上转换材料

仪器信息网上转换材料专题为您整合上转换材料相关的最新文章,在上转换材料专题,您不仅可以免费浏览上转换材料的资讯, 同时您还可以浏览上转换材料的相关资料、解决方案,参与社区上转换材料话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

上转换材料相关的耗材

  • 上转换发光纳米粒子
    上转换发光纳米粒子主要是由氧化物、氟化物、卤氧化物等基质掺杂三价稀土离子(如Er3+ , Eu3+ , Yb3+ , Tm3+ , Ho3+ 等)得到,通过多光子机制将红外光转换成可见光,为反Stokes发光;具有发射谱线窄,寿命长,发光稳定性好,不易受环境影响,生物毒性低,化学稳定性高等优点;广泛应用于生物荧光标记和成像、激光器、太阳能电池、防伪技术等领域。 成分:NaYF4(Er/Tm, Yb)/NaYF4核壳结构 激发波长:980 nm/ 808 nm发射峰:365 nm、475 nm、545 nm、655 nm、800 nm半峰宽:<10 nm溶剂:溶于有机溶剂或水我们可根据客户需求,提供不同质量、膜尺寸的上转换高分子复合膜。由于此款产品为定制款,标价为参考价,具体价格请联系在线客服发射峰 & 吸收峰 TEM测试图
  • 荧光转换屏
    这款荧光转换屏是欧洲进口的优质闪烁体转换屏,X射线转换屏,X射线荧光屏,具有全球最高的转换效率和最薄的厚度,非常适合X射线探测,电子成像、X射线成像和紫外成像应用.我们可根据用户要求提供全球领先的Al、ITO或C(铝、氧化铟锡、炭)等传导性和反射或者增透镀膜。这种荧光转换屏使用YAG:Ce晶体和LuAG:Ce晶体作为衬底,具有超薄和超高分辨率的优点(最薄可达5微米以下)。这两种闪烁体材料(YAG:Ce晶体 LuAG:Ce晶体)具有具有良好的化学、力学和温度性能,非常适合光电二极管和雪崩二极管读取。中国领先的进口X射线成像系统旗舰型服务商--孚光精仪!这些荧光转换屏特意为电子成像、X射线成像和紫外成像应用而设计,并可以提供Al、ITO或C(铝、氧化铟锡、炭)等传导性和反射或者增透镀膜。 确定成像显示屏的厚度需要考虑到合适的探测效率和高分辨率两种因素。根据多年的经验可以确定的是对于耦合在精密光学衬底上的超薄成像荧光屏而言,如果使用高灵敏度的CCD探测器照相,就X射线应用而言可以给出大约1微米的分辨率。光学衬底上的荧光转换屏高分辨率的荧光转换屏,闪烁体转换屏实际上是高效率成像系统的主要元件.我们提供基于YAG:Ce或LuAG:Ce 单晶闪烁探测器的超薄显示屏. 超薄YAG:Ce闪烁屏(左图) 和 超薄LuAG:Ce超薄闪烁屏(右图) 使用这种镀在光学衬底上的荧光转换屏,闪烁体转换屏,结合光学系统和CCD相机,可以获得优于1微米(X射线应用)和2纳米(电镜)的分辨率.光纤光学上的荧光转换屏,闪烁体转换屏我们可以提供耦合到FOP上的YAG:Ce和LuAG:Ce成像屏,也可与CCD耦合一起。 FOP上的薄YAG:Ce闪烁屏(左图)和锥形FO上的YAG:Ce闪烁屏(右图) 我们提供的这种用成像系统获取的X射线图像的分辨率大约是20微米。我们也可以根据用户需求把成像屏耦合到光纤元件和CCD上。超薄独立成像屏: 这种超薄荧光转换屏,X射线转换屏,X射线荧光屏,闪烁体转换屏不需要与衬底耦合或其他支持物,不需要胶合在玻璃或FOP上。直径为10mm厚度为0.030mm。也可以提供更大直径的荧光转换屏,X射线转换屏,X射线荧光屏,闪烁体转换屏,但是厚度需要增加到0.050mm左右
  • 闪烁体转换屏
    这款闪烁体转换屏是欧洲进口的优质荧光转换屏,X射线转换屏,X射线荧光屏,具有全球最高的转换效率和最薄的厚度,非常适合X射线探测,电子成像、X射线成像和紫外成像应用.我们可根据用户要求提供全球领先的Al、ITO或C(铝、氧化铟锡、炭)等传导性和反射或者增透镀膜。这种闪烁体转换屏使用YAG:Ce晶体和LuAG:Ce晶体作为衬底,具有超薄和超高分辨率的优点(最薄可达5微米以下)。这两种闪烁体材料(YAG:Ce晶体 LuAG:Ce晶体)具有具有良好的化学、力学和温度性能,非常适合光电二极管和雪崩二极管读取。中国领先的进口X射线成像系统旗舰型服务商--孚光精仪!闪烁体转换屏特意为电子成像、X射线成像和紫外成像应用而设计,并可以提供Al、ITO或C(铝、氧化铟锡、炭)等传导性和反射或者增透镀膜。 确定成像显示屏的厚度需要考虑到合适的探测效率和高分辨率两种因素。根据多年的经验可以确定的是对于耦合在精密光学衬底上的超薄山活体荧光屏荧光屏而言,如果使用高灵敏度的CCD探测器照相,就X射线应用而言可以给出大约1微米的分辨率。光学衬底上的荧光转换屏,X射线转换屏,X射线荧光屏,闪烁体转换屏高分辨率的闪烁体转换屏实际上是高效率成像系统的主要元件.我们提供基于YAG:Ce或LuAG:Ce 单晶闪烁探测器的超薄显示屏. 超薄YAG:Ce闪烁屏(左图) 和 超薄LuAG:Ce超薄闪烁屏(右图) 使用这种镀在光学衬底上的闪烁体转换屏,结合光学系统和CCD相机,可以获得优于1微米(X射线应用)和2纳米(电镜)的分辨率.光纤光学上的成像屏 (荧光转换屏,X射线转换屏,X射线荧光屏,闪烁体转换屏)我们可以提供耦合到FOP上的YAG:Ce和LuAG:Ce成像屏,也可与CCD耦合一起。 FOP上的薄YAG:Ce闪烁屏(左图)和锥形FO上的YAG:Ce闪烁屏(右图) 我们提供的这种用成像系统获取的X射线图像的分辨率大约是20微米。我们也可以根据用户需求把成像屏耦合到光纤元件和CCD上。超薄独立成像屏: 这种超薄闪烁体转换屏不需要与衬底耦合或其他支持物,不需要胶合在玻璃或FOP上。直径为10mm厚度为0.030mm。也可以提供更大直径的荧光转换屏,X射线转换屏,X射线荧光屏,闪烁体转换屏,但是厚度需要增加到0.050mm左右。

上转换材料相关的仪器

  • AD-50K复合材料超声波探伤仪基本介绍 AD-50K复合材料超声波探伤仪(AD-50K多功能探伤仪)是检测所有现代复合材料领域的全新手段,能够实施和组合各种检测方法。该电路具有四个发生器,并允许转换器在脉冲和连续激励模式下工作。 AD-50K复合材料超声波探伤仪能够实现声学阻抗,涡流和声振的三种检测方法。 这种多功能性使其能够解决各种检测任务: n 层压板结构分层缺陷检测; n 分层缺陷深度估算; n 蜂窝结构脱粘检测; n 碳纤维及其他导电材料的体积缺陷和裂纹检测; n 碳纤维电导率的评估; n 碳纤维材料表面涂层厚度的测量; n 金属缺陷裂纹检测。 AD-50K复合材料超声波探伤仪可以连接任何类型的声学阻抗(组合,单独组合)探头和振动(与压电元件或麦克风)探头以及涡流转换器。 AD-50K复合材料超声波探伤仪结合了模拟和数字技术的**成果,功能广泛,功能丰富,方便易用,可靠性高。 该设备的存储器允许您存储信号,光谱特性,设置和测量结果。 重量轻并采用可更换的锂电池,以及现代易于阅读和防冻的显示器,保证系统可以在任何车间,野外和现场恶劣条件下使用。 AD-50K复合材料超声波探伤仪性能特点 AD-50K复合材料超声波探伤仪的主要功能特点: 1、同时显示转换器的实际信号及其频谱,并在时域和频谱区域内分别进行增益控制。 2、类似于传统的超声波的C扫描显示,彩色“瀑布”型扫描模式,使得采集信号的振幅显示不同的颜色变化。高信息化扫描信号和数据汇总信号的有机结合,使其发现其他设备无法发现的缺陷。 3、频域中的三个独立区域,允许执行任何操作方法。 4、差分模式,允许合适采样区域记录信号,以消除结构噪声,并将其与当前信号进行比较。 5、信号显示在复平面上的连续激励模式。 6、结合不同的信息显示模式。 我司为KROPUS所有产品在大中华地区的总代理。
    留言咨询
  • EzTime-PL 同步可调制半导体激光器-------上转换荧光寿命测试仪◆ 替代OPO,提供大功率,宽波长范围激发波长选择;◆ 波长选择范围:405nm-2200nm;◆ 可实现连续输出和脉冲输出模式;◆ 输出脉宽独立可调;◆ 闪烁频率独立可调;◆ 幅值功率独立可调;☆ 上转换荧光光谱激发;☆ 上转换荧光寿命激发;☆ 微弱样品微秒寿命激发;☆ 防伪及刑侦光源;☆ 荧光标记筛选;☆ 单态氧发光光谱及寿命; ☆ 脉宽—-颜色受控样品表征;应用一:上转换荧光光谱及寿命,980nm 激光器激发;应用二:单态氧发光光谱动态及寿命,405nm 激光器激发;可以匹配已有市场的大部分型号荧光谱仪: 配合 HORIBA 荧光寿命测试系统,EDI FLS系列荧光寿命测试系统; TCPSC 系统中的 MCS 测试模式或磷光测试模式,获得荧光衰减曲线、时间分辨发射谱TRES和延迟荧光光谱;控制器部分1. 荧光寿命测试范围: 1us -10s ;2. 受控输出信号闪烁频率(0.01 -1kHz),可以实现的完全受控同步;3. 主动信号输出:0.1Hz-100kHz;带同步输出端口;4. 独立输出信号脉宽调整 :25ns -500ms 无级可调;5. 电信号 拖尾小于1ns(外接 50 Ω电阻) ;激光器部分6. 半导体 激光器,额定功率2W,功率可调输出,1 -5W 可选7. 激光器 连续输出稳定性,< 2%,依赖于不同激发波长;8. 激光器 可选开放式平行光输出或线端口;可选波长:375-2200nm(请咨询 销售工程师更新列表)
    留言咨询
  • 产品名称:不同基底上的石墨烯材料 基底种类:(1)在铜片上合成3.5英寸的石墨烯(单层)(2)在Ni或Cu等薄膜上合成4英寸的石墨烯薄膜(单层或少数层);(3)转移到硅片、玻璃、石英、PET等基板上的石墨烯,尺寸小于4英寸(单层或少数层) 标准包装: 1000级超净室100级超净袋
    留言咨询

上转换材料相关的试剂

上转换材料相关的方案

上转换材料相关的论坛

  • 基于上转换复合材料的光引发组织粘合剂研究

    [align=center][size=18px]基于上转换复合材料的光引发组织粘合剂研究[/size][/align][size=16px]以研究适用于应急组织伤口处理的光引发组织粘合剂为目标,以设计[/size][size=16px]基于功能化凝胶上转换纳米复合材料的光引发组织粘合剂为研究重点,以制备合[/size][size=16px]成多色可调的上转换纳米材料光导平台和设计功能化光交联凝胶修复剂为突破[/size][size=16px]口。采用纳米技术、表面化学修饰、生物技术、光化学技术、细胞实验和统计分[/size][size=16px]析等手段相结合,深化上转换纳米材料和功能化凝胶的设计开发,探究复合材料[/size][size=16px]的修复作用机理和抗菌性能,实现创面组织缺损光诱导原位修复,提高表面和深层损伤组织修复效率,减少疤痕形成和继发性炎症,开发出可替代传统缝合术的[/size][size=16px]新型功能化凝胶上转换纳米复合材料组织粘合剂,为突发事件中受损组织的快速整合和创面修复提供理论与技术支撑[/size][size=16px]。[/size][size=16px]主要研究内容[/size][font='宋体'][size=16px](1)功能化凝胶上转换纳米复合材料的设计与制备:上转换纳米材料[/size][/font][font='宋体'][size=16px]具有独特的光学特性,能够使生物光子在深层组织中的应用。光引发组织粘接是创面组织[/size][/font][font='宋体'][size=16px]修复的新型无创技术,依赖于光敏剂的光激活释放活性物质在组织表面和基质材料之间产[/size][/font][font='宋体'][size=16px]生有效的交联。以凝胶材料壳聚糖作为基质,光敏基团邻硝基苯作为光敏剂并引入胍基抗[/size][/font][font='宋体'][size=16px]菌基团,通过化学修饰改性方法制备功能化凝胶。光反应性材料在创伤组织缝合时诱导受[/size][/font][font='宋体'][size=16px]损皮肤组织中的胶原基质交联,以上转换纳米材料为载体结合功能化凝胶通过表面修饰制[/size][/font][font='宋体'][size=16px]备合成功能化凝胶上转换纳米复合材料作为光引发组织粘合剂,近红外光照将光传输到深部组织中,激活光敏剂诱导组织黏结修复。(2)光引发组织粘合剂的优化筛选:优化筛[/size][/font][font='宋体'][size=16px]选功能化凝胶上转换纳米复合材料光引发组织粘合剂,考察荧光发射光谱与紫外吸收光谱[/size][/font][font='宋体'][size=16px]相互匹配度以及功能化凝胶上转换纳米复合材料的组织损伤修复能力。考察所选复合材料[/size][/font][font='宋体'][size=16px]的荧光、紫外性能以及元素组成、形貌特征、晶型结构、热稳定性和表面基团及电荷分布情况等以及复合材料的粘附机理、抗菌性能、抗拉强度及使用条件等参数。(3)光引发[/size][/font][font='宋体'][size=16px]组织粘合剂的应用潜力评价。考察复合材料的生物相容性、细胞毒性、凝血效果、整合凝[/size][/font][font='宋体'][size=16px]胶与组织粘连能力。进一步考察复合材料对各种动物组织[/size][/font][font='宋体'][size=16px]([/size][/font][font='宋体'][size=16px]皮肤、肌肉、肝脏、胃和心脏等)损伤修复能力。[/size][/font][align=right][/align][font='宋体'][size=16px]研究方法和技术路线[/size][/font][font='宋体'][size=16px]图 [/size][/font][font='宋体'][size=16px]1. [/size][/font][font='宋体'][size=16px]总体研究技术路线示意图[/size][/font][font='宋体'][size=16px]研究方法和实验手段如下:[/size][/font][font='宋体'][size=16px](1)[/size][/font][font='宋体'][size=16px]功能化凝胶上转换纳米复合材料的设计与制备。采用热共沉淀法以 [/size][/font][font='宋体'][size=16px]β[/size][/font][font='宋体'][size=16px]-NaYF4 [/size][/font][font='宋体'][size=16px]作为基质,调节镧系元素掺杂剂量比例,制备具有不同发射光谱的上转换纳米材料;采用[/size][/font][font='宋体'][size=16px]酸处理法除去上转换纳米材料表面的油酸配体得到白色固体颗粒,聚丙烯酰胺配体交换修[/size][/font][font='宋体'][size=16px]饰后备用;以凝胶材料壳聚糖为基质,采用碳二亚胺盐酸盐化学法将邻硝基苯和抗菌基团修饰到基质上制备出功能化凝胶。[/size][/font][font='宋体'][size=16px](2)光引发组织粘合剂的优化筛选。检测功能化凝胶上转换纳米复合材料及相应组[/size][/font][font='宋体'][size=16px]成单体的荧光光谱与紫外光谱,筛选能够相互匹配的复合材料;以猪的皮肤或肌肉为组织[/size][/font][font='宋体'][size=16px]基质制作组织切口,注入复合材料并在近红外激光照射下,检测切口均粘接情况测试组织粘合强度以及组织基质的粘合后的最大拉伸力。[/size][/font][font='宋体'][size=16px](3)[/size][/font][font='宋体'][size=16px]光引发组织粘合剂的表征及机理性能考察。通过电镜分析、傅立叶红外光谱、[/size][/font][font='宋体'][size=16px]X [/size][/font][font='宋体'][size=16px]射线衍射、热重分析和 [/size][/font][font='宋体'][size=16px]Zeta[/size][/font][font='宋体'][size=16px] 电位分析等表征合成复合材料性能;利用光电子能谱仪进行[/size][/font][font='宋体'][size=16px]粘附机理分析;考察功能化凝胶上转换纳米复合材料的抑菌作用;比对商品化纤维蛋白胶和氰基丙烯酸酯胶粘剂粘接的抗拉强度试验;考察功能化凝胶上转换纳米复合材料。[/size][/font][font='宋体'][size=16px](4)光引发组织粘合剂的应用潜力评价。对所合成材料的体内生物相容性、体外细胞毒性试验、全血凝血试验、体内透皮给药试验以及胶原纤维形成试验等评价方法。[/size][/font]

  • 【原创大赛】如何成为验钞老司机?学会测上转换荧光量子产率就好了!

    【原创大赛】如何成为验钞老司机?学会测上转换荧光量子产率就好了!

    话说某天,某工程师同事报销拿到热乎乎的软妹币后,由于过于兴奋,一时间感天地召唤,灵感涓涓。于是……http://ng1.17img.cn/bbsfiles/images/2017/01/201701191700_668360_2194_3.jpg就地进行了一个不走寻常路的,你见所未见的,华丽丽的验钞实验!左图是使用便携式980nm激光器照射某种“神秘”的材料。右图是使用980nm激光器照射人民币防伪部分(绿色亮点)。http://ng1.17img.cn/bbsfiles/images/2016/07/201607201130_601247_2194_3.jpg我的天呐,这么神奇吗?这包看上去辣么普通的小东西,居然和软妹币发出了同样的炫目光芒!然后呢,同事眼镜一推,开始讲了:其实,秘密在于这个“神秘”材料就是软妹币中所掺杂稀土的上转换荧光材料。什么是上转换发光?上转换发光是指吸收两个或两个以上低能光子而辐射一个高能光子的发光现象,通常是指将近红外光转换成可见光信号,其发光机理是基于双光子或多光子过程。由于上转换发光所吸收的光子能量低于所发射的光子能量,这种现象违背了Stokes定律,因而又称为反Stokes发光。上转换这一概念是Auzel、Ovsyankin和Feofilov在上世纪60年代中期提出并建立的。目前,稀土离子的上转换发光几乎覆盖了可见光的各个波段,其在近红外量子计数器、激光器、三维立体显示、荧光粉、医学成像及生物传感器等方面己经获得了广泛的应用。上转换材料的前世今生稀土离子上转换发光机的研究一直受到人们的重视,经过几十年的探索,人们对上转换发光机理已有了深入的了解。其机制主要分为三大类:即激发态吸收(ESA,Excited State Absorption)、能量转移(ET,Energy Transfer)和“光子雪崩”过程(PA,Photon Avalanche)。对于稀土上转换发光而言,不同离子具有不同的上转换发光方式,即使同一离子在不同的泵浦方式下也有不同的发光机制。上转换材料一般包括激活剂、敏化剂和基质。稀土元素Ho3+、Nd3+、Er3+、Tm3+具有丰富的能级,由于4f 能级的电子屏蔽作用,能级寿命较长,因此有很高的上转换效率,是目前研究较多的上转换材料的激活剂。Er3+、Tm3+、Ho3+在单个的纳米晶中,影响上转换效率的因素有两个:激活离子的吸收截面和相邻激活离子间的距离。相邻激活离子间的距离可以通过掺杂量来控制,当掺杂量过高时,相邻激活离子间发生有害的交叉驰豫而导致浓度淬灭效应。而激活离子的吸收截面可以通过掺入共激活剂,即敏化剂来增强上转换发光效率。稀土元素Yb3+的激发光谱为980 nm,与Er3+第一激发态的吸收能量相一致,而且吸收截面远远大于Er3+,能量吸收后可传递给Er3+,因而是一种很有效的上转换材料敏化剂,加入Yb3+后Er3+的上转换效率可提高1~3个数量级。基质材料需要声子能量低、稀土离子掺杂浓度高、稳定性好的特性。纳米上转换发光的基质材料主要有氟化物和氧化物基质。其中,以氟化物为基质的上转换材料效率最高。氟化物具有很多优点:(1)透光范围很宽;(2)稀土离子能很容易地掺杂到氟化物材料中;(3)声子能量低(~500 cm-1),荧光效率明显高于其他材料。目前,研究较多的激活剂是发绿光的铒,发蓝光的铥和发红光的钬,为提高其发光效率,经常使用Yb3+进行共掺杂。基质材料主要采用钇的各种化合物,NaYF4和LaF3已经被发现是一类较好的基质材料。为了解上转换发光机制,以NaYF4:Yb3+/Er3+ 为例进行测试,在980nm连续激光激发下,发现了样品中Er3+离子覆盖近红外到可见波段的上转换发光, 动力学分析的结果证明了共掺杂体系中Yb3+到Er3+离子的能量传递过程。Yb3+到Er3+离子的持续的能量传递是布居高能态Er3+离子的关键。在能量密度为4.6W/cm2时,测得上转换量子产率为0.04;下转换量子产率为0.09。http://ng1.17img.cn/bbsfiles/images/2016/07/201607201132_601248_2194_3.jpg稀土上转换发光纳米材料(upconversion nanoparticles,UCNPs)具有一系列突出的优点,如化学稳定性高、发光强度高而稳定(无闪烁)、Stokes位移大等,不仅能够克服有机类发光标记物质稳定性差的缺点,还能有效解决量子点的细胞毒性和光闪烁问题。此外,它还具有独特的上转换发光性能,因此在生物标记领域具有非常大的应用潜力。UCNPs的激发光源通常为近红外连续激光器(典型的是980 nm,808nm),当它们应用在生物标记领域时,会出现许多优点,例如较深的光穿透深度,对生物组织无损伤、生物组织无背景荧光等,这些优点使UCNPs拥有很好的生物应用前景。因为上转换材料和器件较为稀少,除了如上文所说的,应用在人民币防伪以外,在激光、通信、能源、医疗和军事等领域都有着十分重要的应用前景。利用稀土离子具有的丰富能级,理论上人们可以通过上转换的方式将不同低能频域的光转换为所需要的高能量光子,以满足实际应用中的需要。目前红外光激发下的上转换发光主要集中在以NaYF4和LaF3为基质的材料上,其他上转换发光的研究相对较少,主要原因是上转换材料量子产率过低,严重地限制了它在很多领域中的应用。也是因为上转换材料的以上特性,它的测试一般的量子效率系统也比较难满足,覆盖近红外波段的测量系统才能达到要求。1)WangF,BanerjeeD,LiuYS,ChenXY,LiuXG.Analyst,2010,135:1839—18542)W. Wang, M. Wu, G. Liu. Analysis of Upconversion Fluorescence Dynamics in NaYF4codoped with Er3+ and Yb3+ . Spect.Lett., 2007, 40(2):259-2693)F. Auzel. Upconversion and Anti-Stockes Processes with f and d Ions inSoild. Chem.Rev, 2004,104(1):139-173.

上转换材料相关的资料

上转换材料相关的资讯

  • 《EES》!热电转换效率测量设备助力客户铜基热电材料研究取得重要进展
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多级利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电转换技术是利用材料的塞贝克效应与帕尔贴效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。热电器件可以实现热能和电能的直接转换,在废热回收和固态制冷领域具有重要的研究价值,对热电发电器件的能量转换效率进行精确测量是评价热电材料和器件性能的重要基础。 热电转换技术是一项基于半导体材料的新能源技术。基于材料的塞贝克效应和帕尔贴效应,该项技术能够实现温差发电和通电制冷的效果,其分别在工业废热回收利用和电子制冷领域有着重要的应用。相比于传统能源转换技术,热电转换技术具有器件尺寸高度可控、可靠性高、无运动部件、无污染和无噪音等优势。热电材料性能指标的关键在于能源转换效率,其由材料的无量纲热电性能优值(zT值)决定。随着热电材料领域的研究越来越受重视,不断涌现出了诸多提升zT值的有效策略:优化载流子浓度以提高电导率;调整电子能带结构、晶体结构、相结构等优化电传输性能;通过引入点缺陷、位错、晶界、纳米级沉淀物等进行多尺度分层架构设计以降低热导率;探索和开发具有本征低热导率特性的新材料体系;通过高通量及基于基因计算等预测潜在热电材料等。类金刚石化合物是从单质Si及闪锌矿半导体等金刚石结构物质衍生而来,具有金刚石结构的四面体结构。四元类金刚石材料Cu2CdSnSe4[1]和Cu2ZnSnSe4[2]等的热电性能逐渐受到重视,其zT值在700K及850K分别达到了0.65及0.95。此后,多种类金刚石结构化合物的性能得到研究,许多体系的ZT值超过了1。近期,重庆大学周小元团队与其合作者通过在Cu3SbSe4中加入CuAIS2(1&minus 6wt%)的方法提高了材料的电输运性能、降低了晶格热导率,同时材料的热稳定性和力学性能也得到了提升,给热电器件(TEG)的制作与应用带来了益处,该工作以《High Thermoelectric Performance and Compatibility in Cu3SbSe4-CuAlS2 Composites》为题,发表在能源与环境科学领域顶级期刊《Energy &Environmental Science》 (EES)上[3]。实验结果表明,Cu3SbSe4-CuAIS2复合材料在300 - 723 K的温度范围内平均zT值为0.77,峰值可以达到1.8,均为已公开报道的最高值。 图1. 300-723K温度区间内Cu3SbSe4 and Cu3SbSe4-5 wt% CuAlS2zT值与温度的关系(a)、本工作与其他公开报道的铜基-类金刚石热电材料的zT值比较(b)使用p型Cu3SbSe4-5% CuAlS2制成的单腿器件,其热电转换效率达到了3.3%(ΔT=367K)。图2. p-type Cu3SbSe4-5% CuAlS2单腿器件的转换效率(a)及发电量(b)与温度的关系值得注意的是,本文中单腿器件的转换效率及发电量测量是在Advance Riko公司的小型热电转换效率测量系统Mini-PEM上进行的,Quantum Design中国做为日本Advance Riko, Inc.公司的合作伙伴,很荣幸高性能的小型热电转换效率测量系统Mini-PEM可以助力本研究的发表。 日本Advance Riko公司已专业从事“热”相关技术和设备的研究开发近60年,并一直走在相关领域的前端,为世界各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国公司将日本Advance Riko公司先进的热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及大气环境下热电材料性能评估系统F-PEM引进中国。2018年7月,Quantum Design中国与日本Advance Riko达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本Advance Riko先进的热电相关设备介绍到中国。目前,所有中国用户购买的日本Advance Riko热电产品,均由Quantum Design中国公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国公司在日本Advance Riko公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。 参考文献:[1] M. Liu et al., A wide-band-gap p-type thermoelectric material based on quaternary chalcogenides of Cu2ZnSnQ4 (Q=S, Se), Appl. Phys. Lett. 94, 202103 (2009)[2] M. Liu et al., Improved Thermoelectric Properties of Cu-Doped Quaternary Chalcogenides of Cu2CdSnSe4, Advanced Materials, Volume21, Issue37[3] Y. Huang et al., High thermoelectric performance and compatibility in Cu3SbSe4–CuAlS2 composites, Energy Environ. Sci., 2023, Advance Article
  • 中科院智能所将上转换发光材料引入SERS检测
    近期,智能所刘锦淮课题组杨良保研究员等人将上转换发光材料引入表面增强拉曼光谱(SERS)研究中,实现了长波长、低能量激光下高灵敏的SERS检测,对SERS技术应用于实际检测具有十分重要的意义。相关成果已发表在英国皇家化学会《材料化学A》和《分析家》杂志上(J. Mater. Chem. A, 2015, DOI: 10.1039/C5TA03143E, Analyst, 2015, DOI: 10.1039/C5AN00441A)。  近年来,SERS技术由于可以进行无损、高灵敏的指纹识别检测而一直备受关注,已经广泛应用各大基础研究领域。但如何发展一种SERS基底使其更好的应用于实际检测和监测研究仍然是一个很大的挑战。  针对以上问题,刘洪林博士等研究人员通过简单的方法合成了上转换材料与贵金属的复合材料NaYF4:Yb,Er@Ag和NaYF4:Yb,Er@SiO2@Ag。利用上转换材料NaYF4:Yb,Er将近红外光转换为常用的可见光,实现了近红外激光下超灵敏的SERS检测和表面等离子体催化反应,并通过一系列的对比实验阐明了近红外激光下复合SERS基底高灵敏检测的机理。研究人员通过改变上转换材料的发光中心制得了另一种复合SERS基底(NaYF4:Yb,Tm@TiO2@Ag),成功实现了二氧化钛在非紫外光下的光催化降解行为。同时利用SERS技术监测不同波长单色激光下各光催化剂的光降解反应过程,为NaYF4:Yb,Tm@TiO2@Ag在非紫外光下光催化降解反应提供了直接证据,也为SERS应用提供了新的方向。  该研究工作得到了国家重大科学仪器设备开发专项任务、国家重大科学研究计划纳米专项和国家自然科学基金等项目的支持。  文章链接:   1.http://pubs.rsc.org/en/content/articlelanding/2015/an/c5an00441a  2. http://pubs.rsc.org/en/content/articlelanding/2015/ta/c5ta03143e 上转换材料中能量转移以及由表面等离子体共振引起的电磁场增强示意图
  • 中科院能量转换材料重点实验室举行揭牌仪式暨第一次学术委员会会议
    由中国科大和中国科学院上海硅酸盐研究所联合组建的中国科学院能量转换材料重点实验室揭牌仪式暨第一次学术委员会会议6月2日上午在上硅所隆重举行。         揭牌仪式由上硅所陈立东副所长主持。罗宏杰所长代表上硅所致辞,向参加揭牌仪式的各位领导、专家和师生的到来表示热烈欢迎,希望实验室能够聚焦能量转换材料领域的重大科学问题和关键技术,联合攻关,取得突破。   我校副校长朱长飞教授代表学校致辞,表示学校将一如既往地对实验室给予大力支持,并就实验室今后的建设与发展、科大和上硅所的合作与交流等方面提出了希望。   实验室学术委员会主任中科院物理研究所陈立泉院士、罗宏杰所长、朱长飞副校长共同为实验室揭牌。罗宏杰所长宣读了实验室学术委员会组成人员名单,并向他们颁发了聘书。实验室学术委员会委员、主要研究人员和研究生代表等出席了揭牌仪式。      揭牌仪式之后,实验室学术委员会在上硅所第一会议室召开了第一次会议。实验室主任陈初升教授首先向学术委员会汇报了实验室的建设历史、研究方向、科研进展、研究成果及实验室未来工作的设想。学术委员会讨论和明确了学术委员会工作条例,就实验室的研究方向、人才队伍建设等方面提出了宝贵的建议。         当天下午,上硅所占忠亮研究员和中国科大陈春华教授还分别做了关于固体氧化物燃料电池和锂离子储能电池方向的学术报告。学术委员会各位专家对他们的报告给予了好评,并对今后的研究工作提出了指导性的意见。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制