现大面积的图案化工艺(例如微纳结构的引线或焊点图形制备)。热探针直写对于纳米结构或纳米器件关键部分的高精度、高分辨率刻写。刻写所得结构的测量、观测、对准由于抗刻蚀剂直接挥发,无须湿法显影操作即可实现抗刻蚀剂的图案化。在图案化过程中,同一根探针能够原位、高速的对图案化抗刻蚀剂进行AFM成像和测试。微米尺度及纳米尺度的哈佛大学校徽,对PPA刻蚀剂的刻蚀深度为30 nm,图像由NanoFrazor Explore的探针进行AFM成像获得。(Courtesy of Harvard CNS)3D灰度纳米光刻★ 可在针扫描的每个位置对图案化工艺的深度进行设定(即每个像素点的灰度值)★ 闭环光刻技术能够实现很高的灰度刻写精度(经论证,对大于16个灰阶的结构进行图案化工艺,灰度刻写的误差小于1纳米)用于TEM的电子光学系统的三维相盘,由PPA中的微结构转移至SiN薄膜获得(Courtesy of EPFL and KIT)刻写在PPA中的多全息图的局部(图片由Explore的探针在刻写同时进行AFM成像获得);小图展示的是转移至Si中的全息图局部的SEM图像(Courtesy of Sun Yat-Sen University)无掩膜套刻与拼接★ 通过原位AFM功能实现高精度的无掩膜套刻及拼接(经论证,精度优于10 nm);★ 埋在抗刻蚀剂PPA下的图案结构(如纳米片、纳米线等)可用作“天然的”对准标记写场的自动关联拼接;由金的lift-off工艺获得的)反射全息图包含1×108个像素点,每个写场为边长50 μm的正方形,写场间的拼接由AFM相关技术实现利用无掩膜光刻在单根纳米线上制备金属电:(a)由Explore的AFM成像功能探测到的纳米线轮廓及位置信息(绿线标出)与拟制备的电结构布局图(粉色区域);(b)lift-off工艺后获得的带有金属电的单根纳米线的SEM图像高分辨率★ 锐的针,为了高分辨率的实现(经论证,在PPA抗刻蚀剂中能够实现的半节距优于10纳米)★ 无须针对临近效应的修正由PPA抗刻蚀剂转移至硅基衬底的鳍型结构和沟槽结构(Courtesy of IBM Research and imec) 其他特性能★ 低损伤:制备过程中没有引入带电粒子束流,基于敏感材料的微纳器件能够获得更好器件特性★ 纳米尺度的材料转换:多种材料的直接热诱导修饰(相变、化学反应… … )新型号:NanoFrazor Scholar — 小面积直写■ 3D纳米直写能力 高直写精度 (XY: 高可达20nm, Z: 3nm) 高速直写 0.5 mm/s■ 无需显影,实时观察直写效果 形貌感知灵敏度0.1nm 样品无需标记识别,多结构套刻,对准精度 50 nm ■ 无临近效应 高分辨,高密度纳米结构 ■ 无电子/离子损伤 高性能二维材料器件■ 区域热加工和化学反应 多元化纳米结构改性■ 小样品台 30mm X 30mm应用案例三维光子分子(3D PHOTONIC MOLECULES)(Courtesy of IBM Research Zurich, publication in 2018)单电子器件Courtesy of IBM Research Zurich, publication in 2018基于二维原子晶体的器件(Courtesy of Prof. Elisa Riedo, NYU)基于准一维纳米材料的纳米器件(Courtesy of S. Karg & A. Knoll, IBM Research – Zurich)基于布朗马达的纳米器件,可用于纳米颗粒分类(Courtesy of IBM Research, Publications in Science and PRL 2018) 国内外客户已发表的文献● Wolf (JVST B 2015) Sub20nm Liftoff and Si Etch and InAs nanowire contacts● Garcia (Nat Nano 2014) Advanced scanning probe lithography● Rawlings (IEEE Nano 2014) Nanometer accurate markerless pattern overlay using thermal Scanning Probe Lithography● Holzner (SPIE EMLC 2013) Thermal Probe Nanolithography● Cheong (Nanoletters 2013) Thermal Probe Maskless Lithography for 27.5 nm Half-Pitch Si Technology● Fei Ding (PhysRevB 2013) Vertical microcavities with high Q and strong lateral mode confinement● Carrol (Langmuir 2013) Fabricating Nanoscale Chemical Gradients with ThermoChemical NanoLithography● Paul (Nanotechnology 2012) Field stitching in thermal probe lithography by means of surface roughness correlation● Kim (Advance Mat 2011) Direct Fabrication of Arbitrary-Shaped Ferroelectric Nanostructures on Plastic, Glass, and Silicon Substrates● Holzner (APL 2011) High density multi-level recording for archival data preservation● Holzner (Nanoletters 2011) Directed placement of gold nanorods using a removable template● Paul (Nanotechnology 2011) Rapid turnaround scanning probe nanolithography● Wang (Adv Funct Mat 2010) Thermochemical Nanolithography of Multifunctional Nanotemplates for Assembling Nano-Objects● Wei and King (Science 2010)Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics● Pires (Science 2010) Nanoscale 3DPatterning of Molecular Resists by Scanning Probes● Knoll (Adv Materials 2010) Probe-Based 3-D Nanolithography Using SAD Polymers● Fenwick (Nat Nano 2009) Thermochemical nanopatterning of organic semiconductors● Lee (Nanoletters 2009) Maskless Nanoscale Writing of Nanoparticle-Polymer Composites and Nanoparticle Assemblies using Thermal Nanoprobes● Nelson (APL 2006) Direct deposition of continuous metal nanostructures by thermal dip-pe
    留言咨询
  • 产品详情瑞士Swisslitho 3D纳米结构高速直写机NanoFrazor-源自IBM最新研发成果 NanoFrazor纳米3D结构直写机的问世,源于发明STM和AFM的IBM苏黎世研发中心,是其在纳米加工技术的最新研究成果。NanoFrazor纳米3D结构直写机第一次将纳米尺度下的3D结构直写工艺快速化、稳定化。 NanoFrazor采用尖端直径为5nm的探针,通过静电力精确控制实现直写3D高精度直写,并通过悬臂一侧的热传感器实现实时的形貌探测。相对于其他制备技术如电子束曝光/光刻技术(EBL), 聚焦离子束刻蚀(FIB)有以下特点: ■ 3D纳米直写能力 高直写精度 (XY: 10nm, Z: 1nm) 高速直写 20 mm/s 与EBL媲美 ■ 无需显影,实时观察直写效果 形貌感知灵敏度0.1nm 样品无需标记识别,多结构套刻,对准精度 5nm ■ 无临近效应 高分辨,高密度纳米结构 ■ 无电子/离子损伤 高性能二维材料器件 ■ 区域热加工和化学反应 多元化纳米结构改性 ■ 大样品台 100mm X 100mm 新产品发布:NEW!! NanoFrazor Scholar --小面积直写 ■ 3D纳米直写能力 高直写精度 (XY: 30nm, Z: 1nm) 高速直写 10 mm/s ■ 无需显影,实时观察直写效果 形貌感知灵敏度0.1nm 样品无需标记识别,多结构套刻,对准精度 10 nm ■ 无临近效应 高分辨,高密度纳米结构 ■ 无电子/离子损伤 高性能二维材料器件 ■ 区域热加工和化学反应 多元化纳米结构改性 ■ 小样品台 30mm X 30mm 该技术自问世以来已经多次刷新了世界上最小3D立体结构的尺寸,创造了世界上最小的马特洪峰模型,最小立体世界地图,最小刊物封面等世界记录。 独特的直写与反馈流程 。PPA(聚苯二醛) 直写胶涂敷在样品表面。。背热式直写探针,微区电阻式加热针尖。与针尖接近的PPA受热瞬间分解,周围部分由于PPA热导率低而不受影响。。热针震动模式直写,直写时探针加热,每次下针幅度受静电力控制,垂直精度 1 nm,从而写出3D图形。。冷针接触模式扫描,回程扫描时探针冷却,由侧壁的热感应器探测样品高度变化(精度0.1nm), 获得样品形貌。反馈数据修正下一行直写。 独有的直写针尖设计 普通的AFM针尖无法满足上述NanoFrazor直写流程的需求,因此NanoFrazor所用针尖是由IBM专门研发设计的。该针尖具有两个电阻加热区域,针尖上方的加热区域可以加热到1000oC。 第二处加热区域作为热导率传感器位于侧臂处,其能感知针尖与样品距离的变化,精度高达0.1 nm。因此在每行直写进程结束后的回扫结构时,并不是通过针尖 起伏反馈形貌信息,而是通过热导率传感器感应形貌变化,从而实现了比AFM快1000余倍的扫描速度,同避免了针尖的快速磨损消耗。 NanoFrazor技术特点 其他功能● 纳米颗粒有序定位排列● 纳米局部化学反应诱导● 表面化学图案、结构生成纳米颗粒有序定位排列 氧化石墨烯的定位还原
    留言咨询
  • 魔技纳米MJ-Works-Fiber专为光纤应用设计的纳米级三维激光直写设备MJ-Works-Fiber是一款专为光纤传感与光通信应用而生的超高精度加工而设计的高性能3D激光直写设备,配有超清成像及纳米级定位对准系统,可实现在光纤纤芯或光芯片表面及内部进行纳米级3D加工。配备有专门的卷对卷光纤自动输送装置,并配有应力监测,纤芯自动识别、定位及对准,实现高通量精准快速生产。如需了解更多产品信息,欢迎查询我司官网 魔技纳米科技或来电咨询。【企业简介】魔技纳米科技创立于2017年,是一家纳米级三维光刻加工设备与服务提供商、国家高新技术企业、省专精特新企业。研发团队拥有十余年微纳三维制造技术经验,在光学、电气、机械、软件、材料等方面,拥有完整的自主开发能力,可以为多行业应用场景提供专业的一体化解决方案。企业推出了高精度纳米级3D打印设备、超快激光加工中心、无掩膜直写光刻设备三大系列及多款光刻胶产品,其中自主研发的商用纳米级三维激光直写系统,可实现70纳米精度的三维结构加工。凭借高精度、高速度、大幅面和长时稳定性等技术优势,实现了科研探索到商业化应用的跨越,有力推动了微纳三维制造在生物医疗、光电通信、新材料、微纳器件、航空航天等领域的规模化工业生产。
    留言咨询

纳米结构直写机相关的资讯

  • Nature技术解析 | 3D高速纳米直写机在实现三维光学傅里叶曲面结构中的突破
    研究背景光栅和全息图是通过微纳结构表面的衍射来对光信号进行调制的。尽管这种作用方式历史悠久,但人们一直在相关领域不断的探索,以发展功能更为强大的应用。进一步的发展可以基于傅立叶光学来设计、构筑傅里叶面的微纳结构,以生成所需的衍射输出信号。在这种策略中,需要能够地调制波前,理想的样品表面轮廓应该包含正弦波的总和,每个正弦波具有明确的幅度,频率和相位。但是由于技术的局限,通常只能制备有几个深度别轮廓,无法获得复杂的连续“波浪”表面,从而限制了使用简单的数学设计而实现复杂的衍射光学效果。 研究亮点针对以上问题,苏黎世联邦理工的Nolan Lassaline博士等人,提出了一种简单而有效的方法来解决设计和制备间的差距,制备了任意数量的正弦波组成的光学表面。Nolan Lassaline等人使用扫描热探针t-SPL技术与模板法相结合的策略,制备了周期性和非周期性的光学表面结构。多元线性光栅允许利用傅里叶光谱工程调控光信号。同时,Nolan Lassaline等人克服了先前光子学实验的限制,制备了可以在同一入射角同时耦合红色,绿色和蓝色光的超薄光栅。更广泛地,Nolan Lassaline等人还分析设计并且复制了复杂的二维莫尔条纹,准晶体和全息图结构,展示了多种以前无法制备的衍射表面。Nolan Lassaline等人制备任意3D表面的方法,将为光学设备(生物传感器,激光器,超表面和调制器)以及光子学的新兴区域(拓扑结构,转换光学器件和半导体谷电子学)带来新的机遇。图1 一维调制傅里叶曲面实际效果图图2 二维调制傅里叶曲面实际效果图图3 周期性及准周期性傅里叶表面图案 图4 傅里叶表面的应用 高精度三维刻写技术之于本工作的重要意义苏黎世联邦理工的Nolan Lassaline博士使用NanoFrazor的高精度3D功能制备了一些特的3D表面傅里叶光栅,对光波进行调控,有选择地透射或者反射选定波长的光信号,使得光栅只和选定波长的光信号相互作用。这样就可以通过简单的数学模型计算和相关波长相互作用的傅里叶光栅来调控实现的光波输出。以前还没有可以完全控制每个傅里叶光波成分和光栅相互作用的好方法。一些实验尝试使用超表面,或者波浪形表面光栅,但是由于微纳制备技术的限制,(只能使用灰度光刻实现2阶或者多阶深度的表面光栅,或者使用激光干涉光刻制备类似傅里叶波形表面)不能实现对相互作用波长的完全选择。设计或者制备不的表面会和多个波长相互作用降低有用信号的成分并增加系统的复杂性。有鉴于高精度3D纳米直写之于本工作的重要意义,NanoFrazor的高销售工程师Wu博士特别与作者Nolan Lassaline博士进行了制备工艺方面的探讨和交流,其中Nolan Lassaline博士对于NanoFrazor 3D纳米结构高速直写机的评价如下:“In the field of diffractive optics, it has been known for a long time that wavy surface patterns would be ideal for manipulating light. However, due to the limitations of traditional fabrication techniques, it has not been possible to fabricate surfaces with arbitrary wavy profiles. This has ultimately limited the capabilities of diffractive optics, stimulating decades of research aimed at solving this problem. To overcome this limitation, we took advantage of the unique 3D patterning capabilities offered by the NanoFrazor. Amazingly, this allowed us to fabricate wavy metallic diffractive surfaces with an error of only 1.8 nm. We used this remarkable precision to fabricate a variety of previously impossible diffractive surfaces that show promise for both fundamental optics research and practical applications in photonics. We envision that this approach, made possible only by the NanoFrazor, will lead to advanced optical devices of the future. Beyond diffractive optics, these novel 3D surfaces open up many exciting possibilities for science and engineering across a number of different fields.”( 大意:在衍射光学领域,很久以来人们就知道用波浪状的表面操纵调控光信号是理想的。然而,由于传统纳米制备技术的局限,不能制备出由任意正弦波形组合轮廓的表面。这终限制了衍射光学器件的功能,也激发了数十年来旨在解决这一问题的科研。我们利用NanoFrazor提供的特3D图案化功能终于突破了这一限制。更为惊讶的是,我们能够制备任意波浪形的金属衍射表面,波形误差与设计波形仅为1.8 nm。我们利用NanoFrazor非凡的高精度制备出了各种以前无法实现的衍射表面,有望更深入地探讨基础光学研究和光子学实际应用的许多课题。我们可以预想,NanoFrazor的有加工方法将改革未来先进光学器件的制备。除了衍射光学领域之外,这些新颖制备的3D波浪状表面还将开启科学和工程学许多不同研究领域的令人兴奋的新课题。)图5 傅里叶表面的设计与制备 关于本文当中傅里叶表面的设计及制备流程:A傅里叶表面的设计:先将所要制备的表面轮廓的数学表达公式(这里是在一维的正弦曲线)转换为灰度位图。图中每个像素为10 nm×10 nm,其深度别介于0和255(8位)之间。位图在白色边框内的水平方向上为正弦函数,而垂直方向不变。位图中,白色边框中的像素设置为小深度别。B银基傅里叶表面的制备工艺流程:(1)利用热扫描探针在聚合物抗刻蚀剂层中刻写设计好的纳米结构;(2)利用热蒸发工艺在刻写后的聚合物表面沉积银,厚度大于500nm;(3)利用紫外光固化环氧树脂将显微镜载玻片固定于银层背面;(4)将玻片/环氧树脂/银堆叠结构剥离下来,从而完成制备C通过模板制备得到的银基傅里叶表面。文章作者Nolan Lassaline关于本工作的讲解视频请移步至Quantum Design中国子公司官网(https://qd-china.com/zh/news/detail/2009281332211)观看。关于本工作的更多详细信息,可参考如下信息:(1)原文链接:https://www.nature.com/articles/s41586-020-2390-x?utm_source=other&utm_medium=other&utm_content=null&utm_campaign=JRCN_2_DD01_CN_NatureRJ_article_paid_XMOL(2)Nolan Lassaline博士的视频介绍资料:https://www.youtube.com/watch?v=moGtRjjhbPk
  • 全球最小的三维纳米雄鸡贺卡,3D纳米激光直写设备NanoFrazor专业定制
    金鸡报晓已迎春,元宵临近聚福门,Quantum Design China恭祝大家新春愉快,元宵吉祥。上图这幅立体逼真的画作是 Quantum Design China专为您打造的新年特别礼物。看到图像右面的坐标轴,是不是很惊讶?没错,这不是一幅手绘作品,而是借助SwissLitho公司制造的3D纳米结构高速直写设备—NanoFrazor专业定制的三维纳米雄鸡贺卡! 这幅雄赳赳气昂昂的鸡年贺卡,其尺寸仅有10μm*10μm,深度差为50nm,是目前全球小的三维纳米鸡年贺卡。整只雄鸡的微纳尺寸,以及鸡身立体的轮廓和清晰的线条,都体现了3D纳米结构高速直写机NanoFrazor让人膜拜的高直写精度(XY: 10nm, Z: 1nm)、高形貌感知灵敏度(0.1nm),另外还有高速直写,无需显影,实时观察直写效果,无临近效应,无电子/离子损伤等有的特点。 NanoFrazor纳米3D结构直写机的问世,源于发明STM和AFM的IBM苏黎世研发中心,是其在纳米加工技术的新研究成果。NanoFrazor纳米3D结构直写机采用直径为5nm的探针,通过静电力控制实现直写3D高精度直写,并通过悬臂一侧的热传感器实现实时的形貌探测,次将纳米尺度下的3D结构直写工艺快速化、稳定化。该技术自问世以来已经多次刷新了上小3D立体结构的尺寸,创造了上小的马特洪峰模型,小立体地图,小刊物封面等记录。2016年10月,瑞士Swisslitho公司又发布了一款NanoFrazor Scholar,这款小型的纳米加工设备竟然可以放置在实验室桌面上,而且分辨率依然可达到XY:10nm;Z:2nm,轻松实现小于20nm的线宽与间距,更加便于课题组内进行纳米原型器件、微纳光学/光子学/磁学,NEMS、超材料等领域纳米机构与器件的设计与制备,是纳米结构和器件加工制备领域的之选。 2017的年味儿少不了科学的情怀,少不了我们对未知的探索和追求,带着NanoFrazor专业定制的全球小的三维纳米雄鸡贺卡,Quantum Design China祝愿大家在新的科学年中创意无限,收获满满!2017,Quantum Design China将继续伴您左右,提供丰富、的科研设备,便捷、专业的售后服务,助力您的科学研究更有说服力,更具创造力! 相关产品: 3D纳米结构高速直写机NanoFrazor: http://www.instrument.com.cn/netshow/C226568.htm小型台式无掩模光刻系统: http://www.instrument.com.cn/netshow/C155920.htm
  • ETH Zurich Norris教授课题组:3D纳米直写技术助力任意形貌六方氮化硼(hBN)纳米3D结构的制备
    【引言】六方氮化硼(hBN)单晶纳米片的原子平滑表面,为光电应用领域带来了革 命性的突破。在纳米光学方面,hBN的强非线性、双曲线色散和单光子发射等特性,为相应的光学和量子光学器件带来一些有性能。在纳米电子学领域,良好的物理,化学稳定性和较宽的禁带,使hBN成为二维电子器件的关键材料。目前,对hBN的研究重点局限于二维扁平结构,尚未涉其3D立体结构对性能的影响。如果能根据需求对hBN纳米片的高度做出相应调整,将为下一代光电器件中调节光子流,电子流和激子流等性能提供一个有效的方法。 【成果简介】近日,Norris教授课题组利用3D纳米直写技术和反应离子刻蚀的方法制备出可任意调控形貌的hBN纳米3D结构。此类hBN纳米3D结构在光电子器件研究领域尚属次。得意于3D纳米结构高速直写机(NanoFrazor)在光刻胶上能实现亚纳米精度的加工,Norris教授课题组运用该方法制备了光电子学相板、光栅耦合器和透镜等元件。获得的元件通过后续组装过程制备成高稳定、高质量的光学微腔结构。随后,通过缩小图形长度比例的方法,引入电子傅里叶曲面,在hBN上实现复杂的高精度微纳结构,展现了NanoFrazor在3D纳米加工领域的潜力。【图文导读】图1. 使用NanoFrazor制备hBN纳米3D结构流程图(a)左图为利用NanoFrazor在光刻胶表面上实现3D结构制备,右图为通过反应离子刻蚀方法将光刻胶上的3D结构转移到hBN的流程;(b)Mandelbrot分形图案刻蚀在光刻胶上的结果。黑色代表图形的 高处,白色为 低处;(c)光刻胶上的Mandelbrot分形图案通过图(a)中的过程转移到hBN上的结果;(d)图(c)中hBN的SEM(倾转30o)表征结果。图2. 利用NanoFrazor在hBN上制备任意形貌的纳米3D结构(a)白色中线左侧为准备的高密度图形样图,右侧为通过NanoFrazor将高密度图形转移到hBN后的实际结果;(b)将图(a)中的图形转移到hBN后的SEM表征结果;(c)AFM测量图(a)中红色虚直线所示部分的表面形貌;(d)hBN纳米3D结构的高分辨成像,左下角厚度为95 nm,右上角厚度为50 nm;(e)AFM测量hBN中高密度方形结构(29 nm)周期性图样结果,体现了NanoFrazor对制备结构的高度可控性;右上角插图是该周期性结构的快速傅里叶变换(FFT)结果。 图3. 利用NanoFrazor制备的hBN光学微纳元件(a)在130 nm厚hBN上制备螺旋相位板阵列的光学表征结果;(b)单个螺旋相位板的AFM结果;(c)具有球形轮廓的hBN微透镜光学显微照片;(d)微透镜理论图样(左侧)和实际制备结果(右侧)比较;(e)光学微腔的示意图,镜、底镜、hBN微透镜(蓝色)和带横向限制(黑色箭头)的腔模式(红色);(f)拥有hBN微透镜的微腔角分辨光谱结果;(g)根据制备的微腔几何结构所计算的横向Ince-Gaussian模分布结果;(h)测量的横向Ince-Gaussian分布结果。图4. hBN上制备的电子傅里叶曲面(a)具有六边形晶格的电子傅里叶曲面位图;(d)将两个六边形晶格与一个在平面上旋转10°的晶格叠加而成的位图;(g)两个叠加的六边形晶格的位图,周期分别为55和47 nm,无平面内旋转;(j)将九个位图分别在平面内旋转0、20、40、60、80、100、120、140和160°后的叠加效果;(b)、(e)、(h)、(k)为使用NanoFrazor在光刻胶上制备(a)、(d)、(g)、(j)中图形时所获得的结果;(c)、(f)、(i)、(l)、是把(b)、(e)、(h)、(k)中的图案刻蚀在hBN上的AFM测量结果;(a)-(l)中的插图代表着相应图案的FFT结果。【小结】本文利用NanoFrazor有的3D纳米直写技术在hBN上实现了复杂高精度纳米3D结构的制备,为光电器件性能的应变调控和能带结构调控带来了新的研究方向。这一研究结果表明,NanoFrazor在开拓双曲线超材料、化电子、扭转电子、量子材料和深紫外光电器件等领域新的研究方向上有着重要的作用。

纳米结构直写机相关的方案

纳米结构直写机相关的资料

纳米结构直写机相关的论坛

  • 小角x射线散射-纳米结构表征

    小角x射线散射(small angle x-ray scattering)SAXS是分析材料纳米结构的理想工具,适用于液体和固体等不同种类的样品分析.对尺度在1~100nm的超分子结构内部排列方式的准确理解有助于解释材料的宏观性质进而实现可控制备。。SAXS分析能提供的信息举例:聚合物和纳米复合物► 形状和内部结构► 结晶度► 周期性纳米结构► 取向性纤维► 内部结构► 结晶度► 比表面积► 取向性及其分布催化剂► 比表面(孔隙度)► 颗粒尺寸及分布► 结晶度表面活性剂与分散体系► 胶束尺寸和形状► 乳液形状和内部结构► 囊泡壁的内部结构► 颗粒集结成核现象液晶► 尺寸(分布)和形状► 聚集的有序度► 取向性生物材料► 蛋白质在溶液中的结构信息(形状、尺寸)► 内部结构► 聚集状态► 分子量

纳米结构直写机相关的耗材

  • 飞秒激光直写光刻系统配件
    秒激光直写光刻系统配件是专业为微纳结构的激光蚀刻而设计的激光直写光刻机,基于多光子聚合技术,适合市场上的各种光刻胶,能够以纳米精度和分辨率微纳加工各种三维结构。秒激光直写光刻系统配件特点激光光刻机3D模型制备直写光刻机直接激光刻划 激光光刻机整套系统到货即可使用激光光刻机提供100nm-10um的分辨率直写光刻机超小尺寸 激光光刻机3D模型的制备 这套三维光刻机由激光微加工系统软件控制,简单的3D模型通过这种软件即可生成,对于比较复杂的3D模型,用户可以通过Autodesk, AutoCAD等软件制作,然后导入到三维光刻机的软件中,这个软件支持.stl, dxf等格式的文件用于3D结构的制造。 激光光刻机激光直接读写 这套激光光刻机由飞秒激光光源,精密的3轴定位台和扫描镜组成。首先,待刻录的图形通过激光光刻机精密的激光聚焦系统直接从CAD设计中导入到光刻胶上。聚合物的双光子或多光子吸收用于形成高质量表面的3D结构。100nm的尺寸可自形成结构,200nm-10um尺寸的结构可以控制并重复,这套激光蚀刻机提供纳米尺度分辨率和对聚合物的广泛选择,从而可以适合微纳光学,微流体,MEMS,功能表面制作等各种应用. 与CAD设计等同的3D结构形成后,未固化的光刻胶剩余物由有机溶剂洗掉,这样只留下蚀刻的微纳结构呈现在基板上。 激光光刻机后续工序: 在所需的微纳结构形成后,它被浸入到几种不同的溶剂中,以除去蚀刻过程中留下的液态聚合物。激光光刻机全部过程都是自动化的,重要参数可以根据要求而设定:浸入时间,温度等.对于特殊的样品或加工对象,可以使用紫外光或干燥机处理。秒激光直写光刻系统配件应用 ?激光光刻机用于纳米光子器件(三维光子晶体) ? 三维光刻机用于微流控芯片 ? 三维光刻机用于微光学(光学端面微结构制作) ? 激光光刻机制作机微机械 ?激光蚀刻机制作微型光机电系统 ? 激光光刻机,三维光刻机用于生物医学
  • 纳米仿生拓扑结构培养皿
    更快更成熟的培养细胞和组织纳米仿生拓扑结构培养皿建构培养细胞和组织,以提高生理相关性。 与在常规培养皿中培养的细胞相比,在纳米仿生培养皿中培养的细胞表现出增强的结构和表型发育。纳米仿生地形诱导细胞骨架重组和细胞对齐。 NanoSurface仿生培养皿沿用标准的应用于高质量成像的1.5号玻璃底。单皿 35mm Ø dish (20mm Ø pattern area)6孔板 35mm Ø wells (20mm Ø pattern area) 24孔板 20mm Ø wells (full well area patterned)96孔板 5mm Ø wells (full well area patterned)No. 1.5 玻片NanoSurface纳米仿生拓扑培养皿快速建构和成熟以下众多细胞类型。 骨骼肌细胞平滑肌细胞内皮细胞人类胚胎干细胞诱导多功能干细胞间充质干细胞成纤维细胞上皮细胞癌细胞如果没有仿生表面形貌,心肌细胞在常规培养表面上呈现随机取向,紊乱的收缩模式和不成熟的功能表型。仿生纳米级表面形貌模仿天然细胞外基质的对齐结构。纳米表面拓扑图案培养表面提供模拟天然细胞外基质的排列结构的细胞微环境,促进细胞结构和功能发育 原生心肌的基础基质具有对齐的结构 (标尺 10 µ m)。
  • Eachwave 微结构加工服务 激光微加工 微结构激光刻蚀 其他光谱配件
    上海屹持光电技术有限公司专业提供各种微纳结构加工服务典型案例: FIB加工微纳结构 紫外光刻微纳结构单晶硅反应离子刻蚀图片 ICP 刻蚀微纳结构 纳米压印点线图微流控细胞打印 EBL 刻写微纳阵列 FIB 用于器件电极沉积 激光直写图案激光直写器件微纳结构加工主要设备1,电子束曝光系统;2,聚焦离子束/ 扫描电子显微镜双束系统;3,双面对准接触式紫外光刻机;4, 单面对准紫外光刻机;5,金属高密度等离子体刻蚀机;6,硅刻蚀高密度等离子体刻蚀机;7,反应等离子体刻蚀机;8,纳米压印机。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制