湿度影响

仪器信息网湿度影响专题为您整合湿度影响相关的最新文章,在湿度影响专题,您不仅可以免费浏览湿度影响的资讯, 同时您还可以浏览湿度影响的相关资料、解决方案,参与社区湿度影响话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

湿度影响相关的耗材

  • 自动调节湿度的加湿器
    自动调节湿度的加湿器 加湿器厂家新闻资讯报道:在工业生产中,静电有着许多不容忽视的危害,会妨碍车间的正常生产,以及降低产品质量,而且还容易引发各种安全事故;例如: 在纺织厂,静电使纤维缠结、断头增多以及吸附灰尘,飞花增多;在印刷厂,静电使纸张不齐、难以分开而影响印刷速度和质量;在电子部门、航空、航海等领域,静电可对电子元件,仪器仪表产生干扰,造成设备失控而发生事故; 在车间生产过程中,环境湿度的高低与静电的产生有着直接的关系;一般来说,湿度越低,空气越干燥所产生的静电也就越严重;因此,要想解决静电这个问题,就需要使用正岛CS-20Z自动调节湿度的加湿器及CS系列超声波加湿器进行合理的湿度调节,使车间生产环境湿度保持在最适宜的范围之内; 正岛CS-20Z自动调节湿度的加湿器及CS系列超声波加湿器无需接自来水管,将纯净水桶放上供水,可移动加湿,是新一代节能高效洁净卫生的加湿、降温设备。 一经推出,立即在众多领域得到迅速推广,成为替代高压喷雾加湿器、气水混和加湿、离心式移动加湿器等众多加湿型式的最佳选择! 特别适用于水源不便或高洁净的电子车间厂房、食品、药品企业、实验室等场所的加湿、消除静电等工作;还可广泛应用于机场、车站、酒店、商场、办公区等公共场所增加空气湿度及空气中负离子含量。 点击此处查看自动调节湿度的加湿器全部新闻图片 备注:该系列产品可与环境试验设备以及环境监测仪器等温湿度相关仪器设备配套使用,也可作为其中的一个核心配件!正岛CS系列超声波自动调节湿度的加湿器生产厂家:正岛电器,产品优势区别与对比,谨防假冒!备注目前市场部分加湿器厂家仿冒正岛加湿器ZS系列型号低配置低价格在销售请客户区别以下:品 牌电 源风 机外 壳正 岛变频电源 防水等级IP68(低能耗、低故障)特制防水风机全不锈钢外壳及内胆仿冒变压器(高耗能、高故障高、维修频率高)普通风机(易烧毁)普通钣金(易锈)正岛电器郑重承诺:整机保修一年,完善售后服务体系;以质量第一,诚信至上为企业宗旨。 欢迎您来电咨询自动调节湿度的加湿器,全自动湿度控制加湿器,工业加湿器厂家的详细信息!工业加湿器的种类有很多,不同品牌工业加湿器价格及应用范围也会有细微的差别,而我们将会为您提供全方位的售后服务和优质的解决方案。 正岛CS-20Z自动调节湿度的加湿器及CS系列超声波加湿器内部采用十组晶片集成式雾化器,并配有无水保护装置,所产生的雾粒直径只有1-10&mu ,能够迅速使水雾化,使水雾长时间悬浮于空气之中。是高效、可靠、实用的超声波空气质量调节加湿设备。 正岛CS-20Z自动调节湿度的加湿器及CS系列超声波加湿器加湿量与控制方式: 控制方式加湿量1.8kg/h加湿量3kg/h加湿量6kg/h开关控制CS-06CS-10CS-20时序控制CS-06SCS-10SCS-20S湿度控制CS-06ZCS-10ZCS-20Z 查看更多自动调节湿度的加湿器,全自动湿度控制加湿器,工业加湿器厂家的详细信息尽在:正岛电器 正岛CS-20Z自动调节湿度的加湿器及CS系列超声波加湿器产品六大核心配置优势: 优势一:【全不锈钢箱体】机组采用全不锈钢箱体结构,喷塑处理,美观耐用;自动进水,设有溢水保护,可自动控制水位;底部装有万向轮,可自由移动。 优势二:【集成式雾化器】机组采用集成式超音波钢化机芯,自带缺水保护装置,无机械驱动、无噪音、雾化效率高,杜绝易堵塞、维修繁锁等问题。 优势三:【IP68级防水电源】机组采用独家专利的全密封防水变频电源和全密封集成电路,防水等级为IP68(可置于水下1米深处也不会短路)。 优势四:【轴承式防水风机】机组风动装置采用防水等级为IP68的滚珠轴承式36V防水风机,具有启动快、风量大、振动小,耐腐蚀、运转稳定。 优势五:【耐碱酸陶瓷雾化片】机组选用的陶瓷雾化片适合较硬水质和耐碱酸的使用环境,且正常使用寿命长达3000-5000小时,更换方便快捷。 优势六:【高精度湿度传感器】机组配有微电脑自动控制器&日本神荣高精度湿度传感器,全自动控制面板,人机对话界面,智能化轻触式按键操作。工业加湿器厂家记者核心提示:因空气干燥而产生的各种麻烦如木材干裂、纸张粘连、仪表失灵、粉尘爆炸、静电打火等,都会给工业生产带来不同程度的经济损失;虽然很多工厂企业都为静电问题而投入了大量的人力物力,但工厂车间内部环境保持适宜的湿度是不能忽视。 通常,湿度保持在40-60%RH之间是较为适宜的;在车间生产环境中安装相应的正岛CS-20Z自动调节湿度的加湿器及CS系列超声波加湿器进行合理的加湿,可以有效的确保达到这一湿度标准。现在,大多数工厂企业都意识到了在车间生产环境中保持适宜的湿度能给它们带来生产力和资金上的显著收益。以上关于自动调节湿度的加湿器,全自动湿度控制加湿器,工业加湿器厂家的最新相关新闻报道是正岛电器为大家提供的! 您可以在这里更详细地了解自动调节湿度的加湿器产品的相关资讯信息: 很多使用过超声波工业加湿器的人都知道,这种设备使用时间长了,水箱内会产生水垢,影响设备使用寿命,那么超声波工业加湿器如何操作维护保养呢?下面我们就来了解一下这方面的知识。 超声波工业加湿器的操作与保养 一、清洗 一般情况下,加湿器的工作环境均含有纤纹或粉尘,所以用户应视自己的使用环境,定期彻底清洗震荡器及水箱,时间一般为7天或15天。 1、每周排水一次。操作方法:断电后,打开水箱底部排水阀门。 2、检查机箱内使用情况,操作方法:用钥匙打开加湿器水箱盖板,检查水箱内是否有水垢杂质。 二、保养维护 1、检查机箱内水箱底部、雾化器上的震动片(图片中小圆孔状)是否水垢,如结垢须立即清洗。正常保养过的雾化器如下图所示: 2、机箱内水箱底部、雾化器上的震动片如有水垢等杂物,可用软毛巾等进行擦洗,如结垢较深厚,可用食用醋对雾化器进行浸泡15-30分钟,然后再用清水冲洗干净。 3、清洗好水箱内的水垢,还应注意检查一下水位浮球开关,若浮球结垢加厚,份量加重,可能会失去无水自停功能,影响机器正常工作。让机器内部始终保持干净。 超声波加湿器最好采用纯净水加湿,因很多区域水质较硬也就是说钙镁离子含量高,加上水处理时添加净水剂,这些成分对加湿器相当不利,一部分随水雾一起喷出,弥散在空间和地面上,另一部分形成白粉结成水垢,沉淀在换能器和水箱上,改变换能器厚度,影响其震动频率。所以最主要的是清洗换能片和水箱,周期大概为7天和15天。
  • 237叶面湿度传感器
    用途:237叶面湿度传感器采用仿叶片设计,用于测量植物叶表的相对湿度。它通过环境中干湿度变化所引起的传感器内部电阻的变化,来测量出周围环境的湿度情况。产品在出厂时不进行任何喷涂,而由用户根据具体使用环境决定,以最大程度模拟叶片情况。传感器所使用的电缆采用热塑性橡胶做外套,能够有效防止极端温湿度、紫外线等对测量产生的不利影响。技术规格:干/湿输出信号无涂层传感器通常在50~200 kohms,有涂层传感器通常在20~1000 kohms工作温度-40~+150℃尺寸7.1×7.6×0.64厘米重量91克(带3米电缆时)产地:美国
  • 237叶面湿度传感器
    Campbell 237型叶面湿度传感器采用仿叶片设计,用于测量植物叶表的相对湿度。它通过环境中干湿度变化所引起的传感器内部电阻的变化,来测量出周围环境的湿度情况。产品在出厂时不进行任何喷涂,而由用户根据具体使用环境决定,以最大程度模拟叶片情况。  传感器所使用的电缆采用热塑性橡胶做外套,能够有效防止极端温湿度、紫外线等对测量产生的不利影响。 技术参数:  工作温度:-40~150℃  尺寸:7.1cm×7.6cm×0.64cm  重量:91g,含3m电缆 产地:美国

湿度影响相关的仪器

  • 产品介绍:HM4210-TR 烟气在线湿度仪是华电智控根据现有气体在线监测行业的需求自主研发的一款测量高温烟气中水分的湿度仪,设备采用电容式测量原理实现对湿度的在线实时测量,尤其适用于VOCs烟气在线监测系统和化工工艺监测系统。规格参数:1. 工作原理:阻容法2. 测量范围:0~40Vol%3. 测量精度:≤±2%F.S.4. 重复性:≤±1%F.S.5. 响应时间:≤10s6. 工作温度范围:0~190℃7. 工作环境湿度:0-80%RH8. 输出信号:4~20mA9. 供电电压:220AC/50Hz10. 采样方式:通入式性能特点:1. 采用原装进口传感器芯片,能有效保证仪器精度和使用寿命;2. 采用金属烧结过滤器,过滤精度高,净化效果好;3. 自带温度补偿功能,减少温度变化对湿度测量精度的影响;4. 模块化设计,方便维护维修;5. 操作简单,使用寿命长,易维护;6. 体积绝对湿度、质量绝对湿度、相对湿度、高温露点四种显示方式随意切换;7. 采用IST创新传感器技术,具有线性好,低滞后、响应速度快、抗化学性的特点;
    留言咨询
  • 采用目前国际上主流的薄膜电容技术的传感器,该传感器采用高分子聚合物薄膜电容测量原理,对湿度感应具有良好的精度、长期稳定性及滞后现象,传感器表层镀膜工艺网状结构可有效保护高分子材料远离灰尘颗粒和大多数化学物质的影响。阻容法湿度仪,进口湿度芯片,在位式湿度或者机柜式湿度两款,耐温180℃。
    留言咨询
  • 维萨拉DL2000温度与相对湿度数据记录仪产品介绍维萨拉2000系列数据记录仪适合针对温度、相对湿度及您所选定模拟传感器实现高精度测量。2000记录仪采用内置温度及相对湿度传感器,并可选配用千记录诸如压差、二氧化碳、电平、颗粒度和导电率等参数的电流或电压输入信号的外部通道。2000系列记录仪还可选配用千门开关或报警触点的布尔通道。2000系列数据记录仪可通过USB直接与PC计算机连接,也可通过以太网、PoE或WiFi方式安装在现有网络上,非常适合供独立或联网应用使用。每台记录仪均配备10年寿命电池和用于记录测量点各种参数的板载存储器。该记录仪由于具有自主供电和记录能力,其数据不会受到网络和电力中断影响。2000系列数据记录仪可配合软件实现环境数据下载、显示和分析功能,并可提供满足21 CFR Part 11要求的防篡改电子记录。选配基千浏览器的viewLinc系统具有全天候多级报警通知、远程实时监测功能,不存在数据中断问题。报告可自行定制,并可导出为Excel格式。维萨拉DL2000温度与相对湿度数据记录仪功能/优点&bull 业内领先的温度与相对湿度测量精度&bull 高精度、可调节基于时间的数字式记录&bull 可提供任意时间段的打印报告&bull 采用寿命长达10年的电池&bull 同一型号仪表既可验证又可用于连续监测&bull NIST可追溯、A2LA认证校准&bull 图表记录仪与硬布线系统的绝佳替代产品&bull 集成高精度相对湿度传感器维萨拉DL2000温度与相对湿度数据记录仪技术参数接口RS-232串口、USB、WiFi、以太网、PoE(vNet)PC软件软件绘图及报告:Spectrum、vLog(符合FDA/GxP规范要求)内部时钟精确度为±1分/月@-25℃~+70℃内置温度传感器工作范围:-35°C~+85°C分辨率:0.02°C内置相对湿度传感器工作范围:0%RH~100%RH分辨率:0.05%RH存储器数据采样能力:122,197 12位样本采样频率: 频率可调 (10秒间隔),从10秒/次到1天/次尺寸85 x 59 x 26mm (3.4" x 2.3" x 1")
    留言咨询

湿度影响相关的方案

湿度影响相关的论坛

  • 【讨论】湿度如何影响测试结果?

    在实验室管理,仓库管理啊,居住房里等等地方,都会有湿度管理。大家讨论下,湿度是如何影响实验室仪器及测试结果,如何影响仓库存放的产品,居住房间的湿度又该控制到多大的范围呢?

  • 环境湿度影响仪器性能

    [align=center][size=24px]环境湿度影响仪器性能[/size][size=20px][/size][/align] [size=18px]有些仪器的光路或检测器如果是开放型的或者密封效果不好的,环境湿度的水气可能会对检测结果(水气对光有吸收或折射现象)或仪器某些功能有影响(雾化光学部件,比如镜片、光源或发光部件、接收器表面,腐蚀某些部件,如锈蚀金属部件等)。 气体成分测量时,湿度会影响气体成分测量结果,湿度越大,气体成分测量结果越低。 环境湿度大,水蒸气冷凝的几率就大,某些像HCL、NH3、H2S等气体很容易就会溶解到水里,最后无法准确的测量出来,影响测量结果。同时这些酸性、碱性的气体溶解到水里会很强的腐蚀性,腐蚀测量仪器,如果有输送管道,采样管道或设备,这些管道或设备也会受到很严重的腐蚀。 有些测量方法需要采样称重的,比如用称重法测量颗粒物,水气会附着到采样膜或采样滤片上,从而影响称重结果,影响测量。 环境湿度影响仪器腐蚀程度,湿度越大,仪器金属部件腐蚀就会越大。 环境湿度影响电路元器件的绝缘程度,仪器的功能、性能可能会下降,严重时可能会发生故障或火灾等事故。 对于一些测量气态的仪器,环境湿度大也是仪器堵塞的一个重要原因,湿度中的水气会伴随着灰尘、粉尘堵塞气路(灰尘、粉尘遇到水气可能会相互粘结,导致体积变大,甚至形成泥团、泥浆、泥块等)。 对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]及[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用的仪器,湿度大影响色谱柱性能及使用寿命,严重的可能一天之内就会坏掉。[/size]

  • 【讨论】湿度对仪器的影响

    最近天气非常干燥,实验室湿度有时还不到20%,都知道湿度太大对仪器不好,那如果湿度过低,天气干燥对仪器有影响么?

湿度影响相关的资料

湿度影响相关的资讯

  • 燃料电池测试系统的背压、相对湿度、空气化学计量比对测试结果的影响
    聚合物电解质膜燃料电池(PEMFC)凭借高效、低排放的优点被普遍认为是一种最有前途的能源设备和电力运输系统。解决掉PEMFC的高成本以及耐用性有限、稳定性差的问题,就成为了实现商业化应用的关键。研究发现,PEMFC的性能与相对湿度、背压、氢气和气体化学计量比、电池温度等各种操作参数密切相关。1、背压对PEMFC的极化曲线和EIS曲线的影响图1 不同背压下PEMFC的极化和功率密度曲线(0、0.3和0.6 bar)图1中显示了0、0.3和0.6 bar背压下,商业Pt/C(Johns Manville Corporation GM Pt/C)在25cm² 的PEMFC中极化和功率密度曲线。随着背压从0到0.6 bar变化,PEMFC在0.4V电压下电流密度从1370 mA/cm² 分别增加到1400 mA/cm² 和1450 mA/cm² , 而0.7V电压下电流密度从476 mA/cm² 增加到588 mA/cm² 和708 mA/cm² 。可以发现,PEMFC的电流密度随着背压增大而明显增大。图2 不同背压下PEMFC的电化学阻抗 (0、0.3和0.6 bar)图2中显示了0、0.3和0.6 bar背压下,该PEMFC在0.8 V下频率范围为0.1Hz至10kHz的阻抗图谱。经过Zahner和Zview软件解析发现不同背压下,R1(欧姆电阻)从1.54 mΩ略微下降到1.52 mΩ,而R2(阴极电荷传递阻抗)从7.48 mΩ显著下降到5.29 mΩ,最后降低至3.48mΩ。相反的是,R3(阳极电荷传递阻抗)从0.76 mΩ增加到1.29 mΩ。在不加背压时,极化曲线显示了一个明显的欧姆极化电压降,这与阻抗图谱中显示的变化一致。在较高的背压下,使气流饱和所需的水,比低背压下所需的水少。证实了较高的背压下,质子膜的加湿性和导电性得到改善,从而降低了欧姆电阻和阴极电荷转移电阻。2、相对湿度对PEMFC的极化曲线和EIS曲线的影响图3 不同相对湿度下PEMFC的极化和功率密度曲线 (64、70、80和100%)图3显示了0.3bar背压下,PEMFC的极化曲线和能量密度在不同相对湿度下的变化。当相对湿度从64%增加到70%时,0.4 V电压下的电流密度从764 mA/cm² 增加到790 mA/cm² ,在0.7 V电压下,从405 mA/cm² 到453 mA/cm² 。然而,在相对湿度从70%到80%再到100%的情况下,0.4 V电压下电流密度分别降至744和588 mA/cm² , 0.7 V电压下电流密度分别降至424和364 mA/cm² 。可以发现,在同一背压下,PEMFC的电流密度随着相对湿度升高呈现出先增大后减小的趋势。图4 不同相对湿度下PEMFC的电化学阻抗 (64、70、80和100%)通过拟合解析可知,在不同的相对湿度下,PEMFC的欧姆阻抗(R1)都在1.92 mΩ间波动。当相对湿度提高到70%时,阴极转移电阻(R2)首先从8.34 mΩ下降到8.23 mΩ。相对湿度为80%和100%时,阴极转移电阻继续增大,分别达到9.32 mΩ和9.49 mΩ。阳极电荷转移电阻(R3)也有类似的变化趋势,相对湿度在64%时为1.19 mΩ,为70%时达到最低值0.54 mΩ,在80%时为2.48 mΩ,在100%时为3.24 mΩ。在相对湿度为64%时,Nafion型膜无法吸收足够的水分以获得适配的水合作用,从而影响离子电导率,从而产生更高的电池电阻。当相对湿度从70%增加到100%时,阴极和阳极电荷转移电阻急剧增加,造成PEMFC性能急剧下降。3、空气化学计量比对PEMFC的极化曲线和EIS曲线的影响图5 不同空气化学计量比下PEMFC的极化和功率密度曲线 (2.5、3、3.5)当空气化学计量从2.5变为3和3.5时,0.7V电压下的电流密度从621 mA/cm² 变化到584 mA/cm² 和598 mA/cm² ,0.4V电压下的电流密度从1417 mA/cm² 增加到1564 mA/cm² 和1686 mA/cm² 。由此可见,不同空气化学计量比下,PEMFC在低电流密度区域和高电流密度区域性能呈现出差异性变化。当进入流道的空气流速增大时,电化学反应更平稳,整体性能更好。然而,在低电流密度范围内,空气化学计量比为2.5时表现出较好的性能。这可能是由于流速较慢,水合条件较好,对空气量的需求较低。图6 不同空气化学计量比下的PEMFC的电化学阻抗(2.5、3、3.5)不同空气化学计量比下,欧姆电阻(R1)和阳极电荷转移电阻(R3)基本保持稳定,分别为1.59 mΩ和2.38 mΩ左右。空气化学计量量为2.5时阴极电荷转移电阻最高,随着空气化学计量量从3提高到3.5,阴极电荷转移电阻从5.36 mΩ仅变化到5.5 mΩ,几乎无变化。当空气化学计量比由2.5变化至3.5时,PEMFC在高电流密度范围内的性能得到明显改善,而在低电流密度范围内的效果不太明显。阴极电荷转移电阻随着空气化学计量比的增大而减小(图6)。可以推断,在空气化学计量比为2.5,空气含量相对不足,大多数电流密度范围内,自产水较少和膜的含水量较低,使得膜的离子电导率相对较低。当空气化学计量量为3和3.5时,空气供应充足,水管理得到改善,PEMFC的阴极转移电阻也就几乎保持恒定。4、结论燃料电池的背压对其性能有着重要影响。背压较高时,可以提高湿化率、降低阻力损失、加快反应速度,从而改善整体性能。研究还发现,相对湿度转折点设置在70%时,可以平衡膜的干燥和水合作用,保持适当的电池含水量,避免局部水淹。同时,适度提高空气化学计量比可以改善燃料电池的整体性能和低电压空间电流。燃料电池测试系统980pro最后,研究中对背压、相对湿度和空气化学计量比与PEMFC极化曲线和阻抗的变化规律进行了探究,为相关研究提供了参考和依据。但不同MEA实际的变化趋势和测试需求可能不同,因此未来还需更多样本的多样化研究。参考文献[1] Zhang,Q,Lin,et al.Experimental study of variable operating parameters effects on overall PEMFC performance and spatial performance distribution[J].ENERGY -OXFORD-, 2016.以上内容由理化有限公司技术中心整理,有不足之处请指正,转载请注明出处。
  • 应用案例 | 使用开路传感器系统研究温度和湿度对N2O吸收谱和浓度的影响
    近日,来自山东师范大学物理与电子科学学院的联合研究团队发表了一篇题为Effects of Temperature and Humidity on the Absorption Spectrum and Concentration of N2O Using an Open-Path Sensor System的研究论文。IntroductionSince China’ s proposal of the “carbon peak” and “carbon neutrality” goals, the government and society have attached great importance to the problems of air pollution and global warming. Nitrous oxide (N2O) isamong the six greenhouse gases under the Kyoto Protocol. N2O content is relatively low compared to carbon dioxide (CO2), but its global warming potential is about 310 times that of CO2. In addition, it is destructive to ozone (O3). There are many reasons for the changes in N2O concentrations in the atmosphere, which are partly due to anthropogenic activities, such as the widespread use of fertilizers in agricultural activities. The concentrations of other gases in the atmosphere, as well as the wind speed and direction, are all correlated with changes in N2O concentrations. At the macro level, temperature and humidity are also factors affecting the absorption coefficient of N2O gas. However, relatively few studies have been conducted on the specific effects of temperature and humidity on N2O gas, and analysis has also been lacking on the influence of temperature and humidity on the absorption spectrum and the concentration of N2O. Moreover, some uncertainty and variability remain in the observations of the relationship between N2O gas concentrations and temperature and humidity. The reasons for these discrepancies may be regional differences, differences in observation methods, and imperfections in data, which are all important bases for measuring the N2O concentration in atmospheric, medical, combustion, and agricultural processes. Thus, further research and exploration, combined with additional field observations and modeling experiments, can uncover the mechanism of temperature and humidity on the N2O concentration. Consequently, providing a scientific basis for this concentration is essential for reducing N2O emissions, controlling climate change, and promoting sustainable development and environmental protection. 简介自中国提出“碳峰值”和“碳中和”目标以来,政府和社会对空气污染和全球变暖问题给予了极大关注。N2O是《京都议定书》下的六种温室气体之一。与二氧化碳(CO2)相比,N2O含量相对较低,但其全球变暖潜力约为CO2的310倍。此外,它对臭氧(O3)具有破坏性。大气中N2O浓度的变化有许多原因,部分原因是人类活动造成的,例如在农业活动中广泛使用化肥。大气中其他气体的浓度以及风速和风向都与N2O浓度的变化相关。在宏观水平上,温度和湿度也是影响N2O气体吸收系数的因素。然而,对温度和湿度对N2O气体具体影响的研究相对较少,对温度和湿度对N2O吸收谱和浓度的影响分析也不足。此外,在N2O气体浓度与温度和湿度之间的关系观察中仍存在一些不确定性和变异性。导致这些差异的原因可能是地区差异、观测方法差异以及数据的不完善,这些都是测量大气、医疗、燃烧和农业过程中N2O浓度的重要基础。因此,进一步的研究和探索,结合更多的现场观测和建模实验,可以揭示温度和湿度对N2O浓度的机制。因此,为减少N2O排放、控制气候变化,促进可持续发展和环境保护提供科学依据至关重要。Experimental DetailsSensor SetupBased on WMS technology and an open optical path, an open optical-path detection system for detecting N2O gas in the atmosphere was built. The schematic diagram is shown in Figure 1. The sensor system is composed of a light-source module, photoelectric Remote Sens. 2023, 15, 5390 4 of 11 detection module, and data processing module. The light-source module mainly consists of signal generation, a laser drive, QCL, and an indication light source. To effectively realize the tunable characteristics of laser emission wavelength, we designed the signal generator plate to generate a high-frequency sine wave signal with a frequency of 10 kHz to realize the modulation function and to generate a low-frequency sawtooth wave signal with a frequency of 10 Hz to realize the scanning function. The two signals are superimposed on the laser driver, controls the temperature and central emission wavelength of QCL and converts it into an injection current acting on the detection light source QCL so that the emission wavelength of QCL is in the tunable range of 2203.7–2204.1 cm&minus 1.实验细节传感器设置基于波长调制光谱学(WMS)技术和开路光学路径,建立了一种用于检测大气中N2O气体的开路光学路径检测系统。示意图如图1所示。该传感器系统由光源模块、光电检测模块和数据处理模块组成。光源模块主要包括信号生成、激光驱动、量子级联激光器(QCL)和指示光源。为了有效实现激光发射波长的可调特性,我们设计了信号生成器板,生成频率为10 kHz的高频正弦波信号以实现调制功能,并生成频率为10 Hz的低频锯齿波信号以实现扫描功能。这两个信号叠加在激光驱动器上,控制QCL的温度和中心发射波长,并将其转化为作用于检测光源QCL的注入电流,使QCL的发射波长处于2203.7–2204.1 cm-1的可调范围内。Figure 1. Schematic diagram of N2O open optical sensor system.项目使用的激光驱动器是宁波海尔欣光电科技有限公司的QC750-TouchTM量子级联激光屏显驱动器。&bull 集成电流及温控驱动,功能完备;&bull 温度控制驱动采用非PWM式的连续电流输出控制,大大延长TEC器件的使用寿命;&bull 多种输出安全保护机制,保护QCL使用安全:可调电流钳制、输出缓启动、过压欠压保护、超温保护、继电器短路输出保护;&bull 大电流软钳制功能,避免误操作大电流损坏激光管;&bull UI界面显示便于用户操作使用及数据观测;&bull 全自主研发,集成度高,性价比高。QC750-TouchTM, Ningbo HealthyPhoton Technology, Co., Ltd.Selection of N2O TransitionsTo achieve effective detection of N2O gas molecules, we need to select the absorption line intensity and the emission central wavelength of the laser. First, combined with the HITRAN-2016 database, the wave number range of 2000–2250 cm&minus 1 was selected to analyze the region of the absorption spectral line intensity of N2O, and then carbon monoxide (CO), carbon dioxide (CO2), and water (H2O) molecules were simulated and analyzed, as shown in Figure 2. Within this wave number range, the absorption spectra of CO2 were mainly distributed within the 2000–2081 cm&minus 1 range, and the absorption spectra of CO gas were distributed within the 2025–2200 cm&minus 1 wave number range. The absorption spectra of N2O gas were distributed before the 2020 cm&minus 1 wave number range. The absorption spectra of N2O gas molecules were mainly distributed in the 2200–2250 cm&minus 1 wave number range, and they were far from the absorption spectra of water vapor and other gases, reducing interference. At around 2203.7 cm&minus 1 , the absorption spectra ofN2O gas were the strongest. Therefore, we set the position of the N2O absorption line to 2203.7333 cm&minus 1, which was used as the wave number of the QCL emission center. The corresponding spectral line intensity was 7.903 × 10&minus 19 (cm&minus 1 .mol&minus 1 ). The central current and temperature of QCL were set at 330 mA and 36.0 ◦ C, respectively.N2O跃迁的选择为了有效检测N2O气体分子,我们需要选择吸收线强度和激光的发射中心波长。首先,结合HITRAN-2016数据库,选择了2000–2250 cm&minus 1的波数范围,以分析N2O吸收光谱线强度的区域,然后对一氧化碳(CO)、二氧化碳(CO2)和水(H2O)分子进行了模拟和分析,如图2所示。在这个波数范围内,CO2的吸收光谱主要分布在2000–2081 cm&minus 1范围内,CO气体的吸收光谱分布在2025–2200 cm&minus 1波数范围内。H2O气体的吸收光谱分布在2020 cm&minus 1波数范围之前。N2O气体分子的吸收光谱主要分布在2200–2250 cm&minus 1波数范围内,远离水蒸气和其他气体的吸收光谱,减少了干扰。在2203.7 cm&minus 1左右,N2O气体的吸收光谱最强。因此,我们将N2O吸收线的位置设置为2203.7333 cm&minus 1,用作QCL发射中心的波数。相应的光谱线强度为7.903 × 10&minus 19(cm&minus 1mol&minus 1)。QCL的中心电流和温度分别设置为330 mA和36.0 ℃。Figure 2. The intensity distribution of absorption lines of N2O, CO, CO2, and H2O in the range of 2000–2250 cm&minus 1.ConclusionsIn this study, we investigated the effects of temperature and humidity on the concentration of N2Oand its absorption spectra using an open-path sensor system. By combining theoretical analysis and field monitoring, we first conducted monitoring of N2O in a campus environment, analyzing the effects of temperature on its concentration and absorption spectra. We discovered that the concentration of N2O would increase correspondingly with the increase in temperature. The influence of humidity on N2O concentration was monitored under the condition that the ambient temperature of the laboratory remained unchanged. The concentration of N2O was negatively correlated with humidity. The 2f and 1f signals under different temperature and humidity levels were extracted for analysis. We found that the higher the temperature, the smaller the peak value ofthe 2f and the 1f signals, which accords with the trend of the Gaussian function changing with temperature. Under different humidity conditions, the lower thehumidity, the larger the 2f signal peak the higher the humidity, the smaller the 2f signal. This study is of great significance for analyzing the relationship between N2O and environmental parameters such as temperature and humidity. We hope that our research findings can assist environmental agencies in formulating more effective environmental policies for different environments. In the future, we can use QCL to analyze the relationship between N2Oand other environmental and gas parameters.结论在本研究中,我们利用开路传感器系统研究了温度和湿度对N2O浓度及其吸收光谱的影响。通过理论分析和现场监测相结合,我们首先在校园环境中进行了N2O监测,分析了温度对其浓度和吸收光谱的影响。我们发现随着温度升高,N2O浓度相应增加。在实验室环境中,保持环境温度不变的条件下监测了湿度对N2O浓度的影响。N2O浓度与湿度呈负相关。在不同温度和湿度水平下提取并分析了2f和1f信号。我们发现温度越高,2f和1f信号的峰值越小,这与高斯函数随温度变化的趋势相符。在不同湿度条件下,湿度越低,2f信号峰值越大;湿度越高,2f信号越小。这项研究对分析N2O与温度、湿度等环境参数之间的关系具有重要意义。我们希望我们的研究结果能够协助环境机构为不同环境制定更有效的环境政策。未来,我们可以利用QCL来分析N2O与其他环境和气体参数之间的关系。参考:Effects of Temperature and Humidity on the Absorption Spectrum and Concentration of N2O Using an Open-Path Sensor System, Remote Sens. 2023, 15, 5390.
  • 新一代testo 174/175/176温湿度记录仪系列——温湿度长期记录的最佳
    数据记录仪专家德图公司(Testo AG)现在为您推出新一代的温湿度数据记录仪。该记录仪系列操作更简便,数据更安全,仪器精度及电源管理等性能全面升级,使得其在同类产品中脱颖而出。到目前为止,德图公司共计研发了多达12款的数据记录仪,为各种应用领域提供了最为专业的温湿度长期监测的解决方案。除已经上市的一款迷你温湿度记录仪testo 174H之外,此次隆重推出了testo174T、testo 175及testo 176系列共11款新产品。 新一代testo175、testo176记录仪优势一览: 电池用尽数据也不会丢失; 密码设置及防盗支架设计; 超大液晶显示屏易于读数; 标准迷你USB接口及SD卡; 电池寿命可长达8年(testo176); 数据存储量达2百万个(testo176); 可连接Pt100高精度探头(testo176); 软件ComSoft Basic 5 免费下载; 网站注册获免费保修延长半年。 【食品冷链领域中的应用】 在食品安全的监测中,食品冷链环节是食品安全最为重要的一个环节。冷链物流是指温度敏感性产品在生产、贮藏运输、销售,到消费前的各个环节中,始终处于规定的低温环境下,以保证物品质量,减少物流损耗的一项系统工程。而低温冷藏能使食品原有的风味、色泽、营养保持得更好,食用的安全性更高。 一般情况下,冷冻库的温度保持在-23℃至-25℃,而食品中心温度一般在-18℃左右,在整个冷链过程中必须保证其维持在规定的温度之内,才能使食品处于最佳产品质量和最优的新鲜度得状态。德图为你带来拥有德国的先进技术的最新温湿度数据记录仪,为您提供完美的温湿度测量和记录方案,帮助你做到上述工作。 testo 175 T2除了内置温度传感器外,还能外接一个刺入/浸入式探头,实现环境温度和食品中心温度的同步测量。testo 176 T1 和 testo 176 T2的电池使用寿命长达8年,并具有超大的数据存储容量(最多可存储200万个测量数据),适用于冷藏室中的长期测量。因此无论是肉类产品还是农产品,无论是冷冻食品还是新鲜食品,它都能在运输过程中的无间断地记录温度情况,以确保食物品质,减少由于运输所带来的食品损耗的经济损失。 【室内环境领域中的应用】 随着人们生活水平的提高,人们对于自己的生活环境越来越关注。室内的舒适度通常取决于相对空气湿度和适宜的温度。实验表明,在装有空调的室内,室温为19至24℃,相对湿度45-65%RH时,人会感到最舒适。而冬季供暖期的室内湿度通常仅为15%RH,人在这样的房间呆久了,往往会出现干燥上火的现象。此外,当空气湿度低于40%RH的时候,往往会造成眼部、黏膜以及呼吸器官的不适。 通风是用新鲜的室外空气来稀释或置换被污染的室内空气,是改善室内空气品质的有效措施。德图testo 175和testo 176系列帮助您记录下建筑物的&ldquo 自然&rdquo 通风,同时也记录外部湿度的自然输送情况。帮助您优化通风环境,进行实时监控,从而有效防止霉变发生,让建筑物自然&ldquo 呼吸&rdquo 。 使用testo 175 H1就可以通过在不同的地点放置数据记录仪,从而监控建筑物中的环境的温湿度。另外,用户也可免费下载德图最新的ComSoft Basic 5软件,通过图形显示,帮助你更加专业、准确地分析测量数据,确保室内温湿度达到最为适宜的状态。 【仓储环境领域中的应用】 从谷物到药品,再到敏感电子部件或贵重文物,无论贮存什么物品都有一个共同点:它们对高湿度极度敏感。 档案、图书的保管环境对湿度要求比较严格。相对湿度在45%RH至60%RH时纸张的含水量可以保持在7%左右,此时纸张的机械强度、物理和化学性质均保持在比较优良的状态下,可以有效防止纸张粘连、扭曲变形等现象,从而延长档案材料的使用寿命,是比较适合档案存储管理的环境湿度。 而果品蔬菜贮存的最佳温度在-5℃至15℃之间,相对湿度在80%RH至97%RH之间,属于对相对湿度要求较高的生产环境。这种湿度要求通常是自然条件所不能达到的,必须通过人工加湿才能满足其对于湿度的需求,若不能满足则会导致果品蔬菜失重、脱水和变味,将直接影响果品蔬菜的质量和经济价值。 testo 176 H1通过不间断地监控储藏温湿度确保商品质量。testo 175和testo 176系列的数据记录仪都带有一个标准的USB和SD接口,能方便地追溯并记录规定温度限值的维持情况。如果温湿度发生了变化,便可直接按照时间的先后顺序追溯温湿度变化情况,从而查找出问题所在。 testo 175和testo 176系列数据记录仪经德国安全标准权威TÜ V Sü d根据ATP和DIN EN 12830准则进行测试认证,让您的测量更加专业精准。 德图仪器&mdash &mdash 成就非凡的测量!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制