气凝胶材料

仪器信息网气凝胶材料专题为您整合气凝胶材料相关的最新文章,在气凝胶材料专题,您不仅可以免费浏览气凝胶材料的资讯, 同时您还可以浏览气凝胶材料的相关资料、解决方案,参与社区气凝胶材料话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

气凝胶材料相关的耗材

  • 凝胶过滤层析填料
    凝胶过滤层析简介凝胶过滤是一种根据生物分子的大小及形状来分离物质的层析方法,凝胶过滤填料为多孔的网状结构,生物分子越小进入填料内部越深,故在填料中的停留时间越长。每种填料的孔径都有一定的范围,所以选择凝胶过滤填料关键在于选择合适的分离范围,其次要考虑填料的机械性能和可放大性。凝胶过滤层析特点非吸附方法 容易操作 仅需一种缓冲液凝胶过滤层析分类及各自特点组分离(脱盐/交换缓冲液):上样体积可达柱体积30%。 精细分离(聚集体去除,分离不同大小分子量的蛋白):上样体积为柱体积0.5-4%,柱床高度高于60cm。凝胶过滤分离范围一览表
  • Sephadex LH-20 葡聚糖凝胶填料 Sephadex LH-20 ,葡聚糖凝胶填料,凝胶过滤,天然产物
    绿百草科技专业提供Sephadex LH-20 葡聚糖凝胶填料,可应用于胆固醇、脂肪酸、激素、维他命、天然产物的分析。Sephadex LH-20的分离原理主要有两方面:以凝胶过滤作用为主,兼具反相分配的作用(在反相溶剂中)。因为凝胶过滤作用,所以大分子的化合物保留弱,先被洗脱下来,小分子的化合物保留强,最后出柱。如果使用反相溶剂洗脱, Sephadex LH20对化合物还起反相分配的作用,所以极性大的化合物保留弱,先被洗脱下来,极性小的化合物保留强,后出柱。如果使用正相溶剂洗脱,这主要靠凝胶过滤作用来分离。Sephadex LH20具有如下特点:1、适合用有机溶剂分离嗜脂性分子,可以非常经济地大规模制备各种天然产物 。2、结合凝胶过滤、分配色谱及吸附性层析于一身,分离结构非常相近的分子。3、载量可高达300mg样品/ml凝胶,极少需要再生,分离效果可保持十几年不变。
  • Sephadex LH-20 葡聚糖凝胶填料 Sephadex LH-20 ,葡聚糖凝胶填料,凝胶过滤,天然产物
    绿百草科技专业提供Sephadex LH-20 葡聚糖凝胶填料,可应用于胆固醇、脂肪酸、激素、维他命、天然产物的分析。Sephadex LH-20的分离原理主要有两方面:以凝胶过滤作用为主,兼具反相分配的作用(在反相溶剂中)。因为凝胶过滤作用,所以大分子的化合物保留弱,先被洗脱下来,小分子的化合物保留强,最后出柱。如果使用反相溶剂洗脱,Sephadex LH20对化合物还起反相分配的作用,所以极性大的化合物保留弱,先被洗脱下来,极性小的化合物保留强,后出柱。如果使用正相溶剂洗脱,这主要靠凝胶过滤作用来分离。Sephadex LH20具有如下特点:1、适合用有机溶剂分离嗜脂性分子,可以非常经济地大规模制备各种天然产物。2、结合凝胶过滤、分配色谱及吸附性层析于一身,分离结构非常相近的分子。3、载量可高达300mg样品/ml凝胶,极少需要再生,分离效果可保持十几年不变。

气凝胶材料相关的仪器

  • 气凝胶毡是目前约400℃温度区域内导热系数低的固体绝热材料(400-1000℃高温区的导热系数则大大高于微纳隔热系列)。气凝胶毡具有柔软﹑易裁剪﹑密度小、无机防火﹑整体疏水、绿色环保等特性,其可替代玻璃纤维制品、石棉保温毡、硅酸盐纤维制品等不环保、保温性能差的传统柔性保温材料。气凝胶毡是一种柔性、高效保温隔热毡,该材料是将纳米气凝胶与无机纤维结合在一起,专用于高温各类工业管道、罐体及其他弧面设备的保温隔热。是客户追求更好的隔热效果及更低能耗的理想选择。纳米气凝胶是目前已知的固体中导热系数低的物质。气凝胶毡复合有该纳米材料,是一种柔软、无机环保、易于施工的隔热材料,这些特殊性能使其成为保温行业中的产品。气凝胶毡主要用于工业管道﹑储罐,工业炉体,电厂,救生舱,军舰舱壁,动车,直埋管道,注塑机,可拆卸式保温套,稠油开采高温蒸汽管道,交通运输,家用电器,钢铁,有色金属,玻璃等领域的保温隔热。 气凝胶与传统材料的对比气凝胶毡具有柔软﹑易裁剪﹑密度小、无机防火﹑整体疏水、绿色环保等特性,其可替代玻璃纤维制品、石棉保温毡、硅酸盐纤维制品等不环保、保温性能差的传统柔性保温材料。 物理性能包装形式:卷状厚度:5mm, 8mm, 10mm宽度:1500mm密度:180-220kg/m3适用温度:-200℃ —+1000℃ (同型号相关)疏水性:疏水(350℃以下)导热系数:0.012 - 0.018w/mk (25℃时) 优点1、优异的隔热效果气凝胶毡的隔热效果是传统隔热材料2-5倍,根据阿伦尼乌斯实验测定的理论使用年限为20年。几乎与建筑物同寿命。2、减少保温层厚度气凝胶毡取得同等隔热效果,厚度仅为传统材料的几分之一。保温后热损失小,空间利用率高。且在高温下,以上性能优势更为明显。3、憎水性和防火性气凝胶毡憎水,可有效防止水分进入管道、设备内部。同时具有建筑A1级防火性能,且气凝胶独具的三维网络结构避免了其他保温材料在长期高温使用中烧结变形、沉降等保温效果明显下降的现象。4、施工方便气凝胶毡质轻,容易裁剪、缝制以适应各种不同形状的管道、设备保温,且安装所需时间及人力更少。5、节省运输费用更小的包裹体积及更轻的重量可大大降低保温材料的运输成本。
    留言咨询
  • 水凝胶硅酮胶材料拉压力试验机推荐的型号为:HY-0580型高精密试验主机一台,配上建筑密封胶水凝胶硅酮胶手动夹具或气动夹具,可以对建筑密封胶水凝胶硅酮胶材料进行各种力学性能测试。水凝胶硅酮胶材料拉压力试验机本机用于金属及非金属(含复合材料)的拉伸、压缩、弯曲、剪切、剥离、 撕裂、保载、松弛、往复等项的静力学性能测试分析研究,可自动求取 ReH、ReL、 Rp0.2、Fm、Rt0.5 、Rt0.6、Rt0.65、Rt0.7、Rm、E 等试验参数,并可根据 GB、 ISO、DIN、ASTM、JIS 等国内、国际相关标准进行试验和提供数据。测试软件具有曲线多轴功能显示,载荷-变形,应力-应变,应力-时间,应变-时间等。HYtest试验软件多条曲线可以不同颜色在同一坐标中叠加或分离显示。强大的曲线分析功能,在拉伸试验曲线上可显示和标注各种特点,并且可以在曲线上自动和手动取点进行对比分析。The hydrogel mechanical properties testing machine is used for the static and mechanical properties of metal and non-metallic (including composite) tensile, compression, bending, shearing, stripping, tear, holding, relaxation and reciprocating. It can automatically obtain experimental parameters such as ReH, ReL, Rp0.2, Fm, Rt0.5, Rt0.6, Rt0.65, Rt0.7, Rm, E and so on. ISO, DIN, ASTM, JIS and other relevant domestic and international standards shall be tested and data shall be provided. The test software has the function of curve multi axis display, load deformation, stress-strain, stress time, strain time and so on. Multiple curves of hytest test test software can be displayed in the same coordinate with different colors. The powerful curve analysis function can display and mark various characteristics on the tensile test curve, and can take points automatically and manually on the curve for comparative analysis.水凝胶硅酮胶材料拉压力试验机典型试样:水凝胶、塑料薄膜 橡胶 细金属丝,纤维和细线,铝箔, 铜箔 ,光伏焊带, 太阳能电池板 , 生物材料,高分子材料,粘合剂,打包带,输液管,吻合器 ,泡沫材料、医药行业,包装,纸产品 弹性性 木制品 薄金属 高强度金属丝 部件 紧固件 复合材料等等。Typical samples of hydrogel mechanical properties testing machine are: hydrogel, plastic film, rubber fine metal wire, fiber and fine wire, aluminum foil, copper foil, photovoltaic welding band, solar panel, biological material, polymer material, adhesive, packing belt, transfusion tube, stapler, foam material, medicine industry, packaging, paper product elastic wood products, thin metal high strength wire. Component fastener composite, etc.水凝胶硅酮胶材料拉压力试验机技术参数:1. 产品规格: HY-05802. 精度等级: 0.5级(以内)3. 额定负荷: 1N 5N 10N 20N 50N 100N 200N 500N 1000N 2000N 3000N 5000N(可配多只)4. 有效测力范围:0.1/100-99.995. 试验力分辨率,以大负荷±500000码;内外不分档,且全程分辨率不变。6. 有效试验宽度:120mm7. 有效试验空间:800mm8. 试验速度::0.001~500mm/min(任意调)9. 速度精度:示值的±0.5%以内;10.位移测量精度:示值的±0.5%以内;11.变形测量精度:示值的±0.5%以内;12.应力控速率范围: 0.005%~6%FS/S13.应力控速率精度: 速率<0.05%FS/S时,为设定值的±1%以内;速率≥0.05%FS/S时,为设定值的±0.5%以内;14.应变控速率范围: 0.002%~6%FS/S15.应变控速率精度: 速率<0.05%FS/S时,为设定值的±2%以内;速率≥0.05%FS/S时,为设定值的±0.5%以内;16. 恒力/位移/变形测量范围:0.5%~100%FS17.恒力/位移/变形测量精度:设定值<10%FS时, 为设定值的±1%以内; 设定值≥10%FS时, 为设定值的±0.1%以内;18.试台升降装置:快/慢两种速度控制,可点动;19.试台安全装置:电子限位保护20.试台返回:手动可以以高速度返回试验初始位置,自动可在试验结束后自动返回;21.试验定时间自动停车,试验定变形自动停车,试验定负荷自动停车22.超载保护:超过以大负荷10%时自动保护;23. 自动诊断功能,定时对测量系统、驱动系统进行过载、过压、过流、超负荷等检查,出现异常情况立即进行保护23.电源功率: 750W24.主机重量: 95kg25. 电源电压: 220V(单相)26. 主机尺寸:470*400*1510mm
    留言咨询
  • 水凝胶材料拉压力测试仪主要用于各种医疗类原材料、高分子材料、人体组织、接骨螺钉等各种材料的生物力学性能试验,可以进行拉伸、压缩、弯曲、拔出等项目的性能测试和力学鉴定。测试功能覆盖了软组织(皮肤、血管)、硬组织(骨)、软材料(水凝胶、人造皮肤血管)、硬材料(骨钉、骨板、高分子)等多种材料。水凝胶材料拉压力测试仪可以对标准试样或构件进行轴向加载的静态(拉力、拉拔力、压缩、弯曲、剪切等)和动态试验,可检测材料或构件的拉伸力、破坏力、峰值、抗拉强度、延伸率、弯曲强度、寿命曲线、周期曲线等参数。水凝胶材料拉压力测试仪可进行金属与非金属、高分子材料等的拉伸、剥离、压缩、弯曲、剪切、顶破、戳穿、疲劳等项目的检测。包括用于人造血管、软组织、骨头、接骨板、椎间融合器、心脏棒膜、膝关节、脊柱固定器、玻璃纤维、玻璃钢、液晶玻璃、增强纤维、PE管、金属涂层、髋关节、髓内钉等可进行金属与非金属、高分子材料、人体骨骼等的拉伸、压缩、弯曲、剪切等项目机械性能测试和力学鉴定。水凝胶材料拉压力测试仪技术参数:1. 产品规格: HY-05802. 精度等级: 0.5级(以内)3. 额定负荷: 1N 5N 10N 20N 50N 100N 200N 500N 1000N 2000N 3000N 5000N(可配多只)4. 有效测力范围:0.1/100-99.999 5. 试验力分辨率,大负荷±500000码;内外不分档,且全程分辨率不变。6. 有效试验宽度:120mm7. 有效试验空间:800mm8. 试验速度::0.001~500mm/min(任意调)9. 速度精度:示值的±0.5%以内;10.位移测量精度:示值的±0.5%以内;11.变形测量精度:示值的±0.5%以内;12.应力控速率范围: 0.005%~6%FS/S13.应力控速率精度: 速率<0.05%FS/S时,为设定值的±1%以内;速率≥0.05%FS/S时,为设定值的±0.5%以内;14.应变控速率范围: 0.002%~6%FS/S15.应变控速率精度: 速率<0.05%FS/S时,为设定值的±2%以内;速率≥0.05%FS/S时,为设定值的±0.5%以内;16. 恒力/位移/变形测量范围:0.5%~99.999FS17.恒力/位移/变形测量精度:设定值<10%FS时, 为设定值的±1%以内; 设定值≥10%FS时, 为设定值的±0.1%以内;18.试台升降装置:快/慢两种速度控制,可点动;19.试台安全装置:电子限位保护20.试台返回:手动可以高速度返回试验初始位置,自动可在试验结束后自动返回;21.试验定时间自动停车,试验定变形自动停车,试验定负荷自动停车22.超载保护:超过大负荷10%时自动保护;23. 自动诊断功能,定时对测量系统、驱动系统进行过载、过压、过流、超负荷等检查,出现异常情况立即进行保护23.电源功率: 750W24.主机重量: 95kg25. 电源电压: 220V(单相)26. 主机尺寸:470*400*1510mm 全自动生物力学试验机工作条件环境温度:室温~40℃; 相对湿度:20~80%;电源规格:220V ( AC ),50Hz。
    留言咨询

气凝胶材料相关的试剂

气凝胶材料相关的方案

气凝胶材料相关的论坛

  • ASTM发布PU材料凝胶测试新标准

    据报道: 日前美国材料与试验协会的D20.22泡沫材料小组委员会推出名为WK34781的聚氨酯原材料凝胶测试标准。 聚氨酯经常用于涂层和胶粘剂领域。亨斯迈与科聚亚合资公司Rubicon LLC的化学师David Mullen表示:“关注胶粘剂粘合的时间能帮助人们了解材料在各种应用中的适配性,测试凝胶时间可帮助研发人员和客户了解聚氨酯的反应度,该项测试标准可用于质量管理。” Mullen还表示,D20.22工作小组在设定新标准的过程中运用了很多分析方法,比如说湿化法、光谱技术和色谱分析法。

  • [资料]凝胶色谱仪对高分子材料的分析的应用

    高分子工业材料及生物高分子分析是近年来新兴的课题。凝胶色谱是分离分析高分子组成及鉴定其性能的最好方法。高分子材料中填充各种助剂、乳化剂、分散剂等物的分离,色谱技术也独具特点。   ①控制高分子产品质量 在生产工艺中,可利用凝胶色谱测定聚合物小分子杂质。如用凝胶色谱测定环氧树脂中未聚合的双酚A,用C18柱分离小分子环氧化合物,小分子聚苯乙烯或不能成膜的聚脂等,用以鉴定聚合物的质量。  ②测定聚合物的分子量分布宽度 分子量大小和分子量分布宽度是衡量聚合物质量的一种重要指标,用凝胶色谱可以测定。  ③高温凝胶色谱测聚合物的老化、降解现象及分级。如测定聚乙烯分子量应为四万左右,通过分析可将分子量1000以下的聚乙烯蜡分开。还可用来观察高密度聚乙烯的氧化过程,观察聚苯乙烯、环氧树脂、聚磺酸脂、尼龙及聚醚聚砜等的降解情况。  ④测定高分子材料的适用性 日常食品的高分子材料包装的很多,如果测定食品中有高分子材料,则说明这种高分子材料不适于做食品和包装。

  • 气凝胶隔热材料超低导热系数测试中存在的问题及解决方案

    气凝胶隔热材料超低导热系数测试中存在的问题及解决方案

    [size=14px][color=#ff0000]摘要:针对气凝胶高效隔热材料低导热系数测试中存在的测试方法选择不合理、测试设备精度不高和测试条件偏离使用条件等问题,本文分析了目前气凝胶隔热材料热导率测试的常用方法及其适用范围,列举了各种测试方法的测试极限以及不合理使用的具体案例,重点介绍了实现低热导率准确测量的注意事项和具体措施,最后提出了今后进一步提高测量精度的改进方向。[/color][/size][align=center][size=14px][color=#330033]~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/size][/align][size=18px][color=#ff0000]一、问题的提出[/color][/size][size=16px]作为一种低密度和低导热系数的高效隔热材料,气凝胶隔热材料越来越得到重视和广泛应用,其导热系数测试的准确性往往决定了隔热系统的隔热效果和造价。从目前的市场反馈来看,气凝胶隔热材料导热系数测试中普遍存在测试不准确问题,这些问题主要归结为以下原因:(1)测试方法选择不合理。(2)测试设备达不到测试低导热系数的精度要求。(3)测试条件与实际使用条件严重偏离,导热系数测试结果无法代表实际隔热性能。针对上述问题,本文将介绍目前气凝胶隔热材料导热系数测试的常用方法,并对这些测试方法进行分析和特点介绍,并列举了各种测试方法的测试极限以及不合理使用的具体案例,最后重点介绍实现低导热系数测试准确性的具体措施和今后的改进方向。[/size][size=18px][color=#ff0000]二、低导热系数测试方法分析[/color][/size][size=16px]所谓低导热系数,一般是指0.001~0.1W/mK的导热系数。在高温下气凝胶隔热材料的导热系数一般不会超过0.1W/mK,在低温(液氮和液氦)和高真空环境下,有些气凝胶及其复合隔热材料会达到0.001W/mK甚至更低的超低导热系数。本文所做的分析主要是针对上述低导热系数范围内的测试方法。对于低导热系数的测试,目前常用的测试方法主要分为稳态法和瞬态法两类,如表1所示。[/size][align=center][size=16px]表1 低导热系数常用测试方法汇总[/size][/align][align=center][size=14px][img=表1 低导热系数常用测试方法汇总,690,288]https://ng1.17img.cn/bbsfiles/images/2022/05/202205201133028253_3023_3384_3.png!w690x288.jpg[/img][/size][/align][size=14px][/size][size=16px]对于隔热材料而言,特别是气凝胶复合材料这类低密度隔热材料,其内部的传热形式主要有导热、辐射和对流三种传热形式。在不同温度、温差、气压和气氛条件下,这三种传热形式所起的作用不同。以温度变量为例并假设在真空环境下不考虑气体对流传热,低密度隔热材料中会存在固体和气体导热以及辐射传热形式,它们各自的导热系数以及多种传热形式复合作用后的总体等效导热系数随温度的变化,如图1所示。由此可见,在不同的实际应用条件下,低密度隔热材料中存在着不同的传热形式以及相应的导热系数,这决定了测试方法的选择。[/size][align=center][size=14px][img=气凝胶绝热材料超低热导率测试,640,395]https://ng1.17img.cn/bbsfiles/images/2022/05/202205201138118496_2516_3384_3.jpg!w640x395.jpg[/img][/size][/align][align=center][size=14px]图1 固体、气体和辐射传热对应的导热系数分量以及复合作用后的等效导热系数随温度的变化[/size][/align][size=14px][/size][size=16px]测试方法和相应测试设备的选择主要依据以下原则:(1)测试方法要满足测量精度要求,导热系数越小所要求的测量精度越高。(2)测试方法具有较大温差的测试能力,大温差往往是隔热材料实际使用中的正常状态。(3)测试方法具有较快的测试速度,以满足工程应用中的高通量测试要求。(4)测试设备要具备实现各种试验条件(如温度、温差、气压和气氛等)的能力,同时具备保障测量精度的能力。按照上述原则,我们对表1中的常用测试方法进行分析,并得出如下结果:(1)气凝胶隔热材料普遍应用于大温差的隔热或隔冷,所选择的测试方法就需要具备大温差的测试能力。从表1中的各种测试方法温差可以看出,瞬态法都无法实现大温差条件,因此在气凝胶隔热材料的大温差导热系数测试中不建议使用瞬态法。(2)尽管无法进行大温差下的等效导热系数测试,但瞬态法在小温差下可以测试隔热材料中不含热辐射传热分量的固相导热系数和[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]导热系数合成后的等效导热系数。瞬态法的另一个特点是还可以测试热扩散系数和比热容。从标准测试方法和相关文献可以看到[1,2],瞬态法对小于0.03W/mK的低导热系数测试存在较大误差,测试结果往往比稳态法测量值偏大约35%~40%,这主要是因为低导热系数测试过程中的探测器引线漏热和探测器热容影响所占比重变的不再可以忽略不计,需要尽可能减小探测器热容并进行复杂的修正计算[2]。(3)在表1所示的稳态法中,只有保护热板法无法进行大温差下的导热系数测量。但由于保护热板法是目前测量精度最高的小温差下导热系数测试方法,也是目前唯一能高精度校准稳态热流计法中热流传感器的方法,因此要真正高精度测量隔热材料的超低导热系数还是离不开保护热板法。为了实现超低导热系数(0.01W/mK)测试中,本文推荐采用准稳态法,这主要是因为准稳态法具有从低温至高温的很宽泛测试温度范围,并能测试大温差下的等效导热系数,同时配套的校准技术相对简单,并具备多参数(导热系数、热扩散系数和比热容)测试能力和更高的测试效率,另外准稳态法测试设备具有相对较低的造价。(5)对于具有超低导热系数(0.01W/mK)的绝热材料,其常温至低温下导热系数测试推荐采用蒸发量热法,一方面是因为这种方法的灵敏度和准确度都非常高,可以准确测量导热系数小于0.001W/mK的绝热材料,另一方面是可以测试大温差下的等效导热系数。但需要注意的是,蒸发量热法作为一种防护热板法的变形,同样需要精密的护热措施最大限度减小侧向漏热,否则测量精度也无法保证。[/size][size=18px][color=#ff0000]五、总结[/color][/size][size=16px]对于气凝胶这类绝热材料,实现超低导热系数的准确测试需采取以下措施和注意事项。(1)根据隔热材料设计和高低温应用场景选择合适的测试方法,测试方法和测试设备要具备模拟实际应用中的高低温温差能力。推荐的测试方法为热流计法、准稳态法和蒸发量热计法。(2)对于超低导热系数绝热材料测试,要确认测试仪器的低导热系数测试能力,要仔细考量和解决稳态测试设备中的漏热问题以保证超低导热系数测量精度。(3)稳态法测试中的漏热问题技术难度大,现有技术基本已经达到了极限,无法很好的解决微小漏热和超低导热系数准确问题,因此迫切需要在新技术上有所突破,解决微小漏热难题,特别是在高灵敏度热流计和微小热流精密校准方面取得突破。[/size][size=18px][color=#ff0000]六、参考文献[/color][/size][size=16px][1] Colinart T, Pajeot M, Vinceslas T, et al. How Reliable is the Thermal Conductivity of Biobased Building Insulating Materials Measured with Hot Disk Device?[C]//Construction Technologies and Architecture. Trans Tech Publications Ltd, 2022, 1: 287-292.[2] Zheng Q, Kaur S, Dames C, et al. Analysis and improvement of the hot disk transient plane source method for low thermal conductivity materials[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119331..[3] Fesmire J E, Ancipink J B, Swanger A M, et al. Thermal conductivity of aerogel blanket insulation under cryogenic-vacuum conditions in different gas environments[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2017, 278(1): 012198.[4] Hoseini A, McCague C, Andisheh-Tadbir M, et al. Aerogel blankets: From mathematical modeling to material characterization and experimental analysis[J]. International Journal of Heat and Mass Transfer, 2016, 93: 1124-1131.[5] Adams J, Gangloff J, Stetson N, et al. Integrated Insulation System for Cryogenic Automotive Tanks (iCAT)[R]. Vencore Services and Solutions, Inc., Reston, VA (United States), 2018.[6] Coffman B E, Fesmire J E, White S, et al. Aerogel blanket insulation materials for cryogenic applications[C]//AIP Conference Proceedings. American Institute of Physics, 2010, 1218(1): 913-920.[7] Ilardi V, Busch L N, Dudarev A, et al. Compression and thermal conductivity tests of Cryogel Z for use in the ultra-transparent cryostats of FCC detector solenoids[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2020, 756(1): 012005.[/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=14px][/size]

气凝胶材料相关的资料

气凝胶材料相关的资讯

  • 宁波材料所在盐适应海洋传感凝胶方面取得进展
    传感技术是现代信息产业的支柱之一。由软材料构建的柔性传感器件可作为传统硬质传感器件的重要补充,在可穿戴传感、智慧医疗、软机器人、人机交互等领域具有重要的应用价值。得益于离子导电凝胶材料良好的生物相容性、力学匹配性和类生物导电机制,离子导电凝胶被认为是最有发展潜力的柔性传感材料之一,在运动感知、健康监测、通讯交流等领域得到广泛研究。然而,由于凝胶网络本征的亲水特点,传统离子导电凝胶传感材料在水环境中缺乏稳定性,无法应用于包括海洋在内的各类水环境中。而海洋与陆地一样,是人类的重要活动空间,尤其是随着海洋开发战略的推进,发展海洋传感材料成为迫切的需求。因此,解决离子导电凝胶材料的海洋稳定性问题,发展适用于海洋环境的高性能凝胶传感器件对于海洋活动具有重要意义。近年来,中国科学院宁波材料技术与工程研究所智能高分子材料团队研究员陈涛和博士魏俊杰,致力于离子导电凝胶基智能传感材料的研究,并利用疏水界面对水分子和导电离子的扩散屏障功能实现了导电凝胶材料的水下多功能传感应用。然而,含盐海水的高导电性会对离子凝胶传感器的传感性能产生明显的抑制作用,导致离子导电凝胶的海洋传感性能存在不足。对此,该团队近期在疏水界面结构的基础上,进一步利用质子导电机制和盐诱导解离效应设计了在海水环境中具有盐适应能力的离子液体凝胶材料,实现了海洋传感应用。如图所示,该工作合成了一种同时含有亲水链段(接枝有磺酸基团-SO3-和季铵根基团-N(CH3)3+)和疏水链段的聚合物Proton Conductive Material(简称PCM),并将其引入到由疏水单体(MMA)和疏水离子液体([BMIm]PF6)构建的耐水性离子导电凝胶中。聚合物PCM中的疏水链段可以使其在疏水凝胶中具有良好的相容性,而亲水链段中的两性离子基团可促进离子液体发生解离,提高凝胶中的自由离子含量。此外,-SO3-与[BMIm]+的静电作用为质子提供了迁移通道,在离子导电凝胶中形成了特殊的质子导电机制,进一步提高了凝胶的导电性,为改善其在高导电性海水中的传感性能奠定了基础。[BMIm]+-Cl-的作用强度高于Na+-Cl-和[BMIm]+-PF6-的作用强度,因此海水中的盐能够对凝胶中的离子液体产生诱导解离作用,使凝胶的导电性随着盐含量的增大而提高,即导电能力的盐适应性增强。这种盐适应导电增强能力使得凝胶传感器的传感灵敏度不会因为高盐含量海水的高导电性而受到削弱,反而展现出远超空气环境和纯水环境的传感性能。基于这种特性,该盐适应离子导电凝胶被应用于潜水人员的呼吸监测、运动感知、海下信息通讯以及海洋机器人的动作识别等海洋传感领域,展现出良好的传感性能。这一盐适应凝胶传感材料初步满足了海洋应变传感需求,为未来进一步构建高灵敏、多模式海洋传感材料提供了设计思路。相关研究成果以Salt-Adaptively Conductive Ionogel Sensor for Marine Sensing为题,发表在Small(DOI:10.1002/smll.202305848)上。研究工作得到国家自然科学基金、中国博士后科学基金、宁波市重点研发计划和宁波市自然科学基金等的支持。导电凝胶的盐适应结构与海洋传感应用
  • 宁波材料所在Janus气凝胶实现季节适应性热管理温度调节方面获进展
    进入21世纪,人口的爆炸性增长加速了能源的消耗,进而引发了不必要的能源危机,甚至出现了严重的极端天气。其中,基于空调的空间制冷和供暖等是能源消耗的重要组成部分之一,每年约占全球能源消耗的12%。在发达国家,建筑系统能耗的占比甚至提高到40%以上。尽管已经采用了传统的隔热材料和相关的加热-冷却设备,但是目前迫切需要的是开发具有非能耗或者低能耗的新型热调节材料和技术。   其中,辐射调节被认为是一种直接、高效、有前途的方式,通过吸收输入的阳光调节内部环境温度,进而实现节能。辐射调节在很大程度上取决于物理/化学改性和合成的材料、合理的结构设计和有效的功能配合。然而,生物相容性和多功能性对材料要求非常高。同时,复杂的制备工艺和多层结构设计也限制了辐射调控材料的发展及其应用。为此,合理设计和制造热调节材料至关重要,它可以通过可调节的物理或化学结构显著提高冷却或加热性能。   之前的工作中,已经通过反向聚合在织物表面设计了由聚吡咯和全氟十二烷基三乙氧基硅烷组成的超疏水仿生类黑素体分级纳米球织物,实现了人体热管理温度调节和光热蒸发应用(Nano Lett. 2022, 22, 9343-9350)。但是在材料稳定性和季节适应性温度调节方面仍有不足。基于此,中国科学院宁波材料技术与工程研究所智能高分子材料团队陈涛研究员、肖鹏副研究员通过免冻干的方法,设计了由光热MXene-CNF层和CNF层组成的Janus结构气凝胶(JMNA),该气凝胶能够实现可切换的热调节,将被动辐射冷却和加热集成到一个材料系统中,以适应多变的环境。   基于良好的机械性能,Janus气凝胶可用作季节适应性辐射热调节的智能屋顶。当CNF层暴露于外部环境时,外层高反射率和内层低红外发射率的结合使得夏季能够有效地进行被动辐射冷却。为了应对寒冷的冬季,MXene-CNF层可被用作外层,有效将阳光转化为可观的热能。产生的热量可以通过CNF层高红外发射率进一步传递到内部环境,从而产生显著的被动辐射加热。Janus结构气凝胶简单的制造方法和合理设计为开发可扩展的气候适应性热调节材料提供了一条替代途径。   该工作以“Engineering Structural Janus MXene-nanofibrils Aerogels for Season-Adaptive Radiative Thermal Regulation”为题发表在Small,2023,2302509(DOI:10.1002/smll.202302509)。本研究得到了国家自然科学基金项目(52073295)、中国科学院青年创新促进会(No.2023133)、宁波市科技局项目(2021Z127)、国家自然科学基金委中德交流项目(M-0424)、宁波市公益性科技计划项目(2021S150)及中科院王宽诚国际交叉团队(GJTD-2019-13)等项目的资助。
  • 宁波材料所:面向水下可穿戴传感的耐水导电凝胶
    可穿戴传感器可以通过非侵入的方式捕捉人体的各种信号并转化为可识别的电信号,从而达到实时监测的目的,在健康管理等领域展现出了重要价值。相比于传统的刚性可穿戴传感器,由导电凝胶等软材料构建的皮肤式可穿戴传感器能与动态皮肤形成紧密的共型结构,提高传感器的传感准确性和稳定性,甚至实现对人体运动状态的实时感知。   尽管基于导电凝胶的可穿戴传感器研究已经取得巨大进展,并广泛应用于动作监测、健康管理、表情和声音识别、人机交互等诸多领域,但由于导电凝胶在水环境中存在吸水溶胀、导电组分流失、粘附性能衰退等问题,限制了其在水下探索等领域的应用与发展。近年来,通过对导电凝胶进行耐水性能的设计,研究人员实现了导电凝胶基可穿戴传感器的水下传感领域的应用,促进了该领域的研究快速发展   近日,中国科学院宁波材料技术与工程研究所智能高分子材料团队陈涛研究员、肖鹏副研究员和魏俊杰博士基于在耐水导电高分子凝胶的构筑及其水下传感方面的研究基础,在Advanced Materials上发表题为“Water-Resistant Conductive Gels Toward Underwater Wearable Sensing”的综述文章(Adv. Mater. 2023, DOI: 10.1002/adma.202211758)。   在该综述中,作者首先对提高导电凝胶耐水性的方法进行了总结,归纳提出了封装设计、疏水网络结构和多重交联作用这三种耐水设计策略,并详细讨论了各种策略的耐水原理、具体设计方法以及存在的优缺点,从而为未来的耐水导电凝胶设计提供指导。随后对用于水下传感领域的耐水导电凝胶的多功能性质进行了介绍。除了水下稳定性之外,探讨了耐水导电凝胶的拉伸性质、水下粘附性质、水下自修复性质、可回收性质和3D打印性等性质对导电凝胶基水下可穿戴传感器的传感性能和制造加工工艺的影响,并重点讨论了这些性质的优化改善方法。此外,对现有耐水导电凝胶在水下传感领域的具体应用方向进行了汇总,着重总结了耐水导电凝胶在水下运动感知、水下健康监测、水下通讯、水环境分析几个方向的研究进展,并分析了耐水导电凝胶在这些应用中存在的不足,为未来的水下传感研究指明了方向。   尽管导电凝胶的耐水设计和传下传感研究已经取得了一定的成果,但该领域的发展尚处于起步阶段,仍然存在一些问题和挑战亟需解决。导电凝胶在水环境中的传感性能与陆上性能有着明显差异,相关的水下传感机制和传感模型有待进一步阐明;耐水导电凝胶的水下稳定性和水下传感性能测试还没有标准的方法,亟需建立统一的检测方法进行有效对比和评估;在耐水导电凝胶和水下可穿戴传感器的多功能设计上需要进一步努力,例如实现基于变色功能的可视化感知、基于自清洁功能的抗污能力和基于生物可降解的环境友好等。   为了满足耐水导电凝胶基水下可穿戴传感器的实际应用需求,需要进一步发展与水下可穿戴传感器匹配的无线传输技术和自供能技术;如何实现多感知功能和多技术模块在水下凝胶传感系统中的一体化集成,尤其是如何实现“软”凝胶材料与“硬”电子元件的稳定界面结合依然是该领域需要面临的一个重要挑战。   该论文得到了国家自然科学基金(51773215)、中国博士后科学基金(2021M690157、2022T150668)、宁波市自然科学基金(2121J206)、国家重点研发计划项目(2022YFC2805204、2022YFC2805202)等项目的支持。耐水导电凝胶的设计策略与水下传感应用   (中科院海洋新材料与应用技术重点实验室 魏俊杰)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制