像素点修复

仪器信息网像素点修复专题为您整合像素点修复相关的最新文章,在像素点修复专题,您不仅可以免费浏览像素点修复的资讯, 同时您还可以浏览像素点修复的相关资料、解决方案,参与社区像素点修复话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

像素点修复相关的耗材

  • testo 890 – 专业型高清红外热像素
    testo 890 – 专业型高清红外热像素产品参数:特征testo 890-1testo 890-2红外探测器(像素)640 x 480热灵敏度(NETD) 0.04°C温度测量范围-20 ... 350 °CSR红外超像素功能可更换长焦镜头15° x 11°自动对焦1.200 °C的高温级测量地址自动识别功能表面湿度分布成像功能录音组件全视频输出录像功能太阳能测量模块镜头保护镜备用电池快速充电器标配可选配不可用仪器标配: 坚固防水仪器箱,专业IRsoft软件、仪器保护软套, SD卡,USB线,主机,可充电锂电池,电源, 三脚架连接件。 testo 890 – 专业型高清红外热像素
  • testo 885 - 专业型320 ×240像素高清晰红外热像仪
    testo 885 - 专业型320 ×240像素高清晰红外热像仪产品参数:testo 885-1testo 885-2testo 885-2 套装红外探测器(像素)320 x 240热灵敏度(NETD)0.03帧频9 Hz/33 Hz*温度范围-20 ... 350 °CSuper红外超像素功能可更换的长焦镜头11° x 9°自动对焦1.200 °C 的高温组件测量地址自动识别功能激光标记表面湿度分布成像功能湿度测量、无线与;湿度探头* * *(自动与测量值; 实时传输)录音功能全辐射测量包括视频记录器功能太阳能模式镜头保护玻璃额外的电池快速电池充电器* 条件性选配项,需咨询德图及相关代理商 标配 可选配 不可用仪器标配: 坚固防水仪器箱,专业IRsoft软件、仪器保护软套, SD卡,USB线,主机,可充电锂电池,电源, 三脚架连接件testo 885 - 专业型320 ×240像素高清晰红外热像仪
  • 进样口修复工具
    进样口修复工具用于Agilent 分流/不分流进样口1、移除污染物,达到更好的密封。2、清洁临界的进样口密封区域。名称 数量 货号 进样口修复工具用于Agilent 分流/不分流进样口 单件 21393 砂磨盘备件(5细&5中) 10件 22689 刷子备件 (6.5 mm & 7 mm) 2件 21353

像素点修复相关的仪器

  • ■ LARRY-USB3648线阵CCD探测器主要特点:◆ 有D7265和D7266两个型号的产品可供选择◆ D7266为科研级CCD芯片,无坏点,消除边缘散射◆ D7265为工业级CCD芯片◆ 有效象元数:3648像素◆ 像素点宽度为7µ m,可获得更高的分辨率◆ SEF信号增强功能◆ 光谱范围:200-1100nm(科研级)或320-1100nm(工业级)◆ 标准USB接口◆ 带有外触发控制和脉冲同步功能◆ 采样速度达到30 scans/s LARRY-USB3648线阵CCD主要技术规格表型号/参数D7265D7266光谱范围(nm)320-1100200-1100有效象元数36483648象元尺寸(&mu m)7(W) x 200(H)7(W) x 200(H)有效感光区间(mm)25.525.5满阱容量(e)94,00094,000饱和功率密度(nW/cm2@633nm)4.24.2单象元饱和功率(nW,@633nm)5.8× 10e-55.8× 10e-5增益(e/count,12-bit ADC)2323动态范围818818最大信噪比307307读出噪声(e, rms)115115读出噪声(counts, rms)551s内暗噪声(e, rms)1151151s内暗噪声(counts, rms)5510s内暗噪声(e, rms)27627610s内暗噪声(counts, rms)1212积分时间设置(ms, 软件设置)0.01-300000.01-30000触发模式自触发连续采样或外触发采样自触发连续采样或外触发采样外触发器TTL上升沿控制(400ns)TTL上升沿控制(400ns)单次采样时间(ms, USB)3030A/D转换精度12bits12bitsLARRY-USB3648线阵CCD选型表LARRY-USB3648线阵CCD探测器 工业级科研级 光谱适用范围320-1100nm200-1100nm internal USBD7265D7266软件选项   D7401SpectraArrayAcquision, control and analysis software for basic spectroscopic applications for Windows 98/W2k/XP.D7404SpectraSolveAdvanced spectroscopic applications software for WindowsD7421OEM Developers kitWith C++ and VC++ examplesD7422LabView driversWith Vis (virtual instruments) for LabView Version 5 or laterSEF信号增强功能 由于LARRY-USB3648具有7µ m的象元宽度,因而在光谱测量应用中可以得到更高的分辨率,但同时由于象元尺度变小,相对于14µ m象元尺寸的 CCD芯片,在信号强度上会降低;为了解决这个问题,Ames公司的LARRY-USB3648系列采用了新的像素合并技术,提供1X,2X,4X,8X 四种binning采样模式,并配合曲线平滑功能,极大地提升信噪比(如图)。
    留言咨询
  • 单像素光子成像教学仪 单像素光子成像教学仪是基于压缩感知理论和光子计数成像技术,利用数字微镜器件完成随机空间光调制目标物进行快速成像的教学仪器。产品利用压缩感知技术信号稀疏的特性,超越传统香农采样定理,可以通过较少的测量值在极弱光条件下还原出高空间分辨率高信噪比的图像。 单像素光子成像教学仪具有丰富的硬件模块,支持学生动手调节和搭建,方便学生了解空间光调制技术及设备使用方法;理解压缩感知原理以及成像方式;知悉光子计数成像特点及噪声处理方法。 配备完整的压缩感知理论教学讲义和实验内容,帮助高校在近代物理实验课、通信类、计算数学等方向开设课程,推动学科建设发展。产品硬件可调,教学功能丰富桌面型设计,使用更加方便完善的配套教学资料 遮光性能优越,具有强光保护自由算法编码,可视化实验效果实验内容仪器调节实验光路搭建和仪器模块连接;单帧图像显示实验;光本底测量实验; 频率位移关系实验含目标靶成像实验;分辨率靶成像实验;自制目标靶成像实验;单像素光子成像调制方法实验不同矩阵调制成像实验;不同算法调制成像实验;实验原理图
    留言咨询
  • 仪器简介: TCA-3.0C数字相机可直接与带有标准C接口的三目显微镜、体视显微镜、金相显微镜搭配,成为能够拍摄数字图像的显微摄影系统。更多关于tucsen-TCA-3.0C 的知识,请点击 相关知识: 如何根据样品选择合适的显微镜和数码相机 地址:上海市浦东新区郭守敬路498号(浦东软件园)22号楼317-319室 电话: 传真: 邮箱: 公司网站: tucsen-300万像素数字相机 TCA-3.0C 传感器厂商 镁光(美国) 传感器类型 MT9T001 传感器尺寸 1/2英寸 像素点 3.2微米 X 3.2微米 分辨率 2048H X 1536V 滤光片 RGB Bayer 镜头接口 C/CS接口 最大帧率 11帧每秒(2048*1536) 30帧每秒(640*480) RGB位数 8 位 曝光控制 自动/手动 曝光时间 1毫秒-0.3秒 白平衡 自动/手动 扫描模式 逐行 快门 电子滚动快门 灵敏度 1.0V/Lux-秒(550nm) 信噪比 43dB 动态范围 61dB 主要特点: tucsen-300万像素数字相机 TCA-3.0C . 300万像素分辨率 . 科学级无损格式图像输出和存储 . 自然色彩矩阵技术高保真色彩还原 . 全局白平衡和区域白平衡功能 . 专利的抗电磁干扰结构设计 . 方便快捷的一键式设备软件安装,一键式图像获取和储存功能 . 丰富的摄影接口配件可选,适用于绝大多数显微镜
    留言咨询

像素点修复相关的试剂

像素点修复相关的方案

像素点修复相关的论坛

  • 【转帖】数码相机中CCD像素多大合适?

    【转帖】数码相机中CCD像素多大合适?

    一味追求高像素,则可能损失相机本身的功能,例如像变焦、微距、甚至镜头素质,就单一的成像而言,画质的优良与镜头、CCD、数字处理芯片等多个部件都有关系,特别是CCD感光元件,并非是大家想象的那样,像素越高,画质就越清晰,相反,如果在CCD尺寸不变的情况下,像素越高,画质就越不清晰。接下来我们就从原理来给大家分几个点介绍什么是CCD感光元件,像素值多少才最合适。[img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903251706_140528_1664664_3.jpg[/img][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=140529]2[/url]

像素点修复相关的资料

像素点修复相关的资讯

  • Top-Unistar和Advacam联合推出光子计数、像素化X射线探测器探测模块加工解决方案
    北京众星联恒科技有限公司作为捷克Advacam公司在中国区的总代理,一直在积极探索和推广光子计数X射线探测技术在中国市场的应用,凭借过硬的技术理解,高效和快速的反馈赢得厂家和中国客户的一致赞誉。目前已有众多客户将Minipix、Advapix和Widepix成功应用于空间辐射探测、X射线小角散射、X射线光谱学、X射线应力分析和X射线能谱成像等领域。我们根据Advacam在传感器研发、加工,晶圆焊撞和倒装焊接等加工的能力,在中国市场推出相应技术支持,为国内HPC探测器的研发团队(包括企业)就传感器加工、各种类型晶圆的焊撞和不同形状的混合像素探测器的倒装焊接等方面需求提供工艺服务。目前已为多家客户提供了满意的工艺解决方案,获得好评及持续服务合同。无尘室Advacam在Micronova拥有世界一流的无尘室。2600平方米的无尘室是北欧国家最大的硅基微结构制造、研发设施。有多种用于硅晶圆前端加工工具和完整的倒装芯片生产线。半导体材料的所有工艺服务均在芬兰埃斯波的Micronova工厂内完成。1. 传感器加工服务ADVACAM的标准产品包括在厚度为200 µm至1 mm的6英寸(150 mm)高电阻率硅晶圆上制造像素化,微带和二极管传感器。甚至可以使用成熟的载体晶圆技术来制造更薄的传感器(甚至只有几微米)。此外,ADVACAM还为大面积传感器组件提供了在8英寸(200毫米)高电阻率晶圆上的Si平面传感器处理工艺。ADVACAM专门制造无边缘的像素和微带传感器。无边缘传感器是整个传感器都对辐射敏感。该技术可提供小于1微米的非敏区域。无边缘传感器是在6英寸(150毫米)高电阻率硅晶圆上制造的,厚度为50 µm至675 µm。1.1 平面硅传感器可以制作任意极性的平面硅传感器,如p-on-n,n-on-n, n-on-p和p-on-p。p-stop和p-spray技术都可以用于阳极电极的电隔离。基于在6英寸和8英寸晶圆上加工的传感器均有低泄漏电流和高击穿电压的特点,通常比耗尽电压高许多倍。整个加工过程的交货时间很短。Advacam为晶圆连续加工提供了可能,包括可通过凸点下金属层沉积、凸点焊接,将晶圆切成小块,完成传感器和读出芯片的倒装焊接。我们还提供探测器模块与PCB的引线键合。进入熔炉的8英寸硅芯片1.2 无边 Si传感器各种尺寸的无边缘传感器经过了严密的制造和进一步加工。Advacam不仅可以提供无边缘传感器加工服务,还可以提供整个加工过程,通过凸点下金属层沉积和倒装焊接步骤以提供一整个无边缘传感器模块。将无边缘传感器用于大面积拼接可以优化生产良率。这是目前只有ADVACAM能提供的独特服务。平面传感器(左),像素矩阵周围的无效区域较宽。无边缘传感器(右侧)在传感器的物理边缘也敏感。过往案例- 左右滑动查看更多 -2. 晶圆焊撞ADVACAM使用电化学电镀工艺在6- 8英寸晶圆上沉积UBM和焊料凸点。焊撞工艺只适用于完整的晶圆(而非单个芯片)。沉积的焊料凸点的直径和间距分别从20 µm和40 µm开始。晶圆凸块工艺需要一层掩模。该工艺与标准的8英寸 CMOS芯片(带有缺口)以及6英寸和8英寸硅传感器晶圆兼容。2.1 高温焊撞ADVACAM提供的典型焊料合金是共SnPb(63:37)和InSn(52:48)合金。如果客户要求,还可沉积AgSn焊料。高温焊撞适用于Si或GaAs传感器的倒装焊接。小间距焊球凸点2.2 低温焊撞InSn焊料用于化合物半导体传感器的低温焊接。这些传感器,如CdTe和CdZnTe,通常对温度敏感,它们的热膨胀系数明显大于硅。低温焊料凸点沉积在读出ASIC的每第二个像素点上2.3 焊撞技术由于沉积率高,清晰的化学机理、沉积均匀性好,电镀已被广泛应用于倒装芯片凸点的沉积。UBM和焊料凸点都将使用相同的光刻胶掩模依次沉积。电镀通常需要一个掩模层和一个光刻流程。UBM/焊料在光刻胶开口处电沉积,在去除光刻胶后,沉积的金属层充当蚀刻晶圆导电种子层的掩模。尽管电镀过程很简单,但该过程对不同材料的化学相容性非常敏感。图片描绘了一个像素在电镀工艺的不同步骤中:1)芯片清洁,2)场金属沉积(粘附/种子层),3)厚胶光刻,4)UBM电镀,5)焊料电镀,6)光刻胶剥离,7)湿法蚀刻种子层,8)湿法蚀刻粘合层,9)回流焊。3. 倒装焊接ADVACAM一直参与各种间距和尺寸的混合像素探测器的倒装焊接,多年来累积了特殊的能力。今天,ADVACAM为客户的高价值组件提供商用倒装芯片服务。除了以生产为导向的工作外,ADVACAM还帮助客户进行研发项目。3.1 标准倒装焊接大多数倒装芯片的委托工作是在硅传感器模块上粘合CMOS芯片,但是复合半导体传感器(GaAs, CdTe和CdZnTe)越来越受欢迎。ADVACAM已经为这些传感器开发了自己的晶圆焊撞和倒装焊接工艺,如今它们通常能以高成功率进行倒装焊接。典型的焊料结构是将焊料凸点与UBM一起沉积在ASIC读出晶圆上,并且传感器晶圆具有可焊接的UBM焊盘。无边缘传感器倒装焊接到薄的MPX3 TSV 芯片
  • 新方案 | 沃特世DESI 5μm像素高性能质谱成像方法
    解吸电喷雾电离技术(DESI)现已成为市场上广泛应用的成像技术,可实现更小的像素尺寸和更高的图像分辨率。对单细胞的测定,是现今前沿科学研究的热门方向,使用DESI XS能否进行单细胞的测试呢?今年美国质谱年会(ASMS)上,沃特世展示了如何借助DESI™ XS进行5 μm空间分辨率的成像,从而实现对单细胞层面上的成像。 结论 兼容性与简易性:使用商用DESI XS离子源,无需重大改动即可实现5 μm左右的空间分辨率。高通量:低流量DESI非常稳定,适用于大样本分析(大于20个组织切片)。稳定性强:使用商品化的部件,保证稳定性和数据质量的情况下,进行超过35小时的长时间连续采集。高效率与高质量:在最低300 psi的背压、250 nL/min的流量下,可显著提高图像分辨率。利用HDI(1.8)软件以更高效地进行成像。 方法 使用市售的 DESI 离子源(DESI XS,Waters)分析猪肝、人肾上腺和大鼠脑组织。DESI XS离子源配有高性能喷雾器、加热传输管路(HTL)和μBinary溶剂管理器流体系统(ACQUITY UPLC M-Class BSM)。为进行高分辨率低流量DESI分析,对该系统进行了一些可逆的微小改动:为改善溶剂输送,在溶剂管路中加入了1.7 μm(300 μm x 150 mm)ACQUITY C18色谱柱。 DESI设置如下 溶剂:95:5 MeOH:水 溶剂流速:200-250 nL/min 雾化气体压力:1.35 bar 毛细管电压:0.79-0.85 kV 喷雾头到样品表面的距离: Xevo™ G3 QTof质谱仪采集 负离子和正离子模式,离子源温度为150℃,锥孔电压为80 V,所有其他设置均为默认值。 HDI软件方法设置:使用250 nL/min的低流量设置,先以100 μm像素大小获取初始图像,然后以50 - 5 μm像素大小重新获取选定区域的图像。 研究结果 分辨率高 将溶剂输送流速从典型的每分钟2 μL降低到250 nL,可将喷射束直径从约20-25 μm减小到 图2.HDI 1.8数据驱动显微镜工作流程,A)在模式选项卡中定义并获取低分辨率图像的初始区域。B) 在HDI中处理和检视图像。C) 在分析选项卡中选定感兴趣的区域。D) 将选定区域导入模式选项卡,并以更高分辨率采集。E) 在原始低分辨率图像上处理并显示高分辨率子区域。 兼容性与稳定性强 低流量DESI能在多天采集的多个组织中保持稳定。在标准分析后,可以选定感兴趣的区域进行高分辨率分析。 图3.左图:以50 μm分辨率采集的人类肾上腺癌组织图像。右上图:以5 μm分辨率重新采集的4号组织子区域。右下:Umap/DBscan对所需的5 μm区域进行分割的结果。低流量DESI在高分辨率(10 μm像素大小)下长时间(大于35小时)采集也很稳定。 图4.左图:以10 μm像素尺寸绘制的整个大鼠大脑矢状切面,其扩展部分显示了小脑内部的细节。右图:数据组中与组织最相关20个的单异构离子。 效率与质量兼备 将5 μm像素大小的图像与显微图像中看到的特征进行比较,估计达到的分辨率小于10 μm。图5.A:图4中数据组一小块区域的扩展;B:A的Umap/DBscan分割结果,紫色部分与C中显微图像中的细胞相对应;D:重新采集5 μm处的区域,C中可见的细胞的分辨率有所提高。 后记 解吸电喷雾电离(DESI)质谱技术越来越成熟,应用方向愈加广泛。现阶段来说,已可以朝着挑战单细胞成像的方向发展,如您有希望进行单细胞测试的合作意向,或希望了解更多DESI的应用方向,下载DESI应用文集,可扫描下方二维码告诉我们。 △立即扫码,告诉我们您的需求
  • 一文了解|影响红外热成像仪探测距离的因素
    约翰逊准则探测距离是一个主观因素和客观因素综合作用的结果,主观因素跟观察者的视觉心理、经验等因素有关。国外在这方面做了大量的研究,约翰逊根据实验把目标的探测问题与等效条纹探测联系起来,研究表明,有可能在不考虑目标本质和图像缺陷的情况下,用目标等效条纹的分辨力来确定红外热像仪成像系统对目标的识别能力,这就是约翰逊准则。目标的等效条纹是一组黑白间隔相等的条纹图案,其总高度为目标的临界尺寸,条纹长度为目标为垂直于临界尺寸方向的横跨目标的尺寸。等效条纹图案的分辨力为目标临界尺寸中所包含的可分辨的条纹数,也就是目标在探测器上成的像占的像素数。目标探测可分为探测(发现)、识别和辨认三个等级。探测,在视场内发现一个目标。这时目标所成的像在临界尺寸方向上必须占到1个像素以上。识别,可将目标分类,即可识别出目标是坦克、卡车或者人等。这是目标所成的像在临界尺寸方向上必须占到4个像素以上。辨认,可区分开目标的型号及其它特征,如分辨出敌我。这是目标所成的像在临界尺寸方向上必须占到8个像素以上。以上都是在临界值,也就是刚好能发现目标,以及目标与背景的对比度为1的条件下所得到的数据,从上面的约翰逊准则可以看出,一套热像仪能看多远,是由目标尺寸、镜头焦距、探测器性能等因素决定的。影响因素1. 镜头焦距决定热像仪的探测距离的最重要的因素就是镜头焦距。镜头焦距直接决定了目标所成的像的大小,也就是在焦平面上占几个像素。通常这是用空间分辨率(IFOV)来表示,它表示每个像素在物空间所张开的角度,也就是系统所能分辨的最小角度,一般由像元尺寸(d)与焦距(f)的比值得出,即IFOV=d/f。每个目标在焦平面所成的像占几个像素,可由目标尺寸、目标与热像仪的距离、空间分辨率(IFOV)计算得出。目标尺寸(D)和目标与热像仪的距离(L)的比值为目标的张角,再与IFOV相除得到像占用像素点的数量,即n=(D/L)/IFOV=(Df)/(Ld)。从中可以看到,焦距越大,目标像所占用的像素点越多,根据约翰逊准则可知,其探测距离更远。但另一方面,焦距越大,视场角越小,同时成本也更高。这里举个例子。热像仪焦平面的像元尺寸为17μm,配100mm焦距镜头,则空间分辨率IFOV为0.17mrad。观察1公里远的大小为2.3m的目标,则目标所张开的角度为2.3mrad,目标所成的像占用2.3/0.17=13.5个像素。根据约翰逊准则可知,达到辨认水平。2. 探测器性能镜头焦距是从理论上决定了热像仪的探测距离,在实际应用中起着重要作用的另一因素是探测器性能。镜头焦距只是决定了所成像的大小,占用像素点的数量,探测器性能则决定图像质量,如模糊程度,信噪比等。探测器性能可从像元尺寸、热灵敏度、信号处理等方面来分析。像元尺寸越小,则空间分辨率(IFOV)越小,从前面的讨论可看出,其探测距离越大。一个典型例子是,FLIR非制冷热像仪的Photon320的像元尺寸是38μm,Photon640的像元尺寸为25μm,如果都配100mm镜头,观察2.3m的目标,按照约翰逊准则,其识别距离分别为1公里、1.5公里。探测器的热灵敏度和信号处理决定了图像的清晰度。如果探测器的热灵敏度和信号处理能力不好的话,则所成的像只是一个模糊的热像,也就无法识别。因此,一些探测器的热灵敏度不高的话,则采取加大镜头口径的方法来提高图像效果,这不但增加了成本,而且也增加了使用上的不方便。美国FLIR的Photon系列,使用的镜头F数一般可降低到1.4~1.7,也就是口径可做得特别小。像现在国内普遍更新换代的12um要比17um的机芯看的距离多1.4倍。3. 大气环境虽然热辐射对大气的穿透能力比可见光强,但大气吸收、散射等对热像仪成像还是有一定的影响,特别是大雾和大雨的天气环境,从而影响到了热像仪的探测距离。像长波在雨雾中的穿透能力很差,中波在雾中的穿透力强,但穿雨同样不行。综上所述,红外热像仪探测距离受到几个方面的影响,它是探测器、镜头、目标、大气环境等客观因素、人的主观因素及软件算法共同影响的结果,所以在不考虑其它因素影响的情况下还是按照下面的公式进行计算。n=(D/L)/IFOV=【目标尺寸(D)*焦距(f)】/【目标与热像仪的距离(L)*像元尺寸(d)】但是不考虑大气环境的影响的话,一般会在探测上增加0.5个像数作为标准,识别加1个像数作为标准,辨认加2个像数作为标准来弥补不同探测器的灵敏度不一致及镜头良率的问题,来增大目标所占像数的数值确保能够得到想要的效果。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制