在线固化

仪器信息网在线固化专题为您整合在线固化相关的最新文章,在在线固化专题,您不仅可以免费浏览在线固化的资讯, 同时您还可以浏览在线固化的相关资料、解决方案,参与社区在线固化话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

在线固化相关的耗材

  • 环氧树脂+固化剂
    西恩士仪器提供环氧树脂+固化剂报价,同时包括环氧树脂+固化剂图片、环氧树脂+固化剂参数、环氧树脂+固化剂使用说明书、环氧树脂+固化剂价格、环氧树脂+固化剂经销商价格等信息,环氧树脂+固化剂维修、为您购买环氧树脂+固化剂提供有价值的产品环氧树脂固化剂与环氧树脂发生化学反应,形成网状固体聚合物,复合材料被包裹在网状体中。一种添加剂,可将线性树脂转变为坚韧的散装固体。包括多种类型。环氧树脂固化剂是一种热固性高分子材料,具有良好的附着力,电绝缘性和化学稳定性。它广泛用于建筑,机械,电气和电子,作为粘合剂,涂料和复合材料的树脂基质。航空航天等领域。当使用环氧树脂固化剂时,必须加入固化剂并在一定条件下进行固化反应,以形成具有各种优异性能的三维网状结构的产物,并成为具有固化剂的环氧树脂材料。真实的使用价值。因此,固化剂在环氧树脂的应用中是必不可少的,甚至在某种程度上起决定性作用。环氧树脂潜固化剂是近年来国内外环氧树脂固化剂研究的热点。所谓的潜伏性固化剂是指单组分体系,其加入到环氧树脂中并在室温下具有一定的储存稳定性,并且可以在加热,光,湿气,压力等下快速进行固化反应。与目前常用的双组分环氧树脂体系相比,通过混合潜伏性固化剂和环氧树脂制备的单组分环氧树脂体系具有简化的生产工艺并防止环境污染。提高产品质量,适应现代大规模工业生产的优势。固化剂用于固化环氧树脂。水晶胶由高纯度环氧树脂,固化剂和其他改性剂组成。固化产物具有耐水性,耐化学性和晶体透明性的特征。水晶胶大致分为:平面软胶,平面硬胶,弯曲软胶,弯曲硬胶,浇注胶,工艺假水,研磨胶等。使用水晶胶可以保护工艺品和配件的表面,还可以增加产品表面的光泽度和亮度。 水晶胶适用于徽章,面板,标签,标牌,汽车面板,金属,玻璃,徽章,皮带扣,太阳能电池板,LED产品包装。 一,水晶胶的种类和范围:1.环氧软水晶胶:它是一种液体型,双组分,柔软的自干晶体胶。它无色透明,有弹性。它可以通过轻轻刮擦表面来恢复原始形状。适用于聚酯,纸张和塑料等装饰标志。 2,环氧型硬质水晶胶:是一种液态,双组份硬质水晶胶,无色透明,适用于金属标牌,还可以生产各种水晶纽扣,水晶瓶盖,水晶木梳,水晶工艺品等高端饰。 3,PU聚氨酯软质水晶胶:是一种液态,双组分PU聚氨酯树脂表面满,耐磨,耐冲击,耐黄变,耐老化,透明度高,柔软度高,适合用于制造高档商标,汽车铭牌,贴花,徽章和其他装饰品。环氧树脂+固化剂特点:低收缩率,透明,极佳的粘附力,极佳的耐化学性,无刺激性味道。缺点:固化时间慢应用:适用于真空浸渍,多孔试样和对边缘保护要求较高的试样。如电子切片,岩石 ,塑料,薄膜等。规格:1L环氧树脂+500ml固化剂(固化2小时)
  • LED紫外固化灯配件
    LED紫外固化灯配件,紫外固化光源,LED紫外硬化灯,紫外硬化光源是全球领先的LED紫外固化光源系统。LED紫外固化灯配件功能紫外单波长输出,是理想的高功率LED单波长紫外光源,它消除了无用光辐射,特别是红外线辐射,非常适合高精度和高灵敏度样品或工件使用。具有超长寿命和强度特点,长达20000小时工作寿命中,光强基本在同一水平。内置温度控制系统保证了光强的连续性,不需要每天检查。标准输出波长为365nm, 385nm, 390-420nm,455nm,465nm等,其它波长可定制输出没有损害性热光,输出光学不含有加热成分光,热效应最小化,物体表面温度变化非常微小LED紫外固化灯配件应用医疗处理,消毒,紫外胶固化,紫外墨水变干,LCD,PCB曝光,大面积紫外辐射LED紫外固化灯配件参数发射窗口尺寸:60x60mm波长:365mm光强:2W/cm^2工作距离:=2mm尺寸:120x112x165mm重量:约1kg功率消耗:450W孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有包括比色箱,色彩分析仪器在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个一产品是用户满意的完美产品。我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。关于进口精密比色计特点,进口精密比色计价格的更多消息,孚光精仪将在第一时间更新并呈现,想了解更多内容,关注孚光精仪等你来体验!
  • Aka-Cure 金相冷镶嵌树脂和固化剂
    Akasel是一家丹麦公司,专门从事开发、生产和销售高质量的金相耗材以及最佳的金相制备方法。 凭借创始人Morten Damgaard在金相学方面的专业知识和实践经验,再加上对可持续性创新解决方案的不懈追求,不断努力,推进金相耗材的开发,提高金相样品制备的效果,创造易于执行的制备方法。经过多年的发展,这个在车库里迈出第一步的公司现在已经成功地将高品质的金相耗材以及高效的制备方法传播到全世界。 如果您为目前样品制备过程的繁琐所累,请联系我们,我们的技术专家将免费为您进行制备流程优化。环氧镶嵌树脂Epoxy对样品的附着力最佳,有助于获得最理想的边缘保持度和最佳的镶嵌质量。它也可以用于易碎和多孔样品的真空浸渍或浸渗。我们的Epoxy mounting系统由一种液态树脂和一系列液态硬化剂组成。通用树脂Aka-Resin液态环氧树脂可以与Aka-Cure Quick快速固化剂、Aka-Cure Slow慢速固化剂或Aka-Cure Slow-2慢速固化剂混合。当进行金相冷镶嵌时,每种硬化剂都有其不同的优势。使用Aka-Cure Slow慢速硬化剂,环氧混合物可在低温下以一夜的时间慢慢固化。温度越低,收缩率越低,因此这是实现无收缩和最佳边缘保持度的首选解决方案。将Aka-Cure Quick快速固化剂与环氧树脂混合后,样品必须在80°C的烤箱中固化。固化时间比较短,大概需要30分钟,但是升高的温度会导致少量的收缩。 Aka-Resin Liquid Epoxy是一种clear liquid epoxy resin,必须与Aka-Cure Quick快速固化剂、Aka-Cure Slow慢速固化剂或Aka-Cure Slow-2慢速固化剂一起混合。因每种硬化剂都有其不同的优势。选择哪种epoxy hardener取决于您对最终镶嵌的要求。Aka-Cure Slow慢速固化剂和Aka-Cure Slow-2慢速固化剂是环氧树脂固化剂(epoxy hardeners),可实现尽可能低的收缩率,并因此具有出色的边缘保持度。它们适用于真空浸渍和热敏感样品。与epoxy resin Aka-Resin液态环氧树脂混合,它们在22°C下可在8-24小时内固化。Aka-Cure Slow-2慢速固化剂可以作为非危险品运输,因此通常是一种更经济的选择。Aka-Cure Quick快速固化剂是一种epoxy固化剂,可实现非常坚硬、透明的镶嵌,并具有良好的边缘保持度且低收缩率。它适用于真空浸渍多孔样品,并在80°C下30分钟内快速固化。当需要在非常短的时间内完成固化时,Aka-Cure Quick快速固化剂便是理想的选择。对于大样品的epoxy mounting,Aka-Cure Quick快速固化剂可以在室温下固化过夜,然后在80°C下进行后固化。这种低温固化的收缩率可忽略不计。 丙烯酸我们的acrylic resin是一种快速固化、透明的双组份系统,略带些许淡黄色。Aka-Clear-2包含一种acrylic powder和一种acrylic liquid,可在大约8分钟内固化。将Aka-Clear-2粉末与Aka-Clear-2液体混合时,无需使用压力罐即可获得完全透明的、无气泡的镶样。由于镶样完全可见,因此Aka-Clear-2是失效分析和电子元件制备过程的理想选择。在需要快速周转的生产环境中,通常要求固化在较短时间内完成。在这种情况下,Aka-Clear-2比冷镶嵌环氧树脂和热镶嵌树脂更有优势。常见问题解答:什么时候需要使用Epoxy,什么时候需要使用丙烯酸?Epoxy resins的收缩率非常低,因此可提供最好的镶嵌效果。每当需要最好的质量时,epoxy就是正确的选择。但是,epoxy resins的固化时间比较长,因此当您比较重视固化速度时,由于丙烯酸树脂的固化时间较短,此时首选通常是丙烯酸树脂。冷镶嵌树脂危险吗? 所有的化学产品都必须小心处理,当搬运和混合冷镶嵌树脂时,必须遵循用户指南中规定的安全措施。必须始终佩戴手套和护目镜,避免直接接触各个部件。在完全固化之后,epoxy和丙烯酸镶嵌样块的处理是安全的。

在线固化相关的仪器

  • 邦沃科技LED-UV固化箱FU4639-C,主要用来固化干燥UV胶,UV漆或者UV油墨,广泛应用于实验室或生产线。LED-UV固化箱FU4639-C,采用LED芯片作为发光光源,冷光源,无红外热辐射,不会引起工件热应力及热变形,输出功率稳定、连续可调,光照均匀。相比传统的高压汞灯UV固化箱, LED-UV固化箱使用寿命长,可达20,000小时,无需预热,即开即用;能量集中、照射强度高、固化效率高,使用更安全、更环保,适用于多种热敏基材。产品特性通用设计,液晶显示,操作直观;固定功率,阶梯功率,完美体现;照射功率、时间计时数字显示,直观方便了解照射进程;具有自动功率反馈系统,输出功率更稳定;自动检索,出错报警提示;照射过程中轻松查询通道UV照射进程;
    留言咨询
  • 技术参数(持续更新中):-频率范围:0.001 ... 1MHz -测量范围:100 ... 1016ohm.cm(不同传感器) -数据通道数:1 ... 16 任意可选用途:通过测量热固性树脂等高分子材料的介电性质的变化来研究其固化过程的技术。该技术可应用于热固性树脂、涂料、粘合剂、油漆、复合材料、电子材料等诸多领域,不仅能用于实验室的研究开发,也能用于生产车间的在线监控。性能:-可以方便地监测树脂在固化工艺过程中的如下参数及其变化:流动性/粘度变化;起始固化点;凝胶点;后固化过程。借助独特的离子粘度曲线,该技术可对材料的固化进程进行实时监控与表征,以及计算固化转化率随工艺进程的变化。 -仪器可配备炉体或实验室热压机,可以在加热、冷却、湿度或紫外光照射等多种条件下进行测试。适用于快速固化树脂,例如:SMC/BMC、UV 固化。 -有两款稍有不同的主机可选:便携版(Portable Version),与工业机架版(Industrial Rack Version)。可用于实验室测试、生产现场在线监测(加热炉、模具、高压釜......)。 -传感器种类繁多,包括可安装于模具内的永久型传感器。*价格范围仅供参考,实际价格与配置等若干因素有关。如有需要,请向当地销售咨询。我们讲竭尽全力为您制定完善的解决方案。
    留言咨询
  • LED-UV固化箱是我司与日本涉谷光电株式会社联合研发的箱型LED-UV固化装置;该固化箱针对光学领域:胶合镜片慢固化(本固化)、棱镜固化等;半导体领域:晶圆光刻胶固化等高要求固化应用所开发;其光均匀度达到90%以上,使用寿命长达20000小时,极高均匀性,低温,节能,高效固化。可应用在光学,光通信,半导体,微电子等领域。
    留言咨询

在线固化相关的试剂

在线固化相关的方案

在线固化相关的论坛

  • 固化工艺研究和固化过程在线监测——低价、简便、高效的实时热分析技术研究

    固化工艺研究和固化过程在线监测——低价、简便、高效的实时热分析技术研究

    [color=#990000]摘要:差示扫描量热(DSC)和调制式扫描量热(MDSC)技术在复合材料固化工艺研究中应用十分广泛,但无法应用于固化过程的在线实时监测。为解决固化过程在线监测难题、提高固化工艺优化效率和实现仿真计算的准确考核,需要在差示扫描量热技术基础上开发低价、简便、高效和实时的新型热分析技术。本文介绍了近些年来在此领域内最具代表性的几篇研究报道,分析这些研究的特点和不足,并提出了后续工作的技术方案。[/color][color=#990000]关键词:固化工艺、固化过程、固化度、差示扫描量热、DSC、调制式差示扫描量热、MDSC、MTDSC、比热容、热扩散系数、导热系数[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#cc0000]1.问题的提出[/color][/b] 在复合材料研究过程中,需要对固化工艺进行研究和优化。而在复合材料生产过程中,为保证复合材料成品质量及生产的可重复性,理想方式是对复合材料固化过程进行实时在线监测,确保固化过程中各部分充分固化、累积残余应力和温度非均匀性引起的应变尽可能小、控制复合材料固化温度避免热降解以及降低完全固化的总时间。为了实现固化工艺研究和优化以及固化过程的实时在线监测,需要针对材料固化过程中可监测的物理量,并结合固化过程中出现的物理化学反应特性,采用相应准确有效的测试技术。在固化工艺中,当前常用来判断固化是否完成的直接准则是最能表现固化反应的固化度,但在固化工艺研究和固化度监测方面面临着以下三方面的技术难题需要解决:(1)现有扫描量热技术测试样品小,测试结果与实际生产现场有差异 目前用于研究固化工艺最有效的手段是差示扫描量热(DSC)技术以及灵敏度和精度更高的调制式扫描量热(MDSC)技术,树脂供应商大多采用这两种技术提供树脂固化度信息。这两种技术的局限性是测试样品量很小,与实际固化过程中的产品尺寸和形状有巨大差异,扫描量热技术测试得到的固化工艺过程和参数很难在实际固化工艺中直接使用,还需要进行大量固化工艺优化研究工作。(2)现有扫描量热技术无法应用于在线实时监测 由于基于热动力学原理,并且可以与固化工艺具有完全相同的温度、压力和气氛变化过程,目前的各种扫描量热技术作为最成功的热分析技术,可以说是完美解决了微量样品层面的热分析问题,为固化工艺研究和优化、为固化工艺仿真计算研究提供了准确的基础数据。但目前热分析技术的最大局限性是无法推广应用到产品生产现场,无法采用扫描量热技术对固化过程进行在线实时监测,无法对固化工艺研究和仿真模拟结果进行快速的在线实时验证。(3)现有在线监测技术无法达到扫描量热技术的准确性,未达到实用水平 尽管扫描量热技术无法推广应用到生产现场,但为了满足复合材料研制和生产需要,近些年来开发了许多新技术来进行固化过程的实时在线监测。这些技术大多采用间接方法,而且种类繁多,主要分为光纤法、超声法、电学法和热学法。尽管这些方法都证明了其在监测固化过程中的有效性,但也存在局限性,还都无法替代扫描量热技术的有效性,每一种方法只能监测部分参数,在使用时需要根据具体条件进行选择评估,而且这些测试方法目前大多还都停留在实验室研究阶段,还未看出具有多大的市场使用前景。[b][color=#cc0000]2.解决方案[/color][/b] 综上所述,为了准确了解固化中的吸放热过程、实现固化工艺设计、快速准确寻找最佳固化工艺过程,并能对整个固化过程进行实时在线监测,就需要在扫描量热技术的基础上,开发新的测试技术并应用到实际固化工艺中,所开发的新技术方案主要包括以下几方面内容: (1)首先要解决大尺寸规则形状样品或材料的热分析测试问题,即在各种大尺寸的板状、柱状和球型模具/样品和构件上实现扫描量热测试功能,这相当于把DSC测试功能拓展到大尺寸规则模具/样品和构件上。 (2)解决材料热物理性能测试问题,即在DSC比热容测试能力基础上,增加了在整个固化过程中的热扩散系数和导热系数的连续测量能力,在得到固化特性的同时得到复合材料传热特性,这相当于把MDSC测试功能拓展到大尺寸规则模具/样品和构件上。 (3)最终要解决单样品热分析测试技术问题,一方面要避免像DSC和MDSC那样需要同时进行参考样品测试,另一方面还要避免使用传统热物性测试中那样长时间稳态一维热流测试形式,而是需要仅采用温度传感器测量模具/样品和构件内外的温度和热流变化,并在与固化工艺相同的升温、恒温和降温的动态过程中,同时测量得到多个热物理性能参数,如热扩散系数、热焓、比热容和导热系数,最终得到固化度等相应的固化工艺参数。[b][color=#cc0000]3.本文目的[/color][/b] 上述解决方案是当前复合材料固化度监测及固化反应动力学研究的发展方向,对复合材料研制和生产有着重大意义,特别是热分析技术在固化工艺和固化过程中的应用研究方面,很多研究机构和学校都开展了研究工作,但并没有取得实质性进展,基本还停留在实验室探索阶段。本文将介绍近些年来在此领域内最具代表性的几篇研究报道,分析各种研究的特点和不足,为后续的技术攻关提供参考。[b][color=#cc0000]4.温度调制型DSC:MDSC技术[/color][/b] 经典的DSC技术可以测量微小样品比热容随温度的变化特性,由此常用于固化反应动力学的研究和分析,但无法测量样品的热扩散系数和导热系数,因此采用DSC技术无法对固化过程中的热传递进行研究,无法了解材料内部的温度分布,进而使得无法进行固化工艺的优化。另外,传统的DSC对于微量样品的微弱吸热和放热还是不能提供足够高的灵敏度和精度。 为此,结合传统的Angstrom技术,在DSC技术基础上开发了温度调制型DSC(MDSC)技术,即在以往DSC测试的温度变化曲线上叠加了温度调制波,由此大幅度提高了测量灵敏度和测量精度,同时还实现了热扩散系数的测量。 目前,MDSC技术已经非常成熟,并有相应的商品化测试仪器,如图4-1所示。很多研究机构采用MDSC仪器对固化过程中的热传递进行研究,如侯进森等人对碳纤维/环氧树脂预浸料固化过程中不同纤维方向上的导热系数进行了测量。[align=center][color=#cc0000][img=,690,230]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141816583388_7031_3384_3.png!w690x230.jpg[/img] [/color][/align][color=#cc0000][/color][align=center]图4-1 MDSC测量原理和测试仪器[/align] 尽管MDSC已经具有很高的测量精度和灵敏度,但这种技术复合材料固化工艺研究和在线监测中的应用十分有限,主要因为以下原因: (1)样品量太小,很难保证样品对复合材料的代表性; (2)测试模型假设被测样品始终处于温度均匀状态,这就造成MDSC测试模型无法放大应用到大尺寸样品和固化部件的热分析测试; (3)与DSC一样,MDSC同样需要结合参考材料同时进行测量,这也限制了这种技术的实际应用; (4)为了保证MDSC技术中规定的边界条件,在被测样品周围需要配备复杂的配套装置,这在固化工艺现场根本无法实现。[b][color=#cc0000]5.固化过程的其他热分析技术研究[/color][/b] 到目前为止,固化过程中其他热分析技术的研究,主要侧重于对恒温固化过程中热物理性能变化过程的测量,重点是测量热扩散系数的变化规律,然后用不同阶段的热扩散系数来表征固化度C,即:[align=center][img=,690,57]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141817455522_5587_3384_3.png!w690x57.jpg[/img][/align] 式中,B、A和D分别是液态、随时间推移和完全固化状态下的热扩散系数值。[color=#cc0000]5.1. Friis-Pedersen等人的研究工作(2006年)[/color] 较早尝试将DSC热分析技术推广应用到复合材料固化过程在线监测的是德国的Friis-Pedersen等人,他们模仿MDSC技术进行了初步的研究工作。在他们的研究中,模仿MDSC同样采用了Angstrom测量原理进行定点温度交变调制,模仿MDSC仪器结构搭建了一套经典的Angstrom法薄板热扩散系数测量装置,如图5-1所示,可以测量薄板材料(面积为100mm×100mm,厚度约为3mm)在不同恒定温度固化过程中热扩散系数的变化过程,并由此热扩散系数变化过程来表征复合材料固化度特性。[align=center][color=#cc0000][img=,690,226]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141817271162_7843_3384_3.png!w690x226.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-1 试验装置示意图[/color][/align] 尽管采用了已知热扩散系数的硼硅酸盐玻璃对此测量装置进行了测量误差考核,并标称测量误差小于3%,但从文献报道来看,整个装置简陋,重复性测量结果偏差很大。特别是对于低粘度未固化树脂以及厚度的变化情况测试会有很多问题。 Friis-Pedersen等人还分别采用两种DSC仪器分别对微量样品的比热容进行了测量,并结合上述装置测量得到热扩散系数和密度计算得到了导热系数,通过对比证明了固化度与热扩散系数和导热系数的变化密切相关,采用热扩散系数来表征固化度甚至在灵敏度上更优于比热容。 尽管Friis-Pedersen等人的研究工作比较简易,测量误差也较大,但在采用热物理性能参数来表征固化度方面进行了积极的探索,并获得了初步的结果,证明了采用热扩散系数来表征固化度是一种切实可行的技术途径,并具有显著特点。[color=#cc0000]5.2. Rudolph 等人的研究工作(2016年)[/color] 为了实现固化过程的在线监测,基于经典的Angstrom法薄板热扩散系数测试技术,德国的Rudolph 等人搭建了一套更简易的试验装置来测量环氧树脂固化过程中的热扩散系数变化,并基于上述固化度的定义来对固化过程进行表征。 装置的测量原理基于经典的Angstrom法,如图5-2所示,不同之处在于温度的调制不是传统的正弦波,而是采用了三角波,相应的热扩散系数测量公式则采用了参数估计算法获得。[align=center][color=#cc0000][img=,690,136]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818091906_4688_3384_3.png!w690x136.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-2 基本思想是假设一维热流,评估两个温度信号之间的差异。a)样品描绘,b)顶部和底部温度信号[/color][/align] 为模拟在线固化过程,Rudolph 等人搭建的试验装置模仿了真空袋成型工艺,如图5-3所示,被测环氧树脂样品尺寸为直径29mm、厚度不超过3mm,样品装在外径为30mm、高度为4mm的铝制料盒内。试验参数中设置了温度振荡周期长度为4分钟,振荡幅度被设置为2K。[align=center][color=#cc0000][img=,690,136]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818230117_8499_3384_3.png!w690x136.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-3 实验装置:1)隔离试验箱;2)温度控制器;3)用于温度测量和控制的PC机;4)测量放大器;5)室温显示;6)带有温度传感器的样品;7)铝块;8)珀尔帖元件;9)散热器[/color][/align] 采用这套试验装置,分别在不同温度下进行了固化过程中的热扩散系数测试,热扩散系数转换为固化度后的结果如图5-4所示。[align=center][color=#cc0000][img=,400,300]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818383568_7396_3384_3.png!w690x519.jpg[/img] [/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-4 在不同温度下测量热扩散系数推断出环氧树脂的固化度[/color][/align] 通过上述Rudolph 等人的工作,至少可以看出以下几方面的优缺点: (1)再一次证明了热扩散系数作为固化度评价参数的有效性; (2)对于板材结构的复合材料固化过程,可以用很简易的装置就可以实现固化度的在线监测,特别是仅采用单面加热和厚度方向双点测温的方式,就可以在线实时对整个固化过程的固化度变化进行测试表征,这已经非常接近实用化水平。 (3)出于测试方法需要,样品加热采用的是单面加热三角波温度调制方式,这种加热方式显然不符合常规固化工艺线性加热模式,增加了在线监测设备的复杂程度。同样,这种测试结构并不适合低粘度液体以及厚度变化的固化过程。 (4)Rudolph 等人的工作实际上为今后的实用化研究奠定了一个基础,这种单面加热方式完全可以拓展到常规固化工艺中的线性加热模式,即只需采用一个温度传感器测量板材中心位置在固化过程中的温度变化,就可以实现板材固化过程的在线实时监测。 沈阳航空航天大学的卢少微等人出于对巴基纸(Buckypaper)作为温度传感器在固化工艺在线监测中的应用研究,借鉴了上述Rudolph 等人的工作,直接在真空袋固化工艺中研究固化度与巴基纸的电阻温度系数关系。尽管直接采用温度传感器在线监测固化过程的有效性十分有限,但他们对巴基纸的研究不失为给今后固化工艺中使用的温度传感器增加了一种可选性。[color=#cc0000]5.3. Struzziero等人的研究工作(2019年)[/color] 上述研究工作基本都是基于板材固化工艺的在线热扩散系数测试测试方法,但这些水平结构的固化过程并不适合流动性较强的低粘度液体树脂的固化过程监测,而且监测过程中样品厚度会发生变化而带来测量误差。为了提高材料的适用性,Struzziero等人采用了柱状结构的传热模型报道了在线固化监测的研究工作。 Struzziero等人研究的测试方法还是基于经典的Angstrom技术,在定点温度下交变调制加热温度来测量得到热扩散系数。设计的测量装置包括一个带冷却管的铜块,其中心有一个圆柱孔用于容纳直径为7mm、壁厚为1mm、高度40mm的空心铜管。该装置如图5-5所示。[align=center][color=#cc0000][img=,690,223]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818568815_9052_3384_3.png!w690x223.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-5(a)实验装置;(b)截面图;(c)俯视图[/color][/align] 液体树脂倒入铜管,然后用软木塞封闭。软木塞在其中心有一个开口,以允许放置在中心的热电偶接触树脂。然后将铜管插入铜块的圆柱形孔中,两块隔热板放置在铜块的上下两侧,一根柔性电热丝缠绕在冷却管周围。铜块温度由温度控制器调节加热软线上的功率进行控制而产生周期性的变化。由于树脂的热惯性,在树脂区域中心测量的温度是相位滞后的周期性曲线,树脂和铜温度的周期性变化信号如图5-6所示,通过相位差的测量可以得到相应的热扩散系数。[align=center][color=#cc0000][img=,600,352]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141819092006_7113_3384_3.png!w690x405.jpg[/img] [/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-6 树脂区域边界和中心的温度变化[/color][/align] 每次测试前,树脂在铜管中的填充量为四分之三左右,用软木密封封闭,并放置在铜块中。随后,外径0.5mm的测量热电偶探针穿过软木塞密封件的中心开口,使热电偶敏感区位于树脂的几何中心位置。在测试过程中,铜块温度调制所采用的幅度为1℃、一个调制周期为4分钟。Struzziero等人采用搭建的测量装置对三类材料进行了测试,第一类是非固化材料甘油作为该方法的考核;第二类包括一种脱气、预混合、单组分树脂,专门设计用于树脂传递模塑工艺的环氧树脂RTM6和另一种为灌注应用设计的低反应性单组分液态环氧树脂890RTM;第三类是采用液体增韧环氧树脂的双组分系统,用于缠绕和拉挤成型的XU3508/XB3473。 Struzziero等人用上述装置测量了上述材料不同温度下的热扩散系数,并采用MDSC进行了比热容测量和固化表征,同时还建立了相应的固化动力学模型,由此来进行相应的对比和验证。 通过甘油的导热系数测量验证了与文献值相差约为8%,需要注意的是这个偏差是包含了测量装置热扩散系数测量误差和MDSC比热容测量误差的合成误差。 Struzziero等人在此测量装置上开展了大量研究,在此就不再详细介绍。总之,Struzziero等人的工作再一次有效证明的热扩散系数表征固化过程的有效性,同时还证明了测量液体热固性塑料固化过程中的热扩散系数方面是可靠的,测量精度由树脂区域中心热电偶放置的精度控制,要求位置精度为0.5mm以将测量误差限制在3%以下。固化环氧树脂的导热系数测试结果显示出对固化度的线性依赖增加和对温度的反向线性依赖,所得结果可以根据声子输运解释为固化材料中的主要热载体。实验装置测量结果可用于生成材料表征数据,这些数据是建立固化模拟所需的精确导热本构模型所必需的。 Struzziero等人的工作最重要的是验证了固化过程中热扩散系数和导热系数变化的准确测量,热扩散系数和导热系数的获得可以更可靠地预测热梯度、放热现象和缺陷,如残余应力,有助于提高固化工艺预测的整体精度。另外,Struzziero等人的圆柱体测试结构,从测试模型上已经完全接近于实际固化工艺,而且还可以进行各种形式的推广应用。[b][color=#cc0000]6.分析[/color][/b] 上述研究工作基本上都是模仿MDSC而采用了Angstrom技术,同时也证明了测量得到的热扩散系数和导热系数完全可以用于固化评价。由于加热方式的复杂性,使得这种Angstrom技术还是无法应用到实际复合材料固化工艺中的在线监测,还只能停留在样品级别的应用。为了真正在复合材料固化工艺中采用热分析技术实现在线监测,依阳公司通过前期的大量研究,做出如下分析: (1)基于MDSC发展历史做出的分析:在DSC测试过程中,由于样品量小,样品的吸热和放热量以及热流信号都十分微弱,而Angstrom温度交变测试是一种灵敏度和精度很高的技术,因此MDSC采用了Angstrom技术实现了灵敏度和精度的大幅度提高,并同时实现了热扩散系数测量,结合已经具有的比热容测试能力,MDSC可用来测量导热系数。 (2)从实际固化工艺做出的分析:在产品生产固化工艺中,产品尺寸普遍较大,吸热和放热量以及热流信号普遍都较大,从信噪比分析来看根本无需高灵敏度的Angstrom技术。另外,在实际固化工艺设备上也很难实现Angstrom技术要求的温度交变调制。 (3)从热扩散系数测试技术做出的分析:尽管上述研究文献报道都是基于交变的Angstrom技术,但不采用这种交变技术,只通过加热变化过程也能准确测量出热扩散系数,而这种加热变化过程与固化工艺中的加热过程完全相同。这也就是说在现有固化工艺设备和固化加热过程中,通过工件中单点温度的测量,可以准确得到整个固化过程中的热扩散系数变化。 (4)从比热容测试技术做出的分析:DSC和MDSC的强大之处在于可以对热流进行测量,从而量化得到吸热和放热变化过程,其技术关键是采用了参考材料的对比测试,这也是限制DSC技术推广应用于在线热分析的主要障碍。这个主要障碍目前也有解决途径,就是设法将参考材料等效到现场固化工艺加热装置上,从而可以具备DSC的所有测试能力。[b][color=#cc0000]7.总结[/color][/b] 通过上述研究文献综述和分析,针对固化工艺研究和固化过程在线监测,可以描绘出这样一个技术愿景: (1)因为都是基于升温和降温过程,可以将差示扫描量热(DSC)技术等效到固化工艺设备上,只通过简单增加相应的温度传感器等,就基本可以实现MDSC的大部分功能,至少能具备热焓、比热容、热扩散系数和导热系数的测试能力,实现高效的固化过程在线监测。 (2)这是一种单点测温和基于一维传热的测试技术,可以应用在各种尺寸和形状的复合材料固化工艺中,造价极低使用便捷,单点植入式温度传感器对复合材料整体性能影响小。 (3)随着分布光纤技术和巴基纸(Buckypaper)技术的发展,温度传感器可以采用分布式植入结构,将会更高效的进行固化工艺现场监测。[b][color=#cc0000]8.参考文献[/color][/b](1)王奕首, 李煜坤, 吴迪, et al. 复合材料液体成型固化监测技术研究进展. 航空制造技术, 2017, 538(19):50-59.(2)侯进森, 叶金蕊, 王长春, et al. 碳纤维/环氧树脂预浸料固化过程中的热导率测定. 复合材料学报, 2012(4):23-28.(3)Friis-Pedersen H H, Pedersen J H, Haussler L, et al. Online measurement of thermal diffusivity during cure of an epoxy composite. Polymer testing, 2006, 25(8): 1059-1068.(4)Rudolph M, Naumann C, Stockmann M. Degree of cure definition for an epoxy resin based on thermal diffusivity measurements. Materials Today: Proceedings, 2016, 3(4): 1144-1149.(5)Lu S, Zhao C, Zhang L, et al. Real time monitoring of the curing degree and the manufacturing process of fiber reinforced composites with a carbon nanotube buckypaper sensor. RSC Advances, 2018, 8(39): 22078-22085.(6)Struzziero G, Remy B, Skordos A A. Measurement of thermal conductivity of epoxy resins during cure. Journal of Applied Polymer Science, 2019, 136(5): 47015.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【求助】DSC能否用来确定油漆的固化温度和固化时间???

    DSC能否用来确定油漆的固化温度和固化时间???记得我在做论文的时候,请教过老师,他说可以的,而且毕业论文也就是这么确定环氧树脂的固化过程的,但我一直很迷惑,哪位高人能否指点一下,具体可不可以,步骤如何???[em01] [em01]

  • 【分享】UV固化的工艺特点

    材料要得到满足实际应用要求的力学、机械、化学及其他性能,大都需有一个成型加工的过程通过固化使液体材料具有一定形状,是最常见的成型方法之一 液态材料固化一般可分为物理方法和化学方法二种物理方法使用加热或溶剂,使材料处于焙融或溶解状态,待成型以后冷却或蒸发溶剂,从而达到维持一定形状的目的;化学方法则是利用化学反应产生的键合力,使分子间不易产生相对运动,实现成型目的通常,物理方法得到的多是热塑性材料,化学方法得到的则多是热固性材料 uV固化属于化学方法,它是uv引发化学反应的结皋与其他固化方法比较,uv固化具有许多独特的优势,主要表现在以下三个方面: (1)速率快 液态的材料最快可在0 05 -0. ls的时间内固化,较之传统的最快也需几秒,常常多达数小时甚至几天才能固化的热固化工艺,无疑大大提高了生产率,节省了半成品堆放的空问,更能满足大规模自动化生产的要求同时,uV固化产品的质景也较易得到保证此外,由于是低温固化,因此uv固化可避免因热固化时的高温对各种热敏感基质(如塑料、纸张或其他电子产品等)可能造成的损伤,辐射固化工艺技术在某些领域已经是满足高水平标准的惟一选择[71由于容易控制,因而降低了废品率,产品性能稳定,而且,uv固化产品的结构也较容易调整 (2)费用低 uV固化仅需要用于激发光引发剂(或光敏剂)的辐射能(如中、高压汞灯的辐射).不像传统的热固化那样需要加热基质、材料、周围空间以及蒸发除去稀释用的水、有机溶剂的热量,从而可节省大量的能源同时,由于uv固化材料同含量高,使得材料实际消耗量大幅度减少此外uv固化设备投资相对较低,可节省一大笔热固化设备的投资,减少厂房占地 (3)污染少 传统的热固化法需向大气中排放大量稀释用的有机溶剂,以涂料为例,全世界每年消耗涂料2000多万吨,其中有机溶剂约占40%,就是说,每年有大约800多万吨溶剂进入大气进入大气的有机物可以形成比二氧化碳更严重的温室敢应,而且在阳光照射下可形成氧化物和光化学烟雾,从而造成环境污染和对操作工人身体健康的损害uv固化基本不使用有机溶剂,其稀释用的活性单体也参与固化反应,基本上100%固寒量,因此可减少因溶剂挥发所导致的环境污染以及可能产生的火灾或爆炸等事故随着世界各国对生态环境保护的重视,对大气排放物进行了严格的立法限制,uv固化技术的重要性也愈显突出美国、欧洲、日本等均将VOC的减少作为优先采用UV固化技术的重要原因之一在我国,随着经济规模的迅速扩大及对环境保护的日益重视,作为环保型“绿色”工艺的uv固化材料的研究、开发和应用也已日益深入和普及. 当然,任何技术或工艺都不可能是无缺陷的,uv固化也是这样与热固化相比,它仅仅有30余年的研宄、开发历史,由于尚未形成大的产业规模,故成本相对较高此外,有些uv固化材料,特别是其中单体,还存在着气味或毒性问题,有待进一步解决当然,这同时也给uv固化材料的研究与开发提供了广阔的空间.

在线固化相关的资料

在线固化相关的资讯

  • 耐驰公司成功举行2007年固化监测仪(DEA)用户会
    介电法树脂固化监控(DEA)是一项通过实时监测热固性材料在固化过程中的介电性质的变化来研究其固化进程的技术。广泛应用于热固性树脂、油漆、涂料、粘合剂、复合材料与电子材料等领域,用来进行固化行为研究与固化工艺优化。不仅能用于实验室的研究开发,也能用于生产车间的在线监控。 德国耐驰公司是世界领先的热分析仪器生产厂家,它向国际市场提供最完备的热分析、热物性测量产品。作为一种固化检测的有效手段,DEA在中国已经拥有众多的用户。2007年1月15-19日,耐驰公司分别在南京、济南和西安进行了DEA的用户交流会。在会议上,由资深专家Mr. David Shepard和曾智强博士分别介绍了树脂固化检测仪(DEA)的基本原理和应用。同时,对DEA的操作、维护和疑难问题和用户进行了热烈的交流,并积极回答用户提出的各种问题。用户们表示通过此次交流会对DEA有了更深入的认识,并希望继续举办类似的活动。对于用户的建议,耐驰公司会积极采纳,在新的一年里,为广大用户提供更多、更有价值的交流活动。 详情请登录:www.netzsch.cn
  • 流变和拉曼光谱的再次碰撞——UV胶的固化
    流变和拉曼光谱的再次碰撞UV胶的固化流变学已成为UV固化动力学研究中较为常用的表征方法。流变学中的参数—动态弹性模量G'对形态结构极其敏感,能够很好的反映体系在辐射固化交联过程中双键密度和内部结构发生的变化,因此实时监测G'的变化可以从体系结构的角度反映固化程度。UV固化本质是一种化学反应,材料暴露在特定的UV辐射下会引发自由基反应,导致机械结构发生明显变化。因此UV固化还可以通过拉曼光谱进一步监测,这些化学变化将会通过特征峰的生成或降低(缓慢或快速变化)反映在拉曼光谱中。流变仪与拉曼光谱相结合,可以同时获得材料的化学结构和物理性质的信息,将这些信息关联起来以获得在材料加工、反应机理方面更加深入的洞悉。UV固化系统和拉曼光谱仪均可通过安东帕MCR系列流变仪软件进行触发,从而能够同步监测整个UV固化过程中的粘弹性力学行为和光谱数据。流变&拉曼联用Omnicure S1500紫外固化系统,配备5mm光纤。Cora5001拉曼光谱仪,配备特制的联用拉曼探头——HT fiber probe 785。MCR流变仪,使用帕尔贴罩(H-PTD)和25mm石英玻璃平板。UV固化系统和拉曼仪均连接至MCR流仪中,从而UV辐射源和拉曼光谱仪都可以通过流变仪进行自动触发,保障原位测量的同步性。独特接口设计UV源与特制的联用拉曼探头实验结果图1:UV胶固化反应过程中的损耗模量(红色)和储能模量(黑色)变化曲线流变测量的结果如图1所示。从测量结果可以看出,样品最初表现出粘弹性流体响应,其损耗模量(G')大于储能模量(G')。随后,在UV辐射下激发了固化反应,从而可以观察到模量的快速变化。两个模量的变化曲线的交叉点意味着样品从液体主导状态转变为固体主导状态。然而,在5s的UV辐射时间结束后,固化反应继续进行,这可以从模量的持续增加中观测到。图2:950cm-1和1150cm-1的峰强随固化时间的变化图2为两个拉曼特征峰(950 cm-1和1050 cm-1)的峰强变化曲线。所选的这两个特征峰具备一定代表性,因为大多数其他特征峰的行为与其中一个相似。在5s的UV辐射下,两个特征峰都出现了峰强的骤降。在UV辐射结束后,950 cm-1的峰强迅速达到稳定水平,标志着相应基团化学变化的结束;而1050 cm-1的峰强是逐渐下降的,这与之前图1所示的模量逐渐增大相呼应;其余特征峰强度的变化率都处于上述两个特征峰之间。拉曼光谱中的整体化学信号变化与流变性能变化趋势相吻合,两种技术可以相互印证。然而,拉曼光谱中展示的信息非常丰富,不同特征峰的强度变化曲线代表不同化学基团的反应特性,因此,可以获得每一个感兴趣的化学基团的变化信息。拉曼光谱的这一特性,不仅是样品整体流变特性的补充,还为深入了解不同反应基团的特性提供了可能性。实验结论安东帕的流变-拉曼联用设备已被证明对监测复杂的反应机理非常有益。MCR系列流变仪还可以与不同激发波长的Cora5001拉曼光谱仪,以及不同的UV固化系统(不同波长、汞灯、LED光源)相结合,且流变仪可使用多种型号(如珀耳帖或电加热),为各种应用提供最大的灵活性。想要了解完整的本次应用报告,请点击下载。
  • 利用DSC方法评价热固性树脂—热固化粘合剂
    热固化粘合剂主要成分为热固性树脂,使用在材料之间的粘合上。根据粘合剂成分,粘合时的温度,时间不同,粘合强度与粘合性也不同。通过加热可促进固化,缩短粘合时间。此外还开发了即使在低温下也可进行固化反应的粘合剂,提高了通用性及便捷性。 热固化粘合剂的固化度和性能,通常使用DSC进行玻璃化转变的测试来评价。下面,就让我们用日立DSC7000X研究热固化粘合剂的玻璃化转变和固化反应。■ 实验条件 样品:双组分液体混合型粘合剂样品量:约1mg升温速率:10℃/min样品容器:Al开口容器 ■ 实验结果放置3—10min的样品,可在0—50℃之间观察到热固化反应的放热峰。随着时间增长放热峰减小,推测室温下发生固化反应放置3—10min的样品其玻璃化转变在0℃以下,放置15min以上的样品则在0℃—室温之间。3-15min样品玻璃化转变有大幅的变化,15min以后变化变缓。可以推测双组分混合型粘合剂混合开始大概经过15min以上才能充分粘合。 常见问题?测试中可能遇到的问题:在评价热固性树脂的过程中,未固化部分的反应峰(放热)与玻璃化转变的区域发生重叠时,玻璃化转变的判定就会变得困难。解决办法!使用调制DSC方法,进行热固性树脂成型品(含填料)和热固化胶粘剂的玻璃化转变测试,可以排除可逆反应(如固化反应,以及其他热历史),从而更容易判断玻璃化转变。测试案例如下图所示: 日立差示扫描量热仪DSC7000X,拥有新型传感器和炉体,实现世界顶级的灵敏度和重现性,配备的最新热分析软件EMA,一次购买就可包含所有高级功能,如调制DSC,比热容分析,动力学分析等。并可配备Real View TA样品观察系统,可将一些难以分辨的现象可视化,从而获得可靠度更高的数据。关于日立差示扫描量热仪 DSC7000系列热分析仪详情,请见:https://www.instrument.com.cn/netshow/SH102446/C313721.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制