恩曲他滨异构体检查系统适

仪器信息网恩曲他滨异构体检查系统适专题为您提供2024年最新恩曲他滨异构体检查系统适价格报价、厂家品牌的相关信息, 包括恩曲他滨异构体检查系统适参数、型号等,不管是国产,还是进口品牌的恩曲他滨异构体检查系统适您都可以在这里找到。 除此之外,仪器信息网还免费为您整合恩曲他滨异构体检查系统适相关的耗材配件、试剂标物,还有恩曲他滨异构体检查系统适相关的最新资讯、资料,以及恩曲他滨异构体检查系统适相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

恩曲他滨异构体检查系统适相关的资料

恩曲他滨异构体检查系统适相关的论坛

  • 【惊不惊喜?】那格列奈-【检查】L-异构体与顺式异构体-2015中国药典

    [align=center][b]那格列奈 -2015中国药典[/b][/align]【检查】L-异构体与顺式异构体色谱条件:色谱柱:Kromasil -3-CelluCoat,4.6*250mm货号:C05CCA25流动相:正己烷:异丙醇:冰乙酸=95:5:0.2流速:0.6ml/min柱温:室温波长:258nm进样量:20uL色谱图[img=,632,193]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181713147322_9243_2785_3.png[/img][b]结论:[/b][list=1][*]出峰按照时间顺序分别为顺式异构体、那格列奈、L-异构体[*]理论塔板数按照那格列奈峰计算超过8000[*]那格列奈峰与L-异构体峰之间的分离度大于1.5[/list]以上指标均符合药典要求,Kromasil手性柱表现棒棒哒![b]关于Kromasil[/b][color=#3e3e3e]Kromasil[/color][color=#3e3e3e]是AkzoNobel集团旗下高效化学品的著名品牌,是全球领先的高性能硅胶基质液相色谱柱填料品牌。Kromasi高性能多孔型硅胶填料可广泛应用于胰岛素及其类似物、比伐卢定、利拉鲁肽、达托霉素、EPO等多肽、小分子、蛋白药物等的高纯度纯化。28年来,Kromasil的经营理念是为制药行业提供以硅胶为基体的性价比高的,用于医药分离纯化的色谱填料和用于分析的色谱柱。[/color][align=center][color=#3e3e3e][img]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181713147567_9185_2785_3.png[/img][/color][/align][align=center][color=#3e3e3e][/color][/align]

恩曲他滨异构体检查系统适相关的方案

  • 盐酸舍曲林中手性异构体检测方案
    用YMC CHIRAL Amylose-C手性柱(L51)分离测定盐酸舍曲林对映异构体,分离完全,满足美国药典及欧洲药典规定。
  • 依据2020年版药典使用 LUMEX毛细管电泳Capel分析佐米曲普坦手性异构体
    2020年版药典二部和四部进一步扩大了现代分析技术的应用,丰富了色谱检测器的类型,加强了没有紫外吸收品种液相色谱检测器的应用指导,如采用毛细管电泳法检查佐米曲普坦分散片中的光学异构体等。毛细管电泳法在药典中的使用日益增多,药典通则0542中提到以(1)毛细管区带电泳(CZE)和胶束电动毛细管色谱(MEKC)使用较多,常用来解决异构体拆分,也可用于无机离子检测等,LUMEX公司的Capel 系列 CE可以进行多种方式的分离检测,提供可靠的分析方法。本实验采用依据2020版《中华人民共和国药典》使用LUMEX毛细管电泳仪Capel 205建立手性分离方法并检查佐米曲普坦光学纯度,通过手性拆分剂种类及浓度、缓冲液pH及浓度、温度及电压的优化,选择较佳的手性分离条件,基线分离了佐米曲普坦及其对映体。实验结果表明通过Capel205建立的毛细管电泳法可用于佐米曲普坦的手性分离,分离良好,为产品的质量控制提供了可靠准确的分析方法。
  • 氧氟沙星中对映异构体检测方案(手性柱)
    采用YMC公司CHIRAL ART Cellulose-SC键合型手性柱分离氧氟沙星(Ofloxacin)手性对映异构体,色谱条件请见谱图说明,左旋和右旋异构体分离效果令人满意。

恩曲他滨异构体检查系统适相关的资讯

  • 利用超高效合相色谱系统分离氯菊酯非对映体异构体
    目的 使用沃特世(Waters® )ACQUITY UPC2&trade 系统成功开发非对映体超高效合相色谱(UltraPerformance Convergence Chromatography&trade ,UPC2&trade )方法,用于四种氯菊酯异构体的基线分离。 背景 公众对杀虫剂使用的关注日益增长。目前使用的杀虫剂有25%为手性化合物。在这些杀虫剂中,手性在药效、毒性、代谢特性和环境方面起着重要的作用。因此,对立体选择性分离技术和分析测定杀虫剂对映体纯度的需要正在不断增长。 氯菊酯是一种合成的化学品,广泛用作杀虫剂和驱虫剂。氯菊酯具有四种立体异构体(两对对映体),由环丙烷环上的两个手性中心产生,如图1所示。因此,氯菊酯异构体的分离和定量测定颇具有挑战性。在分离氯菊酯方面,开发正相HPLC和反相HPLC的方法已经做出巨大的努力,但收效不尽如人意。我们在此展示,利用ACQUITY UPC2,在不足6分钟之内实现了四种氯菊酯基线分离。 与HPLC方法相比,UPC2&trade 实现了所有异构体的完全基线分离,运行时间大大缩短;对于杀虫剂的生产厂家而言,进行日常非对映体分析UPC2不愧为理想之选。 解决方案 人们已经对各种手性固定相(CSPs)进行了评估,以利用手性正相HPLC和反相HPLC进行分离。Lisseter和Hambling报道了Pirkle型手性固定相用于正相HPLC条件下分离氯菊酯。总的运行时间大于30min,使用的流动相为含有0.05%异丙醇的正己烷(Journal of Chromatography,539 1991 207-10)。但是,顺式和反式对映体拆分并不理想。Shishovska和Trajkovska使用了手性ß -环糊精手性固定相,用于在反相HPLC条件下拆分氯菊酯,以甲醇和水作为流动相(Chirality,22 2010 527-33)。总的运行时间大于50min,反式氯菊酯对映体的分离度小于1.5。另外,正相HPLC条件下,CHIRALCEL OJ色谱柱也用于氯菊酯的分离(Chromatographia,60 2004 523-26),我们的实验在表1中所示的条件下进行,得到了3个分开的色谱峰,如图2所示,该结果与文献报道一致。 图3显示了利用ACQUITY UPC2系统对氯菊酯进行非对映体分离。所有四种异构体利用更短的OJ-H色谱柱在不足6分钟内实现了基线分离。实验结果总结于表2中。总的来说,与手性HPLC方法相比,当前的UPC2方法实现了更好的分离,且运行时间更短。 总结 利用沃特世ACQUITY UPC2系统成功分离氯菊酯得到了证明,在小于6分钟内实现了四种异构体的基线分离。与手性HPLC方法相比,UPC2方法具有更高的分离度和更短的运行时间。UPC2方法也杜绝了正相HPLC中有毒正己烷的使用。对于杀虫剂生产商而言,进行日常非对映体的分析,ACQUITY UPC2系统不愧为理想之选。
  • 使用共价标记质谱区分组氨酸互变异构体
    大家好,本周为大家分享一篇发表在Anal Chem.上的文章,Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry [1]。该文章的通讯作者是来自马萨诸塞大学阿默斯特分校的Richard W. Vachet教授。组氨酸是人体蛋白质结构中的重要组成氨基酸,研究发现,组氨酸具有Nδ-H和Nε-H两种互变异构体,通过两种互变异构体的转换,可以在蛋白质中介导质子转移。目前常使用2D NMR技术进行区分,但操作相对繁复。共价标记质谱是一种研究蛋白质结构的有力方法,具有操作简单,灵敏度高,结构分辨率高等优点。在本文中,作者尝试以焦碳酸二乙酯(DEPC)为标记试剂,采用共价标记质谱区分组氨酸互变异构体。组氨酸侧链的咪唑上具有两个氮原子,其中一个氮上的孤电子对参与芳香环π键的组成,而另一个氮原子仍保留孤对电子,更容易与DEPC等亲电子试剂反应。而组氨酸的两个互变异构体中都只有一个保留孤对电子的氮原子,且该氮原子位置不同,Nδ-H互变异构体中的Nε2与DEPC反应,而Nε-H互变异构体中的为Nδ1。因此以DEPC标记组氨酸以区分两个互变异构体的方法是可行的(图1)。图1. DEPC 结构及其与两种不同组氨酸互变异构体的反应 为了测试DEPC 标记区分两种互变异构体的能力,作者以几种含组氨酸的肽,在确保DEPC仅标记组氨酸条件下进行实验。以Fmoc-DGHGG-NH2为例子,该肽在N端包括一个Fmoc基团以确保仅标记组氨酸。采用等度洗脱来最大限度地利用LC分离两种异构体,并确保流动相组成不影响肽段电离效率,从而可以更好地量化每个互变异构体的比率。结果发现,在11.4和13.6分钟洗脱的峰具有相同的m/z值(图2)。根据串联MS数据,发现这两个峰代表着组氨酸上成功标记DEPC的单一物质(图3)。并且,这些同量异位离子的串联质谱不同,表明这两种物质为带有不同组氨酸互变异构体的物质。作者将先洗脱出的物质命名为修饰物质1,后洗脱出的为修饰物质2。根据MS/MS数据,两者的主要区别为修饰物质2具有更加丰富的羧基化a3离子(a3*)。图2. 未标记(蓝色迹线)和 DEPC 标记(红色迹线)肽 Fmoc-DGHGG-NH 2的提取离子色谱图。DEPC浓度比肽浓度高10倍,反应1分钟图3. 两种修饰的His异构体的串联质谱。(a)来自图2中的色谱图的修饰物质 1 的串联质谱。(b)来自图2中的色谱图的修饰物质2的串联质谱。标有星号 (*) 的产物离子包含羧基化产物此外,在重复实验中,作者发现物质2与物质1的丰度比为3.9± 0.2。而研究发现,在中性pH条件下,游离氨基酸Nε-H 互变异构体与 Nδ-H 互变异构体的比接近于4:1。因此,两物质的峰面积比表明物质1可能为 Nδ-H 互变异构体,而物质2可能为 Nε-H 互变异构体。结合以上发现,并考虑肽解离途径等因素,作者对两物质质谱图谱差异做出推测。当物质2为Nε-H互变异构体侧链时,DEPC 标记在Nδ1上,有利于肽通过bx-yz途径解离,随后通过bx-ax途径损失CO,因此物质2富含a3*离子。当物质1为Nδ-H 互变异构体时,DEPC 标记在Nε2上,肽通过组氨酸途径解离,并形成了稳定五元环,因此优先形成更稳定的b3*离子(图4)。以上发现进一步证明了Fmoc-DGHGG-NH2中物质1为 Nδ-H 互变异构体,物质2为 Nε-H 互变异构体。根据丰度比以及肽解离途径不同,作者在其他模型肽标记实验中也成功区分两互变异构体。由于组氨酸的pKa在一定程度上会影响互变异构体的比例,因此两互变异构体的丰度比可能会略有变化。总之,以上结果表明,DEPC共价标记质谱可以识别两个组氨酸互变异构体。图4. DEPC 标记的含组氨酸肽 CID 过程中两种异构体的肽片段化途径。左侧通路为物质1(Nδ-H互变异构体),右侧通路为物质2(Nε-H互变异构体)之后,作者还进一步研究了不同DEPC浓度对实验的影响。结果发现,在 DEPC 浓度范围超过一个数量级时,Fmoc-DGHGG-NH2的两种修饰形式的比率基本在4左右保持恒定,其他模型肽的比率略有不同(图5),但随着 DEPC 浓度的增加,给定肽的标记比率保持不变。在质谱可以确认互变异构体结构的肽中,Nε-H互变异构体总是丰度相对更高,洗脱相对较晚。此外,作者发现当组氨酸不是位于N末端残基时,Nε-H 互变异构体的an */bn *比率总是比Nδ -H 互变异构体的更高。但是,若组氨酸残基位于肽的N末端时,在质谱中观察不到b1和a1离子,将对结果造成影响。图 5. 在 DEPC 浓度增加时选择肽的两种修饰形式的标记比率。(a) Fmoc-DGHGG-NH2;(b) Ac-IQVYSRHPAENGK(Ac);(c) Ac-VEADIAGHGQEVLIR;(d) Ac-LFTGHPETLEK(Ac)。MS/MS 用于通过测量an /bn离子的比率来确认每个互变异构体总而言之,作者成功使用DEPC共价标记质谱区分肽与蛋白质中的组氨酸互变异构体,利用丰度比与洗脱时间,以及CID期间的肽解离模式,区分两种互变异构体。利用该方法,作者团队已经确定了几种蛋白质组氨酸互变异构体比率,并且相对于2D NMR方法,该方法更简单、更快、更精确,有利于探索蛋白质中组氨酸残基周围的局部结构,提供高分辨率的结构信息。[1]Pan X, Kirsch ZJ, Vachet RW. Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry. Anal Chem. 2022 Jan 18 94(2):1003-1010.
  • 【瑞士步琦】通过SFC-UV分离纯化贝达喹啉的四种异构体
    分离纯化贝达喹啉的四种异构体结核病(TB)是导致残疾和死亡的全球性流行病。据估计,世界上多达三分之一的人口感染了结核病,主要由结核分枝杆菌(Mycobacterium tuberculosis, M. tuberculosis)感染引起。由于患者停药或不正确的药物处方导致病原体突变,结核分枝杆菌对一线结核病治疗产生了多药耐药。2005 年,Andries 及其同事报告了第一种耐多药抗结核药物 TMC 207,现在被称为富马酸贝达喹啉(BDQ),成为40年来首个抗结核特异性药物。Andries 等人进行了实验测试四种立体异构体对耐多药结核分枝杆菌菌株的活性。他们报告了每种异构体以及两种异构体的混合物对细菌生长产生 90% 抑制的浓度(IC90)。如图1所示,(R,S)和(S,R)的值分别为 0.03 和8.8μg/mL,组合后的值为 1.8μg/mL。(R,R)和(S,S)同分异构体的IC90值分别为 4.4 和 8.8μg/mL,而混合物的 IC90 值为 4.4μg/mL。这些结果表明,需要对(R,S)异构体进行优化分离,以专门治疗结核分枝杆菌。▲图1:贝达喹啉的四种异构体,及其抗结核分枝杆菌活性(IC90)本文介绍了一种利用 BUCHI Sepiatec SFC-50 仪器分离纯化 BDQ (R,S)异构体的方法。SFC 仪器与蒸发光散射检测器(ELSD)相连。为了提高生产效率,采用了堆叠注入模式。▲图2:BUCHI Sepiatec SFC-501实验条件设备 BUCHI Sepiatec SFC-50色谱柱 Chiralpak IA (4 x 100mm)流动相条件 93.7%二氧化碳、6%(50/50甲醇: 异丙醇)和 0.3%异丙胺,等度洗脱流速 5ml/min背压 150 bar柱温 40℃样品 (RS, SR)对映体BDQ进样量 285mg 叠层进样,每次 100uL检测波长 220nm2结果与讨论通过图3我们可以观察到 BDQ 的两种异构体(RS,SR)在 Sepiatec SFC-50 上能呈现有效的基线分离,并且分离时长控制在 10 分钟以内。▲图3:通过Sepiatec SFC-50以叠层进样的方式获取BDQ (R,S)异构体由于本次实验使用的色谱柱规格较小(4x100mm),不适用于大量样品(285mg)的纯化分离,因此我们采用叠层进样的方式,通过多次进样来高效获取大量目标化合物。

恩曲他滨异构体检查系统适相关的仪器

  • 北京卓立汉光仪器有限公司结合多年的拉曼光谱研发经验,面向气体检测领域全新推出了系列气体检测拉曼光谱解决方案。该系列产品通过对气体的拉曼光谱进行识别与分析,可实现快速响应,无损在线监测,定量分析等功能,在气体检测领域具有广阔的应用前景。常规的气体检测技术中,傅里叶红外光谱分析仪有运动部件,稳定性较差,量程范围小,且不能检测同核双原子分子;气相色谱仪使用需要载气和色谱柱,水蒸气对测量影响大,且响应时间通常需要几分钟到几十分钟,需要专业技术人员操作;质谱分析仪价格昂贵,速度较慢,对异构体气体存在难以无份,操作复杂的问题;卓立汉光推出的气体检测拉曼光谱解决方案,采用分子指纹光谱技术,可以克服以上问题。性能优势:特异性强,可分析同素异形体响应迅速,秒级响应无惧干扰,不受水气影响操作简单,无需特殊耗材,无需专业技术人员维护。 应用:变电站油气老化检测;石油录井气体检测;新能源电池衰老测试石油化工尾气检测;钢铁冶炼或者高炉煤气检测原理图:硬件配置:532nm激光器,功率0-1.5W,率稳定性 3%VPH高通量透射成像光谱仪深制冷高灵敏探测器拉曼增强光路气体腔操作电脑根据客户不同的使用场景,卓立推出不同气体腔解决方案,并可根据客户需求定制。高压折返气体腔:适用于对灵敏度要求极高的客户检测限1大气压(ppm)10大气压(ppm)CO2153CO355H2123CH451C2H681N2698O2698测试案例(请按照黑色底图的标注,p图到白色底图上,并删掉黑色图) 图 N2,O2,CH4,NH4,CO,H2O气体拉曼光谱图 图 N2,O2,CO2,CO,H2气体拉曼光谱图拉曼积分球:适用于气体、固体和液体测试且灵敏度要求不高的客户光子晶体光纤气体腔:要求响应极快的原位测试并且灵敏度要求不高的客户备注:光子晶体光纤气体腔长度可定制化,系统检测限与定制需求相关,如需详细资料,欢迎咨询测试实例[1]引用文献[1] Brooks W S M, Partridge M, Davidson I A K, et al. Development of a gas‐phase Raman instrument using a hollow core anti‐resonant tubular fibre[J]. Journal of Raman Spectroscopy, 2021, 52(10): 1772-1782
    留言咨询
  • 全自动无菌检查培养系统是专用于药品无菌检查的智能化仪器,由恒温培养箱体、自动化检测单元、培养容器、微生物生长信号感应器等组成。其原理是基于微生物呼吸作用产生的CO2,引起培养容器上感应器颜色的改变,通过设备的视觉相机连续扫码感应器图像及对应二维码,由计算机系统进行视觉分析并转换为生长信号,根据变化趋势分析及专用的算法来判断无菌检查结果。 应用领域 应用于生物医药生产、细胞药质量控制、疫苗生产、科研及服务机构快速无菌检查。 产品特点1. 适用于直接接种法和薄膜过滤法 2. 采用基于微生物呼吸作用的感应器显色检测方法,快速检测样本的无菌性,操作智能方便;3. 自动化培养判读技术,微生物检出限≤5cfu,可通过美国药典(USP1223)和欧洲药典(EP5.1.6)等标准的严格验证要求;4. 采用多种智能算法,配合快检专用培养体系实现快速、准确判读;5. 仪器具备远程通信功能,无需操作人员定期观察,且仪器自动化程度高,操作简易,极大提高操作人员效率和利用率;6. 具有3个培养室,满足静态培养、摇床培养不同需求,并可设置不同培养温度,稳定的温控技术提供优良的培养环境,利于微生物快速生长。
    留言咨询
  • timsTOF fleX 实现 MALDI 引导的空间定位组学高灵敏度:timsTOF fleX 空间定位组学方案,结合特征区域 MALDI 成像和 PASEF 组学分析,能从有限样本中获得高鉴定率。空间分辨率:高空间分辨率的 MALDI 源和平台机械设计获得分子分布图,增加组学空间维度信息。多功能:双离子源设计使您在同一个质谱平台上完成分子空间分布和 ESI 多组学鉴定。microGRID -- 精准、可靠的硬件升级,使高空间分辨成像实验唾手可得实现高空间分辨的成像实验并不是一件容易的工作。布鲁克推出了全新 microGRID 技术 -- 整合了 MALDI 机械平台和 smartbeam 3D 激光器的光束定位系统,进一步提升了质谱成像实验的图像质量,可获得 5 μm 的超高空间分辨率。microGRID 是一款适用于所有 timsTOF fleX 系列质谱仪的选配功能模块,将它整合进布鲁克现有的质谱成像工作流程中,展现出了突破极限的超高空间分辨率。该技术与布鲁克的自动一体化的成像数据采集流程 SCiLS™ autopilot 无缝衔接,使它不仅适用于成像专家,也同样适用于新购入成像仪器的用户及常规的成像数据采集应用。该技术与布鲁克的 SCiLS™ Lab 软件配合使用,可实现对于高分辨成像数据的深度挖掘。从 4D-组学到分子成像的无折中解决方案双离子源设计将无标记分子定位与 PASEF LC-MS/MS 鉴定匹配,解析生物样本的分子变化。 建立在 shotgun 蛋白组学标准上的 timsTOF fleX 将布鲁克一流的 4D-组学分析与尖端的 MALDI 成像技术整合于一个平台,包括高频率的 smartbeam 3D 激光器。配置有双离子源的 timsTOF fleX,把持久稳定的 ESI 分析和组织分子空间分布集成于一体,是进行空间定位组学研究的理想平台。在此之前,没有质谱仪能为组学研究者同时提供这两种能力。 ESI 和 MALDI 的切换操作,只需在软件中开启 smartbeam 3D 激光源,仅需几秒即可完成。简单的切换操作意味着从组学深度鉴定和定量流程到组织高清成像的方便转换,又不影响效率和功能,从而发现真正有用的信息。增加 MALDI 成像新维度,挖掘更多信息由 MALDI 和 ESI 产生的离子,经过同一路径从离子源到达探测器,因此 MALDI 工作流程可以利用 timsTOF HT 的主要优势,包括根据分子碰撞截面 ( CCS ) 来进行捕集离子淌度分离( trapped ion mobility separation,TIMS )。调谐和校准可在 ESI 模式下进行,并用于 MALDI 模式,方便了仪器的优化。TIMS 允许根据离子形状分离分子。离子与气流一起进入双 TIMS 装置,在第一个TIMS 分析器通过电场进行累积。实际分离发生在第二个 TIMS 分离器。通过降低电位以时间和空间的方式释放离子。可变扫描速度和淌度范围适应性可对不同种类分子优化,为用户带来更多灵活性。为组学增加空间维度信息将特征区域 MALDI 成像和深度多组学分析结合现在变得容易可行。MALDI 成像适用于类型广泛的分析物,包括代谢物、脂类或聚糖,并与显微工作流程无缝衔接。针对空间定位组学,MALDI 成像可识别特征区域化合物分布。timsTOF fleX 采用双离子源设计,与可靠的高品质消耗品和用户友好软件一起使用,方便了研究工作,节省了研究人员的时间。使用布鲁克 IntelliSlides™ 预制玻片,使 MALDI 成像和空间定位组学流程在 timsTOF fleX 上完全自动化。分离相近质量或同分异构体离子捕集离子淌度谱( TIMS )有助于复杂样品( 如组织切片 )的分析。通过分离近质量或同分异构的代谢物、脂质、肽段或糖苷,以获得分析物的真实空间定位。高质量分辨率无助于这些问题的解决,timsTOF fleX 提供了唯一的机会来区分同分异构体的分布。碰撞横截面( CCS )是 TIMS 给出的测量结果,提供了从另一角度来验证质谱分析结果。CCS 关联软件智能地将空间 MALDI-TIMS 成像数据与多组学结果相匹配,并使鉴定结果与重要的形态学内容相关联。从色谱分离技术到在像素点的原位分析,一切变得触手可得 … … timsTOF fleX 是一台多功能的质谱仪,用于测量样品的分子情况。timsTOF fleX 建立在布鲁克开创性 timsTOF HT 平台上,功能齐全、速度快、灵敏度高的 ESI 质谱,可用于所有 多组学分析。结合了高空间分辨率的 MALDI 源和平台机械专业设计,用于解析分子分布和带来组学分析的空间维度。将蛋白质组学分析转换为空间蛋白质组学,将脂质组学转换为空间脂质组学,将代谢组学转换为空间代谢组学,并获取数据的组织学背景。与其它学科相结合,从你的分析数据中获取更多信息以达到科研目标。为质谱成像初学者量身打造的自动一体化成像数据采集流程 SCiLS™ autopilot我们提供 “ 购入即用 ” 的成像耗材和软件产品,帮您迅速采集数据,并随后挖掘出组织的分子表型信息。我们推出了基于 IntelliSlides 预制载玻片的自动一体化成像数据采集流程,不仅大大减少了对用户输入的操作要求,还能确保所采集数据的高品质和可重现性。我司还推出了预制的 fleXmatrix 基质,高品质的基质可以保证实验效果并简化基质施加过程。作为质谱成像数据处理的 “ 行业金标准 ”,SCiLS™ Lab 软件可以实现原始数据的可视化以及后续的数据统计分析操作。此外,SCiLS™ Lab 可以与 MetaboScape 软件联用,实现了通过数据库检索信息或 LC/MS 实验结果直接对高分辨的 MALDI 成像热图进行快速分子注释的功能。将这种联用机制应用于空间定位组学工作流程中,可实现生物背景信息与整体组学或单细胞组学信息的有效整合。多组学性能和高灵敏度 MALDI 的结合timsTOF fleX 实现 SpatialOMx无论蛋白组学、脂质组学、糖组学还是代谢组学,timsTOF fleX 都是空间定位组学分析的理想平台。使用专利的smartbeam 3D 技术进行快速、无标记的 MALDI 成像,以绘制样品的分子分布图,并鉴定感兴趣的区域,对它们进一步深入分析。由 PASEF 技术支持的 LC-MS/MS 分析可以进行最高水平的鉴定并得到最可靠的结果。肿瘤远比看到的还复杂癌症的微环境是由健康细胞、肿瘤细胞、结缔组织、血管和炎症在不同时间点以不同的比例组合而成。每一种成分都有其独特的化合物分子标记。研究人员对疾病状态的判断在很大程度上依赖于组织病理学的解释,并在生物分子的背景下创建这些图谱,从而在传统的组学和理解疾病之间架起了桥梁。CCS 关联空间多组学发现差异癌细胞和其它疾病状态具有显著的遗传和表观遗传修饰,影响基因组表达层次。无论你观察的是蛋白质组、脂质组还是代谢组,化合物的空间分布都包含了有价值的解释信息。要了解复杂的样品,除了质量和电荷外,还需要有 timsTOF fleX 的离子淌度功能提供无与伦比的分析深度。近质量干扰可被区分,同分异构体可被分离。这有助于组织中近质量脂质的准确定位。原位 MS/MS 以及 PASEF 技术支持的 4D 多组学研究方案使您能够识别更多感兴趣的分析物。SpatialOMx 的自动分子注释工作流程布鲁克的业界领先的应用软件,现在可以直接对组织中的目标分子注释。只需将数据导入到 SCiLS™ Lab 软件,定义感兴趣的区域,并将峰列表数据导出到 MetaboScape。使用 LC-MS/MS 建立的数据库或成分列表对各个峰进行注释,然后导出注释表并送回到 SCiLS™ Lab 进行可视化。从 SCiLS™ Lab 软件中,可以使用通路和熟悉的命名法而不是分子量可视化实验结果,从而缩短从数据到最终结果的时间。
    留言咨询

恩曲他滨异构体检查系统适相关的耗材

  • 高效液相色谱法测定辅酶Q10的异构体及含量 推荐 Cosmosil SL-II
    高效液相色谱法测定辅酶Q10的异构体及含量 推荐 Cosmosil SL-II 关键词:辅酶Q10,硅胶柱,异构体,含量测定,C18色谱柱 2010中国药典:检查辅酶Q10中的异构体,用硅胶为填充剂(4.6mm*250mm,5um);以正己烷-乙酸乙酯(97:3)为流动相,检测波长为275nm,辅酶Q10的出峰书剑是10分钟,异构体的相对保留时间为0.9,理论踏板数辅酶Q10峰计算不低于3000. 含量测定:用十八烷基硅胶键合硅胶为填充剂,以甲醇-无水乙醇(1:1)为流动相,柱温为35度,辅酶Q9峰与辅酶Q10的分离度应大于4,理论塔板数按辅酶Q10峰计算不低于3000。(药典二部P883)。 需要详细供货信息请联系北京绿百草:010-51659766. 登录网站获得更多产品信息: www.greenherbs.com.cn
  • YMC-光学异构体和结构异构体分离柱--北京绿百草
    YMC-光学异构体和结构异构体分离柱 在商业上有价值的环型多聚糖环糊精,由三种成分组成,包括:&alpha -环糊精(六环)、&beta -环糊精(七环)和&gamma -环糊精(八环),如下图所示。这种圆锥状环糊精分子具有一个疏水的空穴和一个碳水化合物上的亲水边缘。在残存的葡萄糖上碳原子6上的一级羟基具有较小直径的边缘,葡萄糖上的2和3碳原子上的二级羟基则形成较大直径的边缘。空穴的直径如同一个单独的苯环,或取代基单个的苯环和多环系统的变化。 YMC Chiral CD BR液相色谱柱提供了对镜像异构体分离的一个选择方法。环糊精上的溴代衍生物共价键合到YMC硅胶上形成一个新的手性固定相(CSP,Chiral Stationary Phases)。在溴代衍生物中第六个碳原子上的羟基被溴化物取代,从而提供了不同于环糊精的手性异构选择性。 这种环糊精溴化衍生物被用于反相模式的液相色谱分离,其具有广范围的分离特性,适合于极性和水溶性化合物的分离,此外,其在相似的条件下也可用于分离芳香族化合物取代基的位置异构体分离。 YMC Chiral CD BR色谱柱可在pH 3.5-6.5范围和通常使用的缓冲液色谱系统中使用。但是在保存该种色谱柱时,必须用水/甲醇溶液(80-100%水)将分析后柱内残留的盐分和缓冲液全部冲洗干净,色谱柱必须储存在无盐的水/甲醇(50%甲醇)的条件下。如果可能可用三氟醋酸(THF)清洗除去残留,以再生色谱柱。 Chiral CD BR系列液相色谱柱的特点 环糊精结构的光学异构体分离柱,有&alpha -、&beta -和&gamma -三种类型的柱填料 反相-液相色谱柱;粒径:5?m;孔径:12nm (120?);适用pH范围:3.5-6.5 用于光学异构体和结构异构体化合物的分析 用于反相、极性和水溶性药物或化合物的位置异构体分离 Chiral CD BR系列液相色谱柱的规格和应用实例 Chiral CD BR系列液相色谱柱的分析柱和保护柱 分析柱           填 料 粒径(?m) 孔径(?) 色谱柱规格(内径x长度)产品编号   &alpha -CD BR 5 120 4.6x150mm 4.6x250mm DA12S05-1546WT DA12S05-2546WT   &beta -CD BR 5 120 4.6x150mm 4.6x250mm DB12S05-1546WT DB12S05-2546WT   &gamma -CD BR 5 120 4.6x150mm 4.6x250mm DG12S05-1546WT DG12S05-2546WT   保护柱(卡套柱)         填 料 粒径(?m) 孔径(?) 色谱柱规格(内径x长度) 产品编号   &alpha -CD BR 5 120 4.0x23mm DA12S05-G304CC*   &beta -CD BR 5 120 4.0x23mm DB12S05-G304CC*   &gamma -CD BR 5 120 4.0x23mm DG12S05-G304CC*         卡套保护柱柱套 XPCHW   *. 每包装3支,仅为柱芯;第一次使用时,需另定购柱套(XPCHW,每包装1个) YMC-光学异构体和结构异构体分离柱 需要详细的信息请和绿百草科技联系:010-51659766 登录网站获得更多产品信息:www.greenherbs.com.cn
  • YMC-光学异构体和结构异构体分离柱
    YMC-光学异构体和结构异构体分离柱 在商业上有价值的环型多聚糖环糊精,由三种成分组成,包括:α-环糊精(六环)、β-环糊精(七环)和γ-环糊精(八环),如下图所示。这种圆锥状环糊精分子具有一个疏水的空穴和一个碳水化合物上的亲水边缘。在残存的葡萄糖上碳原子6上的一级羟基具有较小直径的边缘,葡萄糖上的2和3碳原子上的二级羟基则形成较大直径的边缘。空穴的直径如同一个单独的苯环,或取代基单个的苯环和多环系统的变化。 YMC Chiral CD BR液相色谱柱提供了对镜像异构体分离的一个选择方法。环糊精上的溴代衍生物共价键合到YMC硅胶上形成一个新的手性固定相(CSP,Chiral Stationary Phases)。在溴代衍生物中第六个碳原子上的羟基被溴化物取代,从而提供了不同于环糊精的手性异构选择性。 这种环糊精溴化衍生物被用于反相模式的液相色谱分离,其具有广范围的分离特性,适合于极性和水溶性化合物的分离,此外,其在相似的条件下也可用于分离芳香族化合物取代基的位置异构体分离。 YMC Chiral CD BR色谱柱可在pH 3.5-6.5范围和通常使用的缓冲液色谱系统中使用。但是在保存该种色谱柱时,必须用水/甲醇溶液(80-100%水)将分析后柱内残留的盐分和缓冲液全部冲洗干净,色谱柱必须储存在无盐的水/甲醇(50%甲醇)的条件下。如果可能可用三氟醋酸(THF)清洗除去残留,以再生色谱柱。 Chiral CD BR系列液相色谱柱的特点 环糊精结构的光学异构体分离柱,有α-、β-和γ-三种类型的柱填料 反相-液相色谱柱;粒径:5µ m;孔径:12nm (120Å );适用pH范围:3.5-6.5 用于光学异构体和结构异构体化合物的分析 用于反相、极性和水溶性药物或化合物的位置异构体分离

恩曲他滨异构体检查系统适相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制