正极材料包覆碳结构

仪器信息网正极材料包覆碳结构专题为您整合正极材料包覆碳结构相关的最新文章,在正极材料包覆碳结构专题,您不仅可以免费浏览正极材料包覆碳结构的资讯, 同时您还可以浏览正极材料包覆碳结构的相关资料、解决方案,参与社区正极材料包覆碳结构话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

正极材料包覆碳结构相关的耗材

  • Carbosieve S-III碳分子筛填料
    碳分子筛颗粒是聚合物前体经高温分解后的碳骨架结构物,这类材料主要用于采集小分子化合物(C2~C5) 待测化合物的分子大小和构象及CMS颗粒孔径与结构也关系到化合物是否能够被根号的吸附或脱附 Supelco提供的产品使用高纯的聚合物作为原料,成品能有效的释放/解析被吸附的目标物 Carbosieve S-II适合于分析惰性气体(H2、02、Ar、CO、CO2)及C1~C2(甲烷、乙烷、乙烯、乙炔等))的小分子碳氢化合物 Carbosieve S-III适合于一氯甲烷等小分子化合物的手机 品牌:色谱科 SUP
  • Carbosieve S-III碳分子筛填料
    碳分子筛颗粒是聚合物前体经高温分解后的碳骨架结构物,这类材料主要用于采集小分子化合物(C2~C5) 待测化合物的分子大小和构象及CMS颗粒孔径与结构也关系到化合物是否能够被根号的吸附或脱附 Supelco提供的产品使用高纯的聚合物作为原料,成品能有效的释放/解析被吸附的目标物 Carbosieve S-II适合于分析惰性气体(H2、02、Ar、CO、CO2)及C1~C2(甲烷、乙烷、乙烯、乙炔等))的小分子碳氢化合物 Carbosieve S-III适合于一氯甲烷等小分子化合物的手机 品牌:色谱科 SUP
  • Carbosieve S-II 碳分子筛填料80/100
    碳分子筛颗粒是聚合物前体经高温分解后的碳骨架结构物,这类材料主要用于采集小分子化合物(C2~C5) 待测化合物的分子大小和构象及CMS颗粒孔径与结构也关系到化合物是否能够被根号的吸附或脱附 Supelco提供的产品使用高纯的聚合物作为原料,成品能有效的释放/解析被吸附的目标物 Carbosieve S-II适合于分析惰性气体(H2、02、Ar、CO、CO2)及C1~C2(甲烷、乙烷、乙烯、乙炔等))的小分子碳氢化合物 Carbosieve S-III适合于一氯甲烷等小分子化合物的手机 品牌:色谱科 SUP

正极材料包覆碳结构相关的仪器

  • 全自动三元材料前驱体反应釜 试验用自动控制PH值NCA/NCM三元锂电反应釜新型结构设计合理,实现反应釜与外部气氛的隔绝,减少了机械摩擦,减少了维护保养费用,符合三元前驱体的生产要求,三元前躯体的络合合成,主要是通过把盐溶液、碱溶液、氨水溶液通过计量泵按照一定的比例络合共沉淀反应实现的。
    留言咨询
  • 性能特点:1.在ZR0709-2系列电磁式粉体除铁器成熟技术基础上,结合锂电正极材料的物理特性研制而成,具有很强的针对性和实用性 2.采用先进的恒磁技术,根据物料特性设定好磁场强度以后,该磁场将不受线圈温度、外界环境温度、电网电压波动等因素的影响,始终保持恒定,从而确保锂电正极材料除磁效果的稳定性,使设备始终保持最佳除磁效果。3.设备运行稳定,清铁方便快捷,夹带物料极少 4.工作过程中磁腔处于振动状态且振动力可调,确保过料通畅又不影响除磁效果。
    留言咨询
  • 功能说明:(1)测试范围:锂电粉末;(2)样品类型:正/ 负极材料;(3)执行标准:VDA19、ISO16232或企业自定义标准;(4)检测目的:污染颗粒的显微分析(颗粒大小、颗粒数量;金属、非金属、纤维统计分类);(5)设备需求:辊磨机、 自动清洁度分析仪、烘箱、辅助配件;颗粒萃取工艺流程1、 测试所需设备2、测试用辅件:油剂微孔过滤膜、玻璃烘烤器皿、无齿不锈钢镊子、无尘布;3、测试流程:清洁度测试仪测试方法(1)无尘纸簪取酒精擦拭塑料管套表面,除磁,再用热封机调至合适挡位,在端口处正反各封3-4次,确保密封严实,放置洁净处备用;(2)无尘纸簪取酒精擦拭提取磁棒,将己除磁塑料管套套在提取磁棒上,再将另一端于热封机进行封口密封,放洁净处备用;(3) NMP 除磁,将 NMP 经由0.45um滤膜抽滤,抽滤完成取100gNMP倒入洁净样品瓶中;(4)提取:称取待测试样400g置于样品瓶内,加入100g nmp ,密封样品瓶,于辊磨机上以50rpm/ min 搅控30min;从样品瓶中拿出吸附磁性颗粒的磁棒转移至500mL烧杯,保持竖直,用除磁 NMP 从上至下冲洗,用陶瓷剪刀剪开上端塑料管套,沿管壁两端向下各美开约1cm后翻折剪口,慢慢抽出磁棒;用除磁 NMP 冲洗管壁,用陶瓷刮刀反复剐蹭,确保磁性颗粒全部冲洗至烧杯内,冲洗过程避免 NMP 溅到烧杯外;(5)将烧杯放入超声波清洗机中,超声清洗(40kHz/50%频率,2min取出,小磁块(4.8)紧扣烧杯底部慢转15圈以上,使磁性杂质富集在烧杯底部中心位管,静止3s倒掉 NMP ,烧杯内重新加入 NMP ,重复洗涤2-3速,烧杯内加入超纯水,重复洗涤3-5遍,注意避免磁性杂质损失;(6)连接过滤器,用塑料或陶瓷镊子取孔径5u m 、直径47mm滤膜,放于抽滤装置上,装好滤杯,开启抽滤泵,将烧杯内磁性杂质全部倒入过滤器,冲洗烧杯和抽滤器滤杯内壁约10次,确保磁性杂质全部分散在滤膜上,滤膜未见水珠后再抽2 in 左右:关闭抽滤泵,将滤膜平移转移至洁净的滤膜盒中,于60℃干燥15min左右。(7)依次打开清洁度测试仪显微镜开关和控制器开关,双击打开软件,仪器预热半小时,将干燥后的滤膜转移至装片夹。
    留言咨询

正极材料包覆碳结构相关的方案

正极材料包覆碳结构相关的论坛

  • 喷雾干燥-碳热还原法制备的正极材料提高电池的综合性能

    [size=14px][font=微软雅黑]采用喷雾干燥-碳热还原法制备的LiFePO4/C粉体材料具有独特的微观形貌,是喷雾干燥前驱体由分散均匀的、粒径10微米左右的皱纹状前驱体颗粒组成。[/font][/size][size=14px][font=微软雅黑]在喷雾干燥过程中,雾化的液滴进入干燥室后,随着溶剂的蒸发,当液滴表面溶质的浓度达到其临界饱和浓度时,通过成核生长形成外壳,同时壳内溶液的迅速蒸发,形成空心球形颗粒。然后,随着干燥塔内温度降低,颗粒内部气压减小,同时由于碳黑的存在,导致壳的强度降低而塌陷,形成皱纹状颗粒。在碳热还原阶段,随着前驱体颗粒温度的上升,碳黑颗粒包覆在LiFePO[/font][sub][font=微软雅黑]4[/font][/sub][font=微软雅黑]表面形成200~700nm的初颗粒,使球壳上产生孔隙。而形成的初级颗粒在范德华力和静电作用下,保持了原有的球形结构,它们之间的堆积孔隙则形成微孔。[/font][/size][size=14px][font=微软雅黑]这种独特的微观结构,使材料具有更大的比表面积,能够让正极材料与电解液充分接触,有利于扩大Li离子的扩散面积,增大Li离子的脱嵌速率,解决了LiFePO[/font][sub][font=微软雅黑]4[/font][/sub][font=微软雅黑]扩散系数小的问题。在后期电池制备过程中,这种球形结构呈现出优异的流动性和分散性,表面易涂覆等特点,没有明显的掉粉现象,具有良好的操作性。说明采用喷雾干燥-碳热还原法制备的多孔隙球形LiFePO4/C正极材料,不仅以3价Fe为原料降低了生产成本,碳热还原提供的还原气氛有利于保持二价Fe的稳定,提高产物纯度,而且多余的还原剂碳作为成核剂阻碍了晶粒的聚集长大,控制了产物的形貌,有利于电解液的渗透和Li离子的脱嵌,提高材料的综合性能。[/font][/size]

正极材料包覆碳结构相关的资料

正极材料包覆碳结构相关的资讯

  • 锂电正极材料新进展!台式X射线吸收精细结构谱仪easyXAFS提供关键数据支撑
    锂离子电池(LIBs)是电动汽车的主要动力来源,同时在电网储能方面显示出巨大的应用前景。然而,对于其材料的能量密度、功率和安全性等方面的研究并未得到真正的完善。近期研究表明,富锂无序岩盐(DRS)体系是非常有前途的材料之一,如富锂-过渡金属(TM)氧氟化物就表现出巨大潜力。但DRS正极材料的一个关键问题是容量衰退明显。例如电极材料和电解质之间的副反应,导致容量下降和循环过程中的结构变化;锰基尖晶石中观察到Mn从阴极溶解并随后迁移到阳极,造成容量衰退;较高的充电电压可以触发氧化还原反应形成二氧化碳,导致不可逆的O损失和降解。为了解决该问题,研究人员发现可以通过替换初始部分的过渡金属来稳定DRS氧氟相。近期,Maximilian Fichtner课题组采用机械化学球磨法合成了锰基无序岩盐氧氟化物Li2Mn1&minus xVxO2F(0≤x≤0.5)作为锂离子电池正极材料,分析了部分钒取代对样品性能的影响,重点研究了样品的电化学性能。为了确定合成材料中Mn和V的氧化状态,作者利用美国台式X射线吸收精细结构谱仪easyXAFS进行了X射线吸收光谱分析。该系统,摆脱了同步辐射光源的束缚,在实验室中提供了一套媲美同步辐射光源数据的表征技术,包括X射线吸收光谱(XAFS)和X射线发射光谱(XES),实现了对元素化学价态、局部配位结构以及自旋态的多重互补信息的获取,为阐明电化学性能的改善机理提供了关键数据支撑。图1. 美国台式X射线吸收谱仪系统easyXAFS300+ 图2a是Li2MnO2F (LMOF)和Li2Mn0.5V0.5O2F (LMVOF)的Mn K边XANES光谱,并与各种锰氧化态的标准物进行对比。从MnO金属到MnIVO2,随着氧化状态的增加,吸收边逐渐向高能量移动。两种LMOF样品(正常和高温)都接近MnIII2O3的吸收边,表明Mn的平均氧化态为3+。相反,LMVOF接近MnIIO的+2氧化态。因此,与所使用的前驱体相比,Mn氧化态未发生变化,而且热处理对氧化态无任何影响。此外,两个LMVOF样品中V K边的能量位置均位于VIII2O3和VIVO2之间,如图2b所示,V的边前锋与1s→3d转变有关,在两个LMVOF样品的边前锋不同,表明其DRS结构中六配位V-O(F)发生局部畸变,p-d轨道杂化使得1s→3d跃迁成为可能。边前峰的强度反映了偏离中心对称性的程度,在HT-LMVO中变弱的边前锋表明热处理减轻了局部畸变。如图2c所示,拟合的边前峰中心随V的氧化态增加向高能偏移,两个LMVOF都接近VIII2O3的边前锋位置,表明平均氧化态为3+。因此,从Mn和V的K 边光谱可以看出,在高能球磨过程中没有发生电荷转移,可以认为合成的化合物保持了起始前驱体的价态。图2. (a) LM(V)OF的归一化Mn K边XANES谱 (b)LMVOF的归一化V K边XANES谱。插图为边前区。(c)线性+洛伦兹基线函数的高斯峰值模型对LMVOF进行边前区拟合。V2O3、VO2和V2O5采用相同的拟合方法。 图3为测得的Mn K边X射线吸收精细结构(XAFS)光谱。如图3a所示,原始的LMOF、以及经20个循环的LMOF和HT-LMOF XANES光谱与Mn2O3的吸收边能量一致。这表明Mn3+处于放电/锂化状态,与原始LMOF(图3)和前20个循环的锰可逆的氧化还原反应类似。如图3b所示,虽然两个循环的电极都表现出比原始材料更高的振幅,但扩展边(EXAFS)数据的傅里叶变换证实了他们相同的局域配位,这表明循环后局部无序化降低。在HT-LMOF_20C中,观察到第一和第二配位壳的傅里叶变换峰振幅略高,这表明热处理减少了局部无序化现象。对第一个Mn-O/F和第二个Mn-Mn配位壳进行了壳拟合(表2)。对于HT-LMOF来说,Mn-O/F的原子间距离变大,Mn-Mn的配位键长略有增加。可以推断,热处理有助于提高球磨化合物的对称性并减少缺陷,但也可能影响结构中的局部氟化程度。图3. 原始LMOF、以及LMOF及HT LMOF 20个循环后的Mn k边XAFS光谱。(a)标准物的XANES (b) EXAFS的傅里叶变换,原始LMOF (c和d)、原始LMOF_20C (e和f)和HT-LMOF_20C (g和h) 的R空间壳层拟合;k3加权χ(k), dk = 1。 图4为放电状态下HT-LMVOF电极的V和Mn K-边XANES光谱。Mn K-边略向高能量移动,表明Mn氧化态的升高。此外,V的 K 边出现明显的吸收边偏移和显著的边前锋强度增加,表明V的平均氧化态已经从3+增加到4+。因此,经过长时间的循环,V和Mn都被轻微氧化,尤其是Mn的氧化态,这可能是受到Mn溶解的影响。图4. 放电状态下,(a) LMVOF_20C电极的V和Mn 的K边XANES光谱。 台式X射线吸收精细结构谱仪-XAFS/XES测试数据展示: XAFS for 3d-transition metalseasyXAFS硬x射线能谱仪具有宽的能量范围,可以测量从Ti到Zn的所有三维过渡金属的高质量XANES和EXAFS。这些元素在从电池到催化、环境修复等现代研究的关键领域关重要。Fe\Mn\Ni\Co\Cu XANES & XES Kβ data用easyXAFS300+测量了Fe\Mn\Ni\Co\Cu XANES 谱图及 Fe XES Kβ数据,分别提供元素价态及自旋态的数据支撑。Adv. Func. Mater. 2022, 2202372。Cu EXAFSeasyXAFS光谱仪探测了Cu K-edge X射线近边吸收谱(XANES)。实现材料元素价态及配位结构的解析对MOFs材料的性能及机理研究尤为重要。J. Am. Chem. Soc. 2022, 144, 4515&minus 4521Ni EXAFSeasyXAFS硬x射线光谱仪拥有与同步加速器匹配的高能量分辨率。实现对Ni近边区XANES和扩展边区EXAFS的高质量数据采集。J. Mater. Chem. A, 2021, 9, 14432–14443Fe EXAFS高性能Fe K-edge 扩展边到k = 14 &angst ,样品为Fe金属箔。EXAFS提供了对局部结构和配位环境的数据测量。NMC Ni K-edge高性能NMC 442和NMC 811电池电极的Ni K-edge XANES谱图。Ni K-edge位置的变化反映了不同NMC组成导致Ni氧化态的变化。J. Electrochem. Soc., 2021, 168, 050532Co K-edge Rapid XANESeasyXAFS硬x射线光谱仪能够与同步加速器匹配的能量分辨率高质量的数据收集。优异的性能可以在几分钟内实现。这使得在短时间内收集大数据集以及实时跟踪反应过程成为可能。Pr L3-edge XANESPr2O3和Pr6O11的L3边XANES数据表明对Pr氧化状态变化的敏感性。用easyXAFS300光谱仪测量。V XANES利用台式X射线吸收精细结构谱仪获得了V k边的边前及近边结构谱图,揭示了引入Al3+后,VOH的结构变化及充放电过程中的有利作用。Nano Energy, 2020, 70, 104519Cr Kα XES用easyXAFS光谱仪测量了不同氧化态的Cr Kα X射线,兼具高能量分辨率及X射线荧光的高灵敏度。Anal. Chem. 2018, 90, 11, 6587–6593V EXAFSV K-edge EXAFS显示了easyXAFS谱仪与同步辐射光源相匹配的高k值下的优异表现。Fe Oxide XANES data用easyx150光谱仪测量Fe和Fe(III) [Fe2O3]的Fe K-edge,利用XANES对氧化态差异进行表征。Ti\Mn XANES dataeasyXAFS谱仪获取Ti元素和Mn元素的价态变化,进一步验证了高价Ti离子和部分F离子替代后策略背后的作用机理。Chem. Mater. 2021, 33, 21, 8235–824Mn&Fe EXAFSeasyXAFS谱仪获取Ti元素和Mn元素的XANES和EXAFS谱图,解析化学价态及局部配位结构。Adv. Func. Mater. 2022, 2202372Fe oxide XES(low weight %)Fe Kβ 光谱测量浓度低0.25 wt. %,测量时间仅为4分钟。X射线发射谱XES非常适合于低元素浓度。XES-Se VTC 在easyXES150光谱仪上对金属Se和Na2SeO4的价带→核心的XES测量。12639 eV处出现的附加峰反映了Na2SeO4中硒价电子的价电子结构的变化,这可能是由于与氧的轨道混合所致。XES- Ni VTC用easyXAFS光谱仪测量了不同化合物的Ni Kβ XES,在高能量分辨率下,显示了对X射线荧光的灵敏度。Adv. Mater. 2021, 2101259【参考文献】[1]. Synthesis and Structure Stabilization of Disordered Rock Salt Mn/V-Based Oxyfluorides as Cathode Materials for Li-Ion Batteries. Iris Blumenhofer, Yasaman Shirazi Moghadam, Abdel El Kharbachi, Yang Hu, Kai Wang, and Maximilian Fichtner. ACS Materials Au, DOI: 10.1021/acsmaterialsau.2c00064
  • 动力锂离子电池系列一:正极材料解决方案
    近几年全球各国对“清洁排放”的追求,使新能源汽车获得了高速的发展,由此带动了锂离子电池的飞速发展。2019年诺贝尔化学奖更是颁给从事锂离子电池研究的三位科学家——美国科学家约翰古迪纳夫、英裔美国科学家斯坦利惠廷厄姆与日本科学家吉野彰。 当前的动力锂离子电池包含多种关键性材料,无论是圆柱形、方形还是软包电池,其结构组成均与下图类似。其中正极材料无论是成本还是分析项目,都占有最高的比重。 根据材料的不同,可将锂离子电池分为钴酸锂、锰酸锂、磷酸铁锂、镍钴锰(三元)型等,目前商品化的动力锂电池主要以磷酸铁锂和三元为主。 本系列将从动力锂电池的正极、负极、隔离膜、电解液的检测以及电池电芯的失效分析等五个维度全面解析岛津的完整解决方案与特色的应用。 正极材料的完整解决方案 岛津具备多种表征及测试设备,可帮助正极材料企业及电池企业应对各种生产、质量控制及研发的测试需求。 特色应用1、 聚集体、异物的检测正极材料,无论是磷酸铁锂还是NCM、NCA等三元材料,在材料企业的生产过程中或者电池企业的使用过程中,不可避免地存在着聚集体或者外来的异物。这些异物的存在,对后续电池的性能、安全可能造成潜在的巨大危害。异物的检测有多种手段,但无论是电子显微镜还是X-Ray等其他的方式,都有着成本过高不能较好地适应环境多变的生产现场的缺点。 岛津在2019年推出的新产品——动态颗粒图像分析系统iSpect DIA-10,其使用和维护的成本低,仪器灵敏度高且操作简单便捷,同时又具备皮实耐用等特点,尤其适合产线上用于测试三元正极材料的聚集体、异物等分析。 2、 元素含量的检测及其分布的表征电子探针显微分析仪EPMA作为有效的分析工具,广泛应用于锂离子电池各种材料的研发、制造工序的质量管理、不良解析等方面。岛津的电子探针显微分析仪EPMA-8050G具备卓越的空间分辨率、高灵敏度及高分辨率等特点,特别是针对超轻质量数元素(可低至4Be)具有优秀的检出能力。这些突出的特点,收获了众多正极材料制造商的认可。以下的案例是使用EPMA-8050G表征正极截面活性物质、粘合剂、导电助剂及电解质的分布。 正极截面整体的元素面分析(Al:集流体;Mn+O:活性物质;F+P:电解质支撑盐;C+F:粘合剂;C:导电助剂)正极截面放大后活性物质的元素面分析 3、 颗粒物抗压能力与性能关系的评价当前的正极材料,无论是磷酸铁锂还是NCM/NCA等三元材料,主流的方法都是高温固相合成法,为了达到更佳的性能,一般来说正极材料都是具有多孔的结构。但孔隙率也是需要控制的,否则会造成材料结构过于疏松从而在充放电循环当中容易坍塌。 岛津独特的微小压缩试验机(MCT)可针对单个颗粒进行抗压和回弹能力学性能的测试。另外该仪器可选配电阻测量组件及温度控制系统,因此除获得粒子的力学性能之外,还可以同时获得颗粒的电阻-压缩率关系、温度-压缩率关系等丰富的信息。结合BET、SEM、激光粒度仪等手段,可使获得的正极材料颗粒物兼具更佳的性能和稳定性。
  • 万立骏/郭玉国课题组单晶高镍正极材料机械化学失效研究取得新进展
    实现“双碳”目标的时代背景下迫切需要发展高效电能存储技术,锂离子电池作为最先进的电化学能源储存器件之一,在便携式电子设备及电动汽车等领域得到广泛应用。其中高镍正极材料由于具有高容量和低成本的特点,是最有前景的高比能锂离子电池正极材料之一。然而高镍正极材料严重的界面副反应与充放电过程的体积形变导致容量衰减快、安全性差与机械失效等问题,严重限制了其大规模商业应用。纳米晶粒长大成微米级单晶颗粒,不仅能够降低材料比表面积、减少界面副反应提高安全性,而且还能消除多晶二次球颗粒晶间裂缝问题,使高镍正极材料的安全性得到提高。 在国家自然科学基金委、科技部和中科院的支持下,化学所分子纳米结构与纳米技术院重点实验室万立骏/郭玉国课题组近年来在单晶高镍正极材料研究中不断取得新突破。例如:针对单晶高镍正极材料动力学缓慢问题,系统研究了单晶高镍正极材料Li+扩散机制,提出了高价态过渡金属离子表面梯度掺杂以提高Li+扩散动力学方法(Angew. Chem. Int. Ed. 2021, 60, 26535)。针对高镍正极严重界面副反应问题,建立了界面化学反应以实现均匀浸润的表面包覆方法,开发了多种单晶正极材料界面稳定化技术。如:利用磷钼酸与表面残锂发生反应,在单晶颗粒表面构筑了Li4MoO5离子导体包覆层(Nano Energy. 2021, 87, 106172);利用Al(NO3)3、(NH4)2HPO4和表面残留锂反应,构筑Li3PO4-AlPO4双功能复合包覆层方法(Nano Energy. 2022, 94, 106901)。针对传统液相界面改性工艺流程长、复杂且成本高的问题,提出气相界面处理方法,成功在高镍正极材料表面构筑了厚度可控的致密无定形Li2CO3纳米包覆层,并发现电化学循环过程中Li2CO3与电解液反应原位转化成稳定的无机富氟正极/电解质界面相,显著提高了材料的电化学性能(Adv. Mater. 2022, 34, 2108947)。 除上述问题以外,由于高镍正极所属的层状过渡金属氧化物正极的晶体结构特点,机械化学失效(滑移、裂缝和扭折)成为其商业应用面临的另一重要科学问题。最近,课题组与中科院物理所肖东东等合作在高镍单晶正极的机械化学行为研究方面取得新进展。通过对高镍单晶正极在充放电过程中的滑移现象进行深入研究,在原子尺度上揭示了滑移的不同表现形式和过渡金属离子层内迁移的运动过程。基于实验与理论计算,提出了减少氧空位以提高位错运动势垒,进而抑制材料层间滑移和裂缝的改性方法(图1);低氧空位单晶高镍正极材料表现出更优异的电化学性能,实验验证了该方法的可行性,为设计构筑高性能单晶高镍正极材料提供了有益参考。这一研究成果近期发表在J. Am. Chem. Soc. 2022, 144, 11338–11347上。 图1 氧空位影响层状过渡金属氧化物正极平面滑移的动力学机制示意图。   分子纳米结构与纳米技术院重点实验室 2022年9月28日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制