去甲基硫代秋水仙碱标

仪器信息网去甲基硫代秋水仙碱标专题为您提供2024年最新去甲基硫代秋水仙碱标价格报价、厂家品牌的相关信息, 包括去甲基硫代秋水仙碱标参数、型号等,不管是国产,还是进口品牌的去甲基硫代秋水仙碱标您都可以在这里找到。 除此之外,仪器信息网还免费为您整合去甲基硫代秋水仙碱标相关的耗材配件、试剂标物,还有去甲基硫代秋水仙碱标相关的最新资讯、资料,以及去甲基硫代秋水仙碱标相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

去甲基硫代秋水仙碱标相关的资料

去甲基硫代秋水仙碱标相关的论坛

  • 【原创大赛】秋水仙碱类生物碱的质谱裂解规律探究

    【原创大赛】秋水仙碱类生物碱的质谱裂解规律探究

    秋水仙碱类生物碱的质谱裂解规律探究摘要:采用气相色谱质谱(GC/MS)研究了八种秋水仙碱类生物碱化合物的质谱裂解途径和机理。发现部分碎片离子一致,其主要的裂解途径是通过四元环过渡态氢重排失去侧链生成离子m/z340,由于结构中的七元环上有羰基,而七元环相对来讲没有六元环稳定,所以其会进一步失去羰基的CO生成离子m/z 312,保持了较高的稳定性,所以在质谱图上表现出较高的丰度,同时化合物还通过失去甲氧基自由基及甲基自由基得到其他对应的碎片离子峰。关键词:秋水仙碱;裂解规律;气质联用;生物碱秋水仙碱类生物碱是一类很重要的有机化合物,秋水仙碱是1820年于百合科植物秋水仙中发现的一种重要的卓酚酮类生物碱(1)。由于秋水仙碱及其类似物的特殊生理活性和药用价值,它们一直受到广泛的关注。因其特殊的结构和强抗癌活性,近几年有关秋水仙碱作用机制的研究异常活跃。临床上常作为痛风性关节炎急性发作和某些癌症治疗的首选药(2-5)。当秋水仙碱的摄入量过多将会导致死亡,所以也受到司法鉴定的关注。同时秋水仙碱在生物学上更重要的用途是作为多倍体诱导剂诱导多倍体的发生(6-10)。目前关于秋水仙碱的检测方法已有较多报道(11-14)。色谱质谱法由于其特异性,具有较好的分离度以及较高的灵敏度且能提供更多的样品信息而被广泛应用,对于生物碱类化合物的质谱裂解规律及机理已有较多的文献报道(15-21)。而关于秋水仙碱类生物碱的质谱裂解机理和规律还未见相关报道,电子轰击离子源由于具有较高的电离能,能够获得更加丰富的质谱信息而被广泛应用,所以本文通过气相色谱质谱联用法对多种秋水仙碱类化合物在电子轰击离子源下的质谱裂解途径和规律做以阐释总结,旨在为此类化合物的组分鉴定,结构确认提供理论指导依据。1试验部分1.1 仪器与试剂GCMS-QP2010UItra(日本Shimadzu公司);Demecolcine、Deacetylcolchicine、2-Demethylthiodemecolcine、N-Butoxycarbonyldemecolcine、N-Deacetylisocolchicine、N-Acetylcolchamine、N-Trifluoroacetyldemecolcine标准品2.2 仪器条件1.2.1 色谱条件 色谱柱:Agilent DB-1MS弹性石英毛细管柱(30m*0.32mm*0.25um);载气:He(纯度99.999%);恒压模式:48.0kPa;初始温度100℃,以10℃/min的速率升至300℃恒温10min;分流进样,分流比10:1;进样量0.2ul,进样口温度300℃,接口温度300℃。1.2.2 质谱条件 离子化方式:EI(电子轰击离子源),离子化电压70ev,离子源温度250℃,离子扫描范围:m/z 32~600。1.2 实验方法称取0.25mg标准品用1ml甲苯溶解,分别进行GC/MS全扫描,获得八种化合物EI离子源下的质谱图。八种化合物及其对应的质谱图如下:http://ng1.17img.cn/bbsfiles/images/2015/08/201508211541_562003_2359621_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/08/201508211541_562004_2359621_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/08/201508211541_562005_2359621_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/08/201508211541_562006_2359621_3.jpg2 结果与讨论2.1 Deacetylcolchicine的质谱裂解途径去乙酰秋水仙碱Deacetylcolchicine的质谱图见图Fig.i,谱图中基峰为分子离子峰m/z 357,表明其分子结构具有较高的稳定性。谱图中有明显的m/z 340碎片离子,其生成是由于氨基具有较强的质子亲合能,β位的氢通过四元环过渡态重排到氨基上,然后脱去中性分子NH3,两个孤电子成对生成烯键得到碎片离子m/z 340。由于分子结构中具有环庚三烯酮结构,所以其可以发生进一步的裂解失去CO中性分子,而形成六元环稳定结构,得到碎片离子m/z 312,为奇电子离子,具有较高的丰度。由分子离子峰可直接失去CO中性分子得到碎片离子m/z 329,当苯环上的一对π电子被电离后,离子m/z 329可以发生α断裂,失去甲基自由基,得到离子m/z 314,该离子通过氢过渡态重排失去NH3得到离子m/z 297(其生成也有可能是m/z 312失去甲基自由基)。该离子失去中性分子CO后生成离子m/z 269,该离子再失去甲基自由基后得到碎片离子m/z 254,该离子可进一步失去甲基自由基生成离子m/z 239,后失去一分子CO得到离子m/z 211,再失去一分子CO得到离子m/z 183。游离基中心定域在氨基上,游离基中心孤电子强的配对倾向诱导发生α断裂失去氢自由基得到碎片离子m/z 328。由分子离子峰可以失去甲氧基得到碎片离子m/z 326,该离子进一步失去CO得到离子m/z 298具有较高的丰度,后失去甲基自由基生成离子m/z 281。可能的质谱裂解途径见Fig. 1http://ng1.17img.cn/bbsfiles/images/2015/08/201508211451_561952_2359621_3.jpg图1 Deacetylcolchicine的质谱裂解可能的质谱裂解途径Fig. 1 Possible cleavage pathways of Deacetylcolchicine2.2 N-Deacetylisocolchicine的质谱裂解途径去乙酰异秋水仙碱N-Deacetylisocolchicine的质谱图见图Fig.ii,其结构上与去乙酰秋水仙碱有细微的差异,仅是甲氧基取代基与羰基的位置发生了互换,其质谱图中基峰为分子离子峰m/z 357,分子离子峰失去甲基自由基,生成碎片离子m/z 342,该碎片离子失去中性分子CO后生成离子m/z 314,后通过四元环过渡态β位氢重排失去小分子NH3生成离子m/z 297,由分子离子失去中性分子CO后生成离子m/z 329,当游离基中心定域在氨基上自由基强烈的配对倾向诱导发生α断裂失去氢自由基生成碎片离子m/z 328。由分子离子还可直接失去甲氧基自由基生成碎片离子m/z 326,其可以失去CO得到离子m/z 298,具有较高丰度,分子内氢重排失去甲醛后生成离子m/z 268。当分子离子经过四元环过渡态氢重排后失去NH3可生成离子m/z340,该离子进一步裂解失去CO中性分子得到离子m/z 312,稳定的六元环结构提高了离子的稳定性,所以具有较高的丰度,该离子失去甲氧基后生成离子m/z 281,可进一步裂解得到离子m/z 266,或者通过氢重排失去甲醛生成离子m/z 282,可进一步裂解生成离子m/z 267。m/z 312亦可失去甲基自由基得到离子m/z

  • 常用化学诱变剂的种类及作用机制

    (一)烷化剂  是栽培作物诱发突变的最重要的一类诱变剂。药剂带有一个或多个活泼的烷基。通过烷基置换,取代其它分子的氢原子称为"烷化作用"所以这类物质称烷化剂。   烷化剂分为以下几类:  1. 烷基磺酸盐和烷基硫酸盐  代表药剂:甲基磺酸乙酯(EMS)、硫酸二乙酯(DES)  2. 亚硝基烷基化合物  代表药剂:亚硝基乙基脲(NEH)、N-亚硝基-N-乙基脲烷(NEU)  3. 次乙胺和环氧乙烷类  代表药剂:乙烯亚胺(EI)  4. 芥子气类  氮芥类、硫芥类  烷化剂的作用机制--烷化作用 作用重点是核酸,导致DNA断裂、缺失或修补。  (二)核酸碱基类似物  这类化合物具有与DNA碱基类似的结构。  代表药剂:  5-溴尿嘧啶(BU)、5-溴去氧尿核苷(BudR) 为胸腺嘧啶(T)的类似物  2-氨基嘌呤(AP) 为腺嘌呤(A)的类似物  马来酰肼(MH) 为尿嘧啶(U)的异构体  作用机制:作为DNA的成份而渗入到DNA分子中去,使DNA复制时发生配对错误,从而引起有机体变异。  (三)其它诱变剂  亚硝酸 能使嘌呤或嘧啶脱氨,改变核酸结构和性质,造成DNA复制紊乱。HNO2还能造成DNA双链间的交联而引起遗传效应。  叠氮化钠(NaN3) 是一种呼吸抑制剂,能引起基因突变,可获得较高的突变频率,而且无残毒。  用秋水仙素诱导多倍体。  秋水仙素是从百合科植物秋水仙的器官和种子中提取出来的一种剧毒的植物碱。纯品为无色或淡黄色针状结晶,熔点155℃,有苦味,易溶于冷水、酒精、氯仿和甲醛。通常用水或酒精作溶媒。  (1)秋水仙素诱导多倍体的原理  秋水仙素与正在分裂的细胞接触后,可抑制微管的聚合过程,不能形成纺锤丝,使染色体无法分向两极,从而产生染色体加倍的核。  适宜浓度的秋水仙素溶液,能阻碍纺锤丝的形成,但对染色体结构无明显影响。处理的细胞在一定时间内可恢复正常,重新进行分裂。  (2)秋水仙诱导多倍体应注意的问题  ①注意诱变材料的选择  选主要经济性状优良的品种;  选染色体组数少的品种因为倍性高的种在进化过程中已经利用了它的多倍性。  最好选能单性结实的品种因为染色体多倍化后,常会使育性降低。  尽量选多个品种处理因为不同的种、品种、类型遗传基础不同,多倍化后的表现也不同。  ②注意处理部位的选择  处理的组织应该是旺盛分裂的组织。如萌动的种子、正在膨大的芽、根尖、幼苗、嫩枝生长点、花蕾等。  ③注意药剂浓度和处理时间的选择  溶液的浓度不宜过高或过低。过高,会引起伤害,以至致死;过低,又不起作用。一般采用临界范围内的高浓度、短时间处理。 医学教.育网搜集整理  通常,草本浓度较低,木本浓度较高。  果树、树木:1-1.5%蔬菜、草本花卉:0.01-0.2%  王鸣等(1960)在甘蓝、白菜、南瓜、萝卜上试验表明,在0.01-0.2%的范围内,随浓度增高,引变的百分率也显著提高。  处理时间以细胞分裂周期为转换。  ④注意被处理植物的生长条件  处理后,用清水冲洗,除去残留药物,并为植株生长提供良好的条件,便于植株恢复生长。  外部条件中最重要的是温度,一般25-30℃。  (3)诱导方法  ①浸渍法  可用溶液浸渍幼苗、新梢、插条、接穗、种子及球根类蔬菜、花卉等材料。为避免蒸发,宜加盖,避光。  一般发芽种子处理数小时至3d或多至10d左右。秋水仙碱能阻碍根系的发育,处理后要用清水洗净后再播种。发芽种子的胚根,处理后往往受到抑制,发根较慢,为利于根的生长,可在药液中添加适当生长素。  处理插条、接穗一般1-2d。处理后也要用清水洗干净。  处理幼苗时,为避免根系受害,可将盆钵架起来倒置,使茎端生长点浸入秋水仙碱溶液中。  ②涂抹法  把秋水仙碱按一定浓度配成乳剂,涂抹在幼苗或枝条的顶端,处理部位要适当遮盖,以减少蒸发和避免雨水冲洗。  ③滴液法  对较大植株的顶芽、腋芽处理时可采用此法。常用的水溶液浓度为0.1%~0.4%,每日滴一至数次,反复处理数日,使溶液透过表皮渗入组织内部。如溶液在上面停不住时,可将小片脱脂棉包裹幼芽,再滴加溶液,浸湿棉花。  ④套罩法  保留新梢的顶芽,除去顶芽下面的几片叶,套上一个防水的胶囊,内盛有含1%秋水仙碱的0.65%的琼脂,经24h即可去掉胶囊。这种方法的优点是不需加甘油,可避免甘油引起药害。 医.学教育网搜集整理  ⑤毛细管法  将植株的顶芽、腋芽用脱脂棉或纱布包裹后,将脱脂棉与纱布的另一端浸在盛有秋水仙碱溶液的小瓶中,小瓶置于植株旁,利用毛细管吸水作用逐渐把芽浸透,此法一般多用于大植株上芽的处理。  此外,还有注射法、喷雾法等。  秋水仙素诱导也与物理辐射等方法结合使用。如山川邦夫(1973)报道,将好望角苣苔属中的一些种用秋水仙碱处理11d,再用0.05Gy的X射线照射可提高加倍株的出现率。在单独用秋水仙碱处理时为30%,而兼用X射线照射时可提高到60%,并且在取得的多倍体植株中发现有两株变成八倍体。他们认为,这是由于秋水仙碱的处理,使多倍体混杂于二倍体性细胞群中,二倍体细胞由于先开始分裂,所以就被X射线淘汰了。  秋水仙素诱导只能产生偶数多倍体,且为同源多倍体。  有性杂交可产生奇数多倍体、异源多倍体。异源多倍体具有更高的杂合性、育性;二倍体基因渗入,创造遗传多样性,得到杂合多倍性群体。

去甲基硫代秋水仙碱标相关的方案

去甲基硫代秋水仙碱标相关的资讯

  • 标准解读|化妆品中禁用物质秋水仙碱及其衍生物秋水仙胺的测定 液相色谱-串联质谱法
    基本情况 深圳海关食品检验检疫技术中心和深圳市检验检疫科学研究院一同起草了GB/T 41683-2022化妆品中禁用物质秋水仙碱及其衍生物秋水仙胺的测定 液相色谱-串联质谱法,此标准将在5月1日起正式实施。 标准背景 秋水仙碱大多是由百合科秋水仙属植物秋水仙的鳞茎中提取出的生物碱,生物碱属于生物里面常见有机化合物,其中很多是具有毒性的,部分还会对人体的神经系统,消化系统等产生危害。国家对化妆品中的生物碱也做了详细规定,秋水仙碱及其衍生物秋水仙胺禁止在化妆品中检出。 本标准中的秋水仙碱及其衍生物秋水仙胺是我国《化妆品安全技术规范(2015年版)》规定的禁用物质。规范中规定:若技术上无法避免禁用物质作为杂质带入化妆品时,应进行安全性风险评估,确保在正常、合理及可预见性的使用条件下不得对人体健康产生危害。 标准范围 本标准规定了化妆品中禁用物质秋水仙碱及其衍生物秋水仙胺的高效液相色谱-质谱/质谱测定方法的原理、试剂和材料、仪器设备、试验步骤、试验数据处理、回收率、精密度等内容。 本标准适用于水基、乳液、膏霜、凝胶、蜡基、粉基类等化妆品中秋水仙碱及其衍生物秋水仙胺的测定,并对多种基质类样品前处理进行了规定。 本标准秋水仙碱及其衍生物秋水仙胺的方法检出限均为10.0 μg/kg。GBT 41683-2022化妆品中禁用物质秋水仙碱及其衍生物秋水仙胺的测定 液相色谱-串联质谱法.pdf
  • 甲基化成肿瘤检测新靶标?五种新型DNA甲基化酶检测技术进展揭秘
    DNA甲基化是哺乳动物基因组中最常见的表观遗传事件之一,即DNA中核苷酸与甲基基团的共价修饰[2]。DNA甲基化与人的生命进程有着密不可分的关系。细胞的增殖与分化、染色体完整性的维护或者X染色体的活性等等都离不开DNA甲基化的控制,DNA甲基化流程在胚胎发育中是无处不在的[1]。如果DNA甲基化进程出现异常,会导致生物体出现各种各样的疾病以及身体的生长缺陷或生理紊乱。DNA与蛋白质之间的相互作用如果出现异常,会影响基因的表达,从而引起人体内肿瘤的发生或者肿瘤的转移,这一切的源头都是DNA甲基化进程出现异常的结果[3]。DNA甲基化酶是肿瘤治疗靶点DNA甲基化酶是一种修饰酶,经常与限制性内切酶一同出现。在真核生物基因组以及原核生物基因组中,普遍存在DNA甲基化酶维持以及催化DNA甲基化过程的现象。DNA甲基化酶被广泛认为是一种治疗靶点以及预测生物甲基化过程的标志物,在单细胞水平上准确灵敏地检测DNA甲基化酶对于肿瘤医学上的临床诊断以及临床治疗甚至是生物学研究有着至关重要的作用。根据甲基化的核苷酸和位置被分为三组,即腺嘌呤的甲基化、胞嘧啶的4-N甲基化和胞嘧啶的5-C甲基化。所有已知的DNA甲基化酶在其甲基化过程中以s-腺苷甲硫氨酸作为甲基供体。最常见的DNA甲基化不仅发生在胞嘧啶嘧啶环5-C位置的CpG位点上,还发生在对称四核苷酸5’-G-A-T-C-3’ 中腺嘌呤环的6-N位置[4,5]。传统DNA甲基化酶检测方法有局限 DNA甲基化酶活性的高灵敏度检测在基因调控、表观遗传修饰、临床诊断和治疗等方面具有重要意义。传统用于检测DNA甲基化酶活性的方法包括高效液相色谱法(HPLC)[6], 聚合酶链反应(PCR)[7],凝胶电泳[8],高效毛细管电泳(HPCE)[9],以及使用同位素标记的s-腺苷甲硫氨酸甲基化检测[10,11]。尽管这些技术在实验室实践中被证明是有用的,但它们具有局限性。例如,大多数技术不仅使用笨重昂贵的设备,而且需要复杂的样品制备和数据分析所需的大量时间。同位素标记等技术是有效的,但它们往往需要费力的样品制备、同位素标记、复杂的设备和大量的DNA,使得它们不适合在医护点使用。所以,DNA甲基化酶活性检测迫切需要简单、便携、高灵敏度和低成本的检测方法。在最近的技术进步中,许多替代的DNA甲基化酶活性测定方法,如放射法、比色法、荧光法、电化学法等已被提出。此外,其中许多与纳米材料或酶结合,以显著提高它们的敏感性。放射法、蛋白质纳米孔等新型检测技术兴起 放射法:同位素标记作为最早检测DNA甲基化酶活性的方法之一,早期广泛应用于检测DNA甲基化酶和DNA甲基化的活性[12,13]。在由DNA甲基化酶催化的甲基化过程中,同位素标记的甲基部分转移到DNA上,从而赋予甲基化的DNA放射性。这种放射性可以很方便地用闪烁计数器或放射自显像仪来检测。可惜的是,放射性试剂的介入是限制这种试验在中央实验室进行的最大缺点。对无辐射DNA甲基化酶活性检测的研究导致了甲基化特异性PCR[14]、HPCE[9]和HPLC等替代品的发展[7,14],而甲基化特异性PCR被认为是较好的方法。尽管非放射性,上述DNA甲基化酶活性检测需要庞大且通常昂贵的设备,冗长且耗时的样品制备和数据分析,以及繁琐的检测方案,这在临床实践中也比较难以实现全覆盖。比色法:比色法用于DNA甲基化酶活性检测依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量。它们具有成本低、简单、可移植性和在某些情况下无需仪器的优点。虽然紫外-可见光谱法可以量化DNA,但甲基化和未甲基化DNA在紫外-可见吸收特性上的低灵敏度和不显著差异基本否定了紫外-可见光谱法直接检测DNA甲基化酶活性[15~17]。金纳米粒子:金纳米粒子(AuNPs)由于其表面的等离子体共振吸收的高消光系数且强依赖于粒子间距离,在DNA甲基化酶活性检测的比色法研究中引起了广泛关注。如图1 所示,金纳米粒子表面包覆有双链DNA (ds-DNA),其中一条链包含DNA甲基化酶识别序列和5’-硫醇末端。在DNA甲基化酶存在的情况下,如图1 B 所示,DNA甲基化酶被共价标记在ds-DNA中碱基环的6-C位置,因为在5-N位置缺乏一个质子阻止了β-消除,甲基化的DNA不能被核酸外切酶 ExoⅠ剪切,因此金纳米粒子仍然均匀地分散在溶液中 [18]。从而实现DNA甲基化酶活性的检测。结果表明,在526 nm处,金纳米粒子聚集物的吸光度与DNA甲基化酶的活性呈2 ~ 32 U / mL的线性关系,检出限为0.5 U/ mL。图1. (A)基于ABP的比色生物传感器的示意图(B) DNA甲基化酶的检测机制 荧光法:荧光指吸收激发荧光团的光,以促进电子从基态到激发态,电子迅速地回到激发态的最低能级,然后当电子最终返回基态时,发出波长较长的光。与其他DNA甲基化酶活性测定法相比,荧光法检测DNA甲基化酶活性的优点是检测过程简单,灵敏度高,但其复杂的光学性能限制了其在集中实验室的应用[19~20]。图2. 基于外切酶的靶循环的DNA甲基化酶活性检测原理图电化学法:电化学生物分析技术的发展一直是现代分析化学研究的热点之一。电化学法用于DNA甲基化酶分析包括测量电流、电压、电荷和电阻等电量,以反映DNA甲基化酶的活性。与许多其他类型的DNA甲基化酶活性的检测相比,它们具有低成本、高灵敏度、执行现场监测的能力以及非常适合微型化和集成微制造技术的优点[22~23]。Zhi-Qiang Gao等人在2014年报道了一种简单、高灵敏度的DNA甲基化酶电化学活性测定方法。该方法采用电催化氧化抗坏血酸(AA)的信号放大手段,通过一个螺纹插层N,N -2(3-丙基咪唑)-1,4,5,8-萘二酰亚胺(PIND)电催化氧化还原Os(bpy)2Cl+ (PIND-Os),包含5’-CCGG-3’ 对称序列的ds-DNA首先固定在金电极上。然后用DNA甲基化酶孵育电极,经过酶催化特定CpG二核苷酸的甲基化,然后用识别5’-CCGG-3’ 序列的限制性内切酶 Hpa II 剪切酶处理电极,从而实现DNA甲基化酶活性检测的目的[24]。图3. DNA甲基化酶活性的检测原理示意图蛋白质纳米孔:蛋白质纳米孔检测技术是在单分子水平上以低成本、无标签和高通量的方式研究生物分子的检测技术。近年来,纳米孔技术正从生物传感的角度进行研究[25]。应用于核酸特征鉴定、化学反应过程的测量、蛋白质分析、疾病相关蛋白状态的检测以及酶动力学的研究等[26]。α-溶血7素是一种蛋白质纳米孔,它自发地插入到脂质双层膜中,形成一个纳米孔[27]。当一个带电分子在外加电势下通过蛋白质纳米孔时,它会引起离子电流的瞬态变化,电流变化事件被记录下来。被分析物可以通过当前电流发生的频率进行量化,特征电流信号则可以揭示被分析物的各种特征[28~30]。该检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗。 图4. 用于分析DNA甲基化酶活性的纳米孔试验的示意图 在过去的十几年中,DNA甲基化酶活性的检测取得了重大进展。有几种方法有希望可在临床检测,使得该方法在用于癌症诊断、预后和治疗方面显示出了希望。比色法依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量,具有成本低、简单、可移植性和在某些情况下无需仪器的优点,但是检出限相对较高。荧光法检测DNA甲基化酶活性的检测过程简单,检出限相对理想,但其复杂的光学性能以及昂贵的仪器设备限制了其在生活中的应用。电化学法由于需要构建较复杂的反应电极材料而使得其在临床上受到了一定的限制。蛋白质纳米孔的检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗,检出限相对较为理想,并且已经成功应用于人类血清样本。这类检测可能最终为常规DNA甲基化酶活性的检测和分子诊断打开大门,为疾病的管理和诊断带来新的前景。 作者:王家海、骆 乐 作者简介:王家海,博士,教授,硕士生导师/博士生导师,广州大学化学化工学院;分析化学专业;主要研究领域为“基于核算纳米结构为信号传导载体的纳米孔传感器”;在核酸探针和仿生纳米孔两方面开展了一系列分子识别的工作,也为将来进一步开展分析化学研究打下了坚实的基础,期间积累了多种前沿分析方法和技术:仿生纳米孔制备和检测;微纳米加工技术;核酸探针人工合成技术。参 考 文 献 [1] 陈晓娟,闫少春,邵国,等.人DNA甲基化转移酶的分类及其功能[J].包头医学院学报,2014,30(04):136-138.[2] Das PM, et al. DNA methylation and cancer[J]. Clin. Oncol. 2004 22: 4632-4642.[3] Jurkowska RZ, et al. Structure and function of mammalian DNA methyltransferases[J]. ChemBioChem 2011 12: 206-222.[4] Lee GE, et al. DNA methyltransferase 1-associated protein (dmap1) is a co-repressor that stimulates DNA methylation globally and locally at sites of double strand break repair[J]. Biol. Chem. 2010 285: 37630-37640.[5] Liu SN, et al. Assay Methods of DNA Methylation and Their Applications in Cancer Diagnosis and Therapy[J]. Chinese J.Anal. Chem. 2011 39: 1451-1458.[6] Boye E, et al. Quantification of dam methyltransferase in Escherichia coli[J]. Bacteriol. 1992 174: 1682-1685.[7] Eads CA, et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression[J]. Cancer Res. 1999 59: 2302-2306.[8] Bergerat A, et al. Allosteric and catalytic binding of s-adenosylmethionine to escherichia coli DNA adenine methyltransferase monitored by 3H NMR[J]. Proc. Natl. Acad. Sci. U. S. A. 1991 88: 6394-6397.[9] Fraga MF, et al. Rapid quantification of DNA methylation by high performance capillary electrophoresis[J]. Electrophoresis 2000 21: 2990-2994.[10] Yokochi T, et al. DMB (dnmt-magnetic beads) assay: measuring DNA methyltransferase activity in vitro[J]. Methods Mol. Biol. 2004 287: 285-296.[11] Adams RLP, et al. Microassay for DNA methyltransferase[J]. Biochem. Bioph. Methods 1991 22: 19-22.[12] Jurkowska RZ, et al. DNA methyltransferase assays[J]. Methods Mol. Biol. 2011 791: 157-177.[13] Pradhan S, et al. Recombinant human DNA (cytosine-5) methyltransferase [J]. Biol. Chem. 1999 274: 33002-33010.[14] Herman JG, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands[J]. Proc. Natl. Acad. Sci. U. S. A. 1996 93: 9821-9826.[15] Kattenhorn, L. M. Korbel, G. A. Kessler, B. M. Spooner, E. Ploegh, H. L. Mol. Cell 2005, 19, 547−557.[16] Mosammaparast, N. Shi, Y. Annu. Rev. Biochem. 2010, 79, 155−179.[17] Barglow, K. T. Cravatt, B. F. Angew. Chem., Int. Ed. 2006, 45, 7408−7411.[18] Wu Z, et al. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay[J]. Anal. Chem. 2013 85: 4376-4383.[19] Zhu, C. Wen, Y. Peng, H. Long, Y. He, Y. Huang, Q. Li, D. Fan, C. Anal. Bioanal. Chem. 2011, 399, 3459−3464.[20] Chen, F. Zhao, Y. Analyst 2013, 138, 284−289.[21] Xing XW, et al. Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling[J]. Anal. Chem. 2014 86: 11269-11274.[22] Wu, H. Liu, S. Jiang, J. Shen, G. Yu, R. Chem. Commun. 2012, 48, 6280−6282[23] Wang, M. Xu, Z. Chen, L. Yin, H. Ai, S. Anal. Chem. 2012, 84, 9072−9078[24] Deng H, et al. Highly sensitive electrochemical methyltransferase activity assay[J]. Anal. Chem. 2014 86: 2117-2123.[25] Howorka, S. Siwy, Z. Nanopore Analytics: Sensing of Single Molecules. Chem. Soc. Rev. 2009, 38, 2360−2384.[26] Song, L. Hobaugh, M. R. Shustak, C. Cheley, S. Bayley, H. Gouaux, J. E. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. Science 1996, 274, 1859−1865.[27] Lin, L. Yan, J. Li, J. Small-Molecule Triggered Cascade Enzymatic Catalysis in Hour-Glass Shaped Nanochannel Reactor for Glucose Monitoring. Anal. Chem. 2014, 86, 10546−10551.[28] Li, J. Yan, H. Wang, K. Tan, W. Zhou, X. Anal. Chem. 2007, 79, 1050−1056.[29] Wood, R. J. Maynard-Smith, M. D. Robinson, V. L. Oyston, P. C. F. Titball, R. W. Roach, P. L. PLoS One 2007, 2, e801−e801.[30] Wood, R. J. McKelvie, J. C. Maynard-Smith, M. D. Roach, P. L. Nucleic Acids Res. 2010, 38, e107−e107.[31] Jinghong Li, et al. Nanopore-based, label-free, and real-time monitoring assay for DNA methyltransferase activity and inhibition[J]. Anal. Chem. 2017 89: 13252−13260.
  • 标准解读|化妆品中禁用物质林可霉素和克林霉素的测定 液相色谱-串联质谱法
    液相色谱-串联质谱法是一种集高效分离和多组分定性、定量于一体的方法,对高沸点、不挥发和热不稳定化合物的分离和鉴定具有独特优势,成为近年来化学分析中一种重要的检测技术。与高效液相色谱法、气相色谱法相比,高效液相色谱一中联质谱法前处理方法相对简单,基质干扰小,方法灵敏度高,定量和定性(分子结构信息)于一体,因而特别适用化妆品成分测定。 液相色谱-串联质谱法在化妆品行业中测定方法的汇总标准编号标准名称1GB/T 30926-2014化妆品中7种维生素C衍生物的测定 高效液相色谱-串联质谱法2GB/T 30939-2014化妆品中污染物双酚A的测定 高效液相色谱-串联质谱法3GB/T 30937-2014化妆品中禁用物质甲硝唑的测定 高效液相色谱-串联质谱法4GB/T 32986-2016化妆品中多西拉敏等9种抗过敏药物的测定 液相色谱-串联质谱法5GB/T 30930-2014化妆品中联苯胺等9种禁用芳香胺的测定 高效液相色谱-串联质谱法6GB/T 41683-2022化妆品中禁用物质秋水仙碱及其衍生物秋水仙胺的测定 液相色谱-串联质谱法7GB/T 41710-2022化妆品中禁用物质林可霉素和克林霉素的测定 液相色谱-串联质谱法8GB/T 32121-2015牙膏中4-氨甲基环己甲酸(凝血酸)的测定 高效液相色谱-串联质谱法9GB/T 34918-2017化妆品中七种性激素的测定 超高效液相色谱-串联质谱法10GB/T 35956-2018化妆品中N-亚硝基二乙醇胺(NDELA)的测定 高效液相色谱-串联质谱法11GB/T 35951-2018化妆品中螺旋霉素等8种大环内酯类抗生素的测定 液相色谱-串联质谱法12GB/T 40900-2021化妆品中荧光增白剂367和荧光增白剂393的测定 液相色谱-串联质谱法13GB/T 40901-2021化妆品中11种禁用唑类抗真菌药物的测定 液相色谱-串联质谱法14GB/T 37626-2019化妆品中阿莫西林等9种禁用青霉素类抗生素的测定 液相色谱-串联质谱法 GB/T 41710-2022《化妆品中禁用物质林可霉素和克林霉素的测定 液相色谱-串联质谱法》标准规定了化妆品中林可霉素和克林霉素的液相色谱-串联质谱测定方法的原理、试剂和材料、仪器设备、试验步骤、试验数据处理、回收率、精密度等内容。 本文件适用于水剂类、非蜡基膏霜类、乳液类化妆品中林可霉素和克林霉素的测定。 本文件中林可霉素和克林霉素的方法检出限和定量限:检出限均为0.1mg/kg,定量限均为0.3 mg/kg。 制定背景 林可霉素和克林霉素属于大环内酯类抗生素,由于其抗菌活性高,临床应用相当广泛。国家对化妆品中的林可霉素和克林霉素也做了详细规定,林可霉素和克林霉素禁止在化妆品中检出,部分不法商家为了追求产品短期功效,非法添加抗生素,导致抗生素滥用产生耐药性。 本标准中的林可霉素和克林霉素是我国《化妆品安全技术规范(2015年版)》规定的禁用物质。规范中规定:若技术上无法避免禁用物质作为杂质带入化妆品时,应进行安全性风险评估,确保在正常、合理及可预见性的使用条件下不得对人体健康产生危害。 现状分析标准编号分析方法应用范围1SN/T 3585-2013液相色谱、液相色谱串联质谱海产品2GB 29685-2013气相色谱-质谱法动物性食品3GB/T 22946-2008液相色谱-串联质谱法蜂王浆和蜂王浆冻干粉4GB/T 20762-2006液相色谱-串联质谱法畜禽肉5GB/T 22941-2008液相色谱-串联质谱法蜂蜜 在现行的标准中,林可霉素和克林霉素的分析方法有液相色谱、液相色谱串联质谱和气相色谱-质谱法,液相色谱-串联质谱法前处理方法相对简单,基质干扰小,因而特别适用于基质成分复杂物质的测定。

去甲基硫代秋水仙碱标相关的仪器

  • 国标GBT 32470-2016/GBT 5750.8/GB 5749-2022生活饮用水臭味物质土溴素和2-甲基异莰醇检验方法中使用的美国Supelco顶空固相微萃取装置:SPME顶空固相微萃取装置国标GBT土溴素和2-甲基异莰醇检验方法进口固相微萃取装置气相色谱质谱法检验测土溴素和2-甲基异莰醇国标GBT进口全套配置饮用水臭味物国标GBT 32470-2016/GBT 5750.8/GB 5749-2022生活饮用水臭味物质 土溴素和2-甲基异莰醇检验方法 本标准规定了测定生活饮用水及其水源水中的土溴素(Geosmin)和2-甲基异莰醇(2-methyli-sob-orne-ol,简称2-MIB)的顶空固相微萃取-气相色谱-质谱法。 本标准适用于生活饮用水及其水源水中土溴素和2-甲基异莰醇含量的测定。在生活饮用水中易导致嗅和味的两种常见物质为2-甲基异莰醇(2-MIB)、土溴素(GSM)。原理是利用SPME固相微萃取纤维头(萃取头)吸附样品中的土溴素(Geosmin)和2-甲基异莰醇(2-methyli-sobor-neol,简称2-MIB),顶空富集后用气相色谱-质谱联用仪分离测定水中溴味物质 土溴素和2-甲基异莰醇快速检验 固相微萃取气相色谱质谱法。国标GB中关于土溴素和2-甲基异莰醇检验检测气相色谱质谱法SPME固相微萃取装置全套进口设备生活饮用水溴味物质SPME固相微萃取装置美国merck默克sigma西格玛supelco色谱科进口固相微萃取仪Supelco色谱科手动上样自动气相气质联用包括固相微萃取专用衬管、固相微萃取采样台、固相微萃取手柄、固相微萃取纤维: DVB / CAR / PDMS纤维、进样导管、60mL棕色玻璃瓶、搅拌子等购买价格详细资料介绍参数用途使用方法等;  ※美国merck默克sigma西格玛supelco色谱科进口SPME固相微萃取[整套装置]及选配耗材※:  序号、货号、名称描述  ①、51094 SPME手柄(手动/自动)  ②、53523 SPME专用进样插件,可选,用于HP6890 (岛津不可用)  ③、510381 SPME专用采样台用于4ml瓶  ④、513171 SPME专用采样台用于15ml瓶  ⑤、Z262137 SPME专用磁力加热搅拌装置  ⑥、Z118877 SPME磁力搅拌子  ⑦、52244 SPME专用温度计  ⑧、51328 SPME专用进样导管(岛津不可用)  ⑨、55979 SPME专用专用采样瓶 4ml   ⑩、55980 SPME专用专用采样瓶 15ml 欢迎来电联系 国标GBT 32470-2016/GBT 5750.8/GB 5749-2022生活饮用水臭味物质土溴素和2-甲基异莰醇检验方法中使用的美国Supelco顶空固相微萃取装置的具体配置清单价格等;
    留言咨询
  • 三为科学致力于制备液相色谱仪研制开发、生产和制备液相色谱应用服务研究,其pilot100制备液相色谱是一款高效、功能强大的模块化制备液相色谱系统,其改进了中草药、化学合成和生化蛋白药物分离中的纯化过程,允许使用多达 4 种不同的溶剂的梯度洗脱,两波长同时在线检测,可轻松储存并调用方法,并可在同一平台下完成馏分分收集工作,支持不锈钢色谱柱和高压玻璃色谱柱的系统连接,广泛应用于中草药、天然产物、有机合成产物和蛋白质生物高分子等目标活性成分的分离纯化和制备,从实验室研究到工业化生产,均可满足其要求。 生物碱是一类含氮的碱性有机化合物,有似碱的性质,所以过去又称为赝碱。大多数有复杂的环状结构,氮素多包含在环内,有显著的生物活性,是中草药中重要的有效成分之一。具有光学活性。有些不含碱性而来源于植物的含氮有机化合物,有明显的生物活性,故仍包括在生物碱的范围内。按照生物碱的基本结构,已可分为60类左右:有机胺类(麻黄碱、益母草碱、秋水仙碱)、吡咯烷类(古豆碱、千里光碱、野百合碱)、吡啶类(菸碱、槟榔碱、半边莲碱)、异喹啉类(小檗碱、吗啡、粉防己碱)、吲哚类(利血平、长春新碱、麦角新碱)、莨菪烷类(阿托品、东莨菪碱)、咪唑类(毛果芸香碱)、喹唑酮类(常山碱)、嘌呤类(咖啡碱、茶碱)、甾体类(茄碱、浙贝母碱、澳洲茄碱)、二萜类(乌头碱、飞燕草碱)、其它类(加兰他敏、雷公藤碱)。三为科学应用研发部门已经完成下列生物碱类化合物的分离纯化:表告依春Epigoitrin (R)-5-Vinyloxazolidine-2-thione (R)-Goitrin epi-Goitrin1072-93-1≥98.5板蓝根氯化两面针碱Nitidine Chloride13063-04-2≥98.5两面针白屈菜红碱;白屈菜赤碱、氯化白屈菜赤碱、盐酸白屈菜红碱Chelerythrine3895-92-9≥98.5紫堇灵;紫堇醇灵碱Corynoline18797-79-0≥98.5苦地丁乙酰紫堇灵;乙酰紫堇醇灵碱Acetylcorynoline O-Acetylcorynoline18797-80-3≥98.5比枯枯灵;毕扣扣灵碱;荷包牡丹碱;山乌龟碱(+)-Bicuculline Bicucullin Bucuculline d-Bicuculline485-49-4≥98.5夏天无对叶百部碱Tuberostemonine Tuberostemonin6879/1/2≥98.5对叶百部贝母甲素;浙贝甲素;贝母素甲Verticine Peimine Dihydroisoimperialine23496-41-5≥98.5贝母贝母素乙;贝母乙素;浙贝乙素;去氢浙贝母碱;去氢贝母碱Verticinone Peiminine Osnovanine;Fritillarine Raddeanine18059-10-4≥98.5西贝母碱;西贝素;西贝碱Imperialine;Sipeimine;Kashmirine61825-98-7≥98.5野百合碱;农吉利碱;农吉利甲素;大叶猪屎青碱;可洛他林Monocrotaline Crotaline 315-22-0≥98.5农吉利吴茱萸碱Evodiamine518-17-2≥98.5吴茱萸吴茱萸次碱Rutecarpine84-26-4≥98.5粉防己碱 (汉防己甲素)Tetrandrine518-34-3≥98.5防己防己诺林碱;汉防己乙素;汉防己乙素;去甲汉防己碱Fangchinoline436-77-1≥98.5喜树碱Camptothecin Camptothecinum Campthecin Camptothecine7689/3/4≥98.5大麦芽碱;大麦胺;安哈灵;对二甲氨乙基苯酚Hordenine Anhaline Eremursine Peyocactine3595/5/9≥98.5澳洲茄边碱(under development)Solamargine α-Solamargine Solamargin20311-51-7≥98.5龙葵澳洲茄碱Solasonine α-Solasonine Solasonin19121-58-5≥98.5澳茄新碱Solasurine27028-76-8≥98.5金雀花碱 野靛碱;鹰爪豆碱;司巴丁;金雀儿碱;金莲花碱Cytisine Sparteine Laburnin Tabex Tsitafat Lupinidine485-35-8≥98.5披针叶黄华N-甲基野靛碱;N-甲基金雀花碱N-Methylcytisine486-86-2≥98.5乌头碱Aconitine302-27-2≥98.0乌头次乌头碱Hypaconitine6900-87-4≥98.0新乌头碱Mesaconitine2752-64-9≥98.0去甲乌药碱盐酸盐;消旋去甲基衡州乌药碱盐酸盐Higenamine hydrochloride11041-94-4≥98.0盐酸益母草碱Leonurine hydrochloride24697-74-3≥98.0益母草Pilot100制备液相色谱技术参数: 泵头316L不锈钢泵 高精度、低脉冲、耐腐蚀 (peek泵头可选)流速范围0.01-100.00ml/min(梯度)流速精度±0.5%压力范围0-20MPa压力脉动≤0.2MPa梯度类型台阶、线性变化梯度、可在线修改梯度和流速最小梯度调节1%检测器光源氘灯+钨灯(进口)检测波长190-800nm 全波长检测器 双波长同时检测波长精度±1nm吸光度范围0-2AU收集全自动收集器收集管架2×60支试管(Φ15mm*150mm试管) 其他规格可以选配收集模式普通模式(按时间收集、峰收集、阈值收集)、顺序收集、循环收集手动上样阀制备色谱阀(标配10ml定量环)上样方式固体上样或液体上样电源220V±10% 50Hz色谱软件控制通过sanochrom色谱软件控制泵、紫外、自动收集器等组件设置与运行控制界面图形界面,USB接口+RS-232可接口,采用基于Windows7/Windows 8/Windows 10的PC软件工作站,软件符合“FDA 21 CFR Part 11 认证”认证要求
    留言咨询
  • 【产品介绍】ATAGO(爱拓)数显二甲基甲醯胺(DMF)浓度计 PR-40DMF,只需少量的样本与简单的程序,即能测量用于合成皮或纤维的溶剂与气体提炼的二甲基甲醯胺的浓度。具有温度自动校正功能,所以在测量时不需要担心温度。【产品参数】型号PR-40DMF货号3489测量范围DMF 0.0 ~ 40.0%(W/W)测量精度±0.3%测量温度5 ~ 40°C(ATC)分辨率0.1%环境温度5 ~ 40°C电源006P 碱性电池(9V)国际防护等级lP64尺寸和重量17x9x4cm,300g(仅主机)【产品功能】【测量方法】滴2-3滴样品至棱镜表面→按键START / OFF开关→测量数值在3次闪烁后,得出显示数值是Brix(浓度)。PR-40DMF 二甲基甲酰胺浓度数显折射计标度转换和系数设定:1. 数显折射计可进行糖度(Brix)及三种用户定义标度(2、3、4)的测量。在使用用户标度时,应设定用户标度与糖度的转换系数。2. 开标度锁定:按SCAL键,如显示的标度符号带中括弧[],则表明标度被锁定,需要解开才可进行标度转换。同时按ZERO(或STANDARDIZATION)键和START/OFF键,使标度符号不带中括弧[]。3. 数显折射计标度选择:按住START/OFF约2秒,清屏。按SCAL键至显示所需标度。4. 设定转换系数:选定一个用户标度后,按住SCAL约三秒至显示转换系数,工厂设定均为1.00。按START/OFF或ZERO键调到所需的值。按SCAL,显示END,即设定完成。5. 数显折射计在标度没有锁定时,按SCAL键可进行各标度的转换。 PR-40DMF 二甲基甲酰胺浓度数显折射计基础保养技巧: 1. 清洁棱镜表面工具:纸巾,酒精,棉签,清水等2. 当显示000或测量值时,同时按ZERO(或STANDARDIZATION)和SCAL键,此时显示测量或调零(校正)时的温度。3. 清洁棱镜表面,滴几滴蒸馏水到棱镜上,使水完全覆盖住棱镜表面,按ZERO键,待显示不闪动的000时,调零完成,用软布拭干棱镜。4. 注意:当每天使用前,或环境温度变化时,或更换电池时,都要调零。
    留言咨询

去甲基硫代秋水仙碱标相关的耗材

  • 高效液相测定秋水仙碱的含量及气相色谱法检测残留溶剂 PEG-20M色谱柱
    高效液相测定秋水仙碱的含量及气相色谱法检测残留溶剂 PEG-20M色谱柱 关键词:秋水仙碱,去甲秋水仙碱,含量测定,残留溶剂,绿百草科技 2010年药典:秋水仙碱为百合科植物丽江山慈菇的球茎中提取得到的一种生物碱,检查有关物质,采用辛烷基硅烷键合硅胶为填充剂,以水为流动相A,以甲醇-水为流动相B,流速为每分钟1.0ml,检测波长为254nm。 残留溶剂检测乙酸乙酯和三氯甲烷,照残留溶剂测定法,以聚乙二醇(PEG-20M)为固定液,柱温为75° ,进样口温度为200° 。按外标法以峰面积计算,含乙酸乙酯不得过6%,含三氯甲烷不得过0.01%。(中国药典二部P564) 需要详细的药典标准请联系北京绿百草:010-51659766. 登录网站获得更多产品信息: www.greenherbs.com.cN
  • WGLabs 固相萃取柱 C18小柱 各种规格
    以硅胶为基质,表面键合C18烷基链。粒径 40-60 μm,平均孔径 60 ?,含碳量21.70% 。有封尾和未封尾两种。可用于各种非极性物质、以及含一定非极性基团的化合物的分离。C18的应用:● 血液,血浆,尿液中药物及其代谢物● 饮料中有机酸的分离● 生物大分子样品的脱盐● 环境水样中多环芳烃,农药,除草剂等有机物的富集和分离● 可用反相液相色谱柱检测的化合物 例如:染料,芳香油,类固醇,脂溶性维生素,杀真菌剂,药物,表面活化剂,茶碱,锄草剂,农药,碳水化合物,水溶性维生素等的提取净化。C18在标准中的应用: 氯霉素、甲砜霉素、氟甲砜霉素、青霉素、多环芳烃类、多氯联苯、氟喹诺酮类、阿维菌素类、除草剂(三嗪类、吡啶类、磺酰脲类)、吡虫啉、头孢类、链霉素类、氨基苷类、地西泮、秋水仙碱、大环内酯类、硝基咪唑、对苯二甲酸、茶氨酸、β-雌二醇、甲基睾丸酮、喹赛多、维吉尼霉素M1、睾酮、表睾酮、孕酮、贝类毒素、玉米赤霉醇、己烯雌酚、安乃近代谢物、苯甲醛、6-苄基腺嘌呤、纽甜等的检测。订购信息:货号规格包装WGC183200200mg/3ml 50支/盒WGC183500500mg/3ml50支/盒WGC186500500mg/6ml30支/盒WGC18610001000mg/6ml30支/盒WGC181220002000mg/12ml20支/盒
  • 二甲基硫醚Dimethyl Sulphide 检测管
    产品信息:德尔格检测管系统德尔格检测管是装满化学试剂的玻璃管,此化学试剂与特定的化学物质或相关化学物质发生反应。用德尔格accuro气泵抽取定量标准气样到检测管中,如果检测管中的试剂改变颜色,颜色变化的长度通常表明被测物质的浓度。德尔格检测管系统是全世界气体检测领域公认的、且应用最广泛的检测形式。**表示采样次数在20次以上的检测管,建议选配x-act 5000电动采样泵。订货信息:二甲基硫醚Dimethyl Sulphide 1/a (5)** 检测管检测管名称测量范围订货号二甲基硫醚Dimethyl Sulphide 1/a (5)**1 to 15 ppm6728451

去甲基硫代秋水仙碱标相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制