漆皮特征

仪器信息网漆皮特征专题为您整合漆皮特征相关的最新文章,在漆皮特征专题,您不仅可以免费浏览漆皮特征的资讯, 同时您还可以浏览漆皮特征的相关资料、解决方案,参与社区漆皮特征话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

漆皮特征相关的耗材

  • 两位阀特征模板
    模板◇在管路制造和阀切换图表时非常有用。◇ 用于两位阀的特征模板带4、6、8 和10 通带两个位置指示和各种流路标记。模板描述货号模板TEMPLATE1
  • Pelcotec SEM线宽标样CDMS - XY 特征尺寸放大标样
    Pelcotec&trade CDMS-XY 标样是一种用于扫描电镜、场发射扫描电镜、离子束雕刻、CD-SEM、激光扫描显微镜和原子力显微镜快速、精确校准的便捷工具。该标样提供了 X 和 Y 两个坐标轴的比例尺线,可在不旋转样品台的情况下轻松进行二维校准。Pelcotec&trade CDMS-XY 标样使用最新的半导体和微电子制造技术制成,具有卓越的线缘质量,可提供广泛的测量范围。该标样有两种特征尺寸范围可选,分别是 Pelcotec&trade CDMS-XY-1T 和 Pelcotec&trade CDMS-XY-0.1T ,每个尺寸范围都提供可追溯和认证标样,总共有四种:Pelcotec&trade CDMS-XY-1T :特征尺寸范围为 2.0mm 到 1um,适用于放大倍率在 10x - 20,000x 之间的台式扫描电镜和低到中等放大应用。产品编号描述单位684-1Pelcotec&trade CDMS-XY-1T ,2mm - 1µ m,可追溯,没有样品座个Pelcotec&trade CDMS-XY-1C :每个标样均根据 NIST 标准进行了单独认证,特征尺寸范围为 2.0mm 到 1µ m,适用于放大倍率在 10x - 20,000x 之间的台式扫描电镜和低到中等放大应用。产品编号描述单位689-1Pelcotec&trade CDMS-XY-1C ,2mm - 1µ m,已认证,没有样品座个 Pelcotec&trade CDMS-XY-0.1T :特征尺寸范围为 2.0mm 到 100nm,适用于所有扫描电镜和大多数场发射扫描电镜应用,放大倍率可达 10 - 200,000x。产品编号描述单位685-1Pelcotec&trade CDMS-XY-0.1T ,2mm - 100nm,可溯源,没有样品座个 Pelcotec&trade CDMS-XY-0.1C :每个标样均根据 NIST 标准进行了单独认证,特征尺寸范围为 2.0mm 到 100nm,适用于所有扫描电镜和大多数场发射扫描电镜应用,放大倍率可达 10 - 200,000x。产品编号描述单位690-01Pelcotec&trade CDMS-XY-0.1C ,2mm - 100nm,已认证,没有样品座个该标样的特征尺寸范围见下表:Pelcotec&trade CDMS-XY-1T 和 -1C 的特征尺寸为:2mm、1mm、0.5mm、0.1mm、50µ m、10µ m、5µ m、2µ m 和 1µ m。 Pelcotec&trade CDMS-XY-0.1T 和 0.1C 的特征尺寸为:2mm、1mm、0.5mm、0.1mm、50µ m、10µ m、5µ m、2µ m 和 1µ m、500nm、250nm 和 100nm。可选的预先安装在样品座上。Pelcotec&trade CDMS-XY-1Pelcotec&trade CDMS-XY-0.1基底尺寸:2.5×2.5mm&check &check 基底厚度:525±10μm&check &check 唯一序列识别号&check &check 2mm、1mm、0.5mm 的校准方块&check &check 垂直于 X 轴和 Y 轴的刻度线,间距为 10um、5μm、2μm 和 1μm&check &check 仅限高分辨率版本 - 垂直于 X 和 Y 轴的附加刻度线以 500、250 和 100 nm 节距标出—&check 特征材料:50nm Cr (2mm - 5µ m)&check &check 特征材料:20nm Cr/50nm Au(2μm 和 1μm)&check &check 特征材料:20nm Cr/50nm Au(500、250 和 100nm)—&check 可在晶圆级追溯到 NISTT 版本T 版本CDMS 标样直接获得 NIST 标准认证C版本C版本不含样品台&check &check 可安装于SEM样品台&check &check 精度优于0.3%&check &check
  • Pelcotec SEM线宽标样 CDMS 标准特征尺寸放大标样
    Pelcotec&trade CDMS 校准标样是一种独特的经济实惠、功能齐全、可追溯的校准标样,可用于快速精准的扫描电镜(SEM)、场发射扫描电镜(FESEM)、离子束刻蚀(FIB)、CD-SEM、LM和AFM放大倍数校准。这些标样采用最新的半导体和微机电系统(MEMS)制造技术制成,可以覆盖广泛的测量范围。Pelcotec&trade CDMS 校准标样有两种特征尺寸范围,分别是 Pelcotec&trade CDMS-1T 和 Pelcotec&trade CDMS-0.1T ,都提供可追溯和认证标样,共有4个种:Pelcotec&trade CDMS-1T : 可追溯,特征尺寸范围为2.0毫米到1微米,放大倍数范围为10倍到20,000倍,非常适合台式扫描电镜和低到中等放大应用。产品编号描述单位682-1Pelcotec&trade CDMS-1T ,2mm - 1µ m,可追溯,没有样品台个Pelcotec&trade CDMS-1C : 经过NIST标样认证的特征尺寸范围为2.0毫米到1微米,放大倍数范围为10倍到20,000倍,非常适合台式扫描电镜和低到中等放大应用。产品编号描述单位686-1Pelcotec&trade CDMS-1C ,2mm - 1µ m,经过认证,没有样品台个 Pelcotec&trade CDMS-0.1T : 可追溯,特征尺寸范围为2.0毫米到100纳米,放大倍数范围高达10倍到200,000倍,适用于所有扫描电镜和大多数场发射扫描电镜应用。产品编号描述单位683-01Pelcotec&trade CDMS-0.1T ,2mm - 100nm,可追溯,没有样品台个 Pelcotec&trade CDMS-0.1C : 经过NIST标样认证的特征尺寸范围为2.0毫米到100纳米,放大倍数范围高达10倍到200,000倍,适用于所有扫描电镜和大多数场发射扫描电镜应用。产品编号描述单位687-01Pelcotec&trade CDMS-0.1T ,2mm - 100nm,经认证,没有样品台个 Pelcotec&trade CDMS 标样的特征尺寸范围为2mm、1mm、0.5mm、0.25mm、10µ m、5µ m、2µ m和1µ m(适用于 Pelcotec&trade CDMS-1T ISO 和 Pelcotec&trade CDMS-1C )。而Pelcotec&trade CDMS-0.1T 和 0.1C 的特征尺寸范围为2mm、1mm、0.5mm、0.25mm、10µ m、5µ m、2µ m、1µ m、500nm、250nm和100nm。 Pelcotec&trade CDMS 标样采用超平整的硅衬底制成,采用精密的50nm铬沉积技术制造特征尺寸小于5µ m的部分,而采用50nm金/20nm铬的组合制造2µ m到100nm的特征尺寸。铬和金/铬在硅基底上提供了卓越的SE和BSE成像模式对比度,比刻蚀硅标样更易于确定特征。由于硅衬底、铬和铬/金特征都具有导电性,因此该校准标样不存在充电问题。由于其坚固的结构,CDMS标样可使用等离子体清洗器进行清洁。较小的特征尺寸被嵌套在一起,以便于导航和快速校准。特征的精度为0.3%或更高。标样的实际尺寸为2.5 x 2.5mm,厚度为525µ m ±10µ m,在硅表面上没有涂层。每个Pelcotec&trade CDMS 校准标样都有一个独特的识别编号。Pelcotec&trade CDMS 校准标样可供选择不安装或安装在SEM样品台A-R上。对于AFM应用,Pelcotec&trade CDMS 安装在12mm的AFM圆片上,而对于LM应用,则安装在25 x 75mm的载玻片上。也可以制备在自定义的支架上。可选的样品座。Pelcotec&trade CDMS-1Pelcotec&trade CDMS-0.1基底:硅&check &check 基底尺寸:2.5×2.5mm&check &check 基底厚度:525±10μm&check &check 唯一序列识别号&check &check 2mm、1mm、0.5mm、0.25mm 的校准方块&check &check 垂直于 X 轴的刻度线,间距为 10μm、5μm、2μm 和 1μm&check &check 仅高分辨率版本 - 垂直于 X 轴的附加刻度线以 500、250 和 100 nm 节距标出—&check 特征材料:50nm Cr (2mm - 5µ m)&check &check 特征材料:20nm Cr/50nm Au(2μm 和 1μm)&check &check 特征材料:20nm Cr/50nm Au(500、250 和 100nm)—&check 可在晶圆级追溯到 NISTT 版本T 版本CDMS 标样直接获得NIST 标准认证C版本C版本不含样品台&check &check 可安装在 SEM样品台上&check &check 精度优于0.3%&check &check

漆皮特征相关的仪器

  • AMICS矿物特征自动定量分析系统 全自动矿物特征分析系统选矿专家们自动获取工艺矿物学定量分析数据的得力工具 AMICS-Mining 由国际工艺矿物学家团队主持开发的第三代矿物参数自动定量分析系统。该系统与高分辨率扫描电子显微镜完美结合,广泛适用于矿业、煤炭、地质科研等领域,是科学家及工程技术人员对样品进行工艺矿物学定量分析的有力帮手。 作为一个为矿业、煤炭业、地质科研、生产打造的专用矿石特征的定量分析工具,AMICS-Mining自动矿石特征分析系统软件主要功能。 数据采集数据分析结果显示智能信息管理系统 AMICS-Mining可以快速而准确地对矿石样品进行分析,分析结果样品的矿物组成样品的矿物元素组成元素在矿物中的分配矿物颗粒尺寸分布 单体矿物颗粒尺寸分别 矿物颗粒的比重及分布矿物相关关系矿物包裹关系矿物嵌步特征单体矿物解离度分布煤中灰分含量可定制分析 系统可生成的分析图表样品BES图样品矿物成分分布图 矿物成分图、表矿物元素图、表矿物成分图、表矿物元素在矿物中的分布表颗粒尺寸分布图、表单体矿物颗粒尺寸分布图、表颗粒比重分布图、表矿物连生关系图、表矿物解离度计算图、表矿物的生存关系计算图、表矿物理想回收率、品位估算图、表元素理想回收率、品位估算图、表 样品矿物成分分布图 矿物成分图、表 矿物连生关系图、表 AMICS-Minning的应用范围十分广阔●矿产评估,预测矿藏的价值通过对矿石中有价值的成分及赋生状态的分析,对矿石的磨矿粒度,可分选性及回收率的进行预测,对矿产评估,预测矿藏的价值。 ●选矿、选煤工艺设计通过对样品的参数分析,特别是矿物粒度尺寸分布、单体矿物颗粒尺寸分布、目标矿物的解离度的分析,为确定合理的磨矿粒度、有的放矢地进行选矿实验、选矿方案的制定提供牢靠的数据。 ●新选矿、选煤工艺研发通过对矿石的深度分析比如目标矿物元素在矿物中的分配,加深对矿物的认识。研究新的选矿工艺,提高选矿的经济效益。新选矿工艺的诞生往往可以改变一个矿山的命运,使一个难选的矿变成一个有价值的好矿。 ●选矿、选煤流程优化,提高回收率,降低能耗通过对现有选矿工艺不同位置的样品参数分析,发现磨矿及浮选改进的方向及潜力并及以改进,达到优化流程、提高回收率,降低能耗的目的。 ●选矿流程的监控通过不断对原矿、精矿、尾矿,及时地调整选矿参数,使选矿厂始终工作在最佳状态,提高生产效益。在发生选矿回收率下降的情况下,通过分析尾矿中目标矿物的赋生状态,可以确定回收率下降的原因,加以修正。 ●环保通过对岩石、土壤、河床泥、空气粉尘、烟道粉尘的成分与物相分析,为环保提供依据。 ●煤矿灰份矿物的含量及粒度分布测定,指导煤矿资源的评估和综合利用 ●为现代数字化矿山提供基础数据 AMICS-Mining自动矿石特征分析系统系统的特点●先进的全自动矿物识别技术系统采用了先进的第三代自动矿物识别技术。矿物识别无需人工干预、无需人工建立编辑矿物数据标准。大大降低了系统的复杂性,将操作人员从繁琐、复杂的矿物数据标准库建立维护工作解放出来,同时最大限度地减少人为因素造成的矿物识别错误,使矿物识别更为精准、更快速。 ●完整的矿物数据库矿物数据库矿物种类齐全,数据完整。 ●全新先进的图形处理技术在分析过程中,系统采用了全新先进的图形处理技术分离矿物颗粒,区分矿物边界。不仅处理速度、及处理能力(处理图形面积的大小及复杂性)几倍、几十倍于第二代自动矿物所采用的图形处理技术,且结果更为精准。 ●快速在线矿物分类矿物分类在测量过程中同时进行,用户可以随时监视测量过程。测量完成后立即就可以输出简单的测量结果,如矿物成分及颗粒数。 ●简便测量设定及结果输出合理的软件设计,使得测量设定及结果输出及为方便,大大缩短了系统使用培训所需要的时间。 ●全新现代化软件界面采用了最新的软件编制工具,软件界面符合当今的潮流,更为人们所熟悉,方便使用。 ●合理的文件管理系统合理的文件管理系统设计,达到了即能自动管理结果文件,又方便转移结果文件的目的。 ●系统有英、中两个版本 AMICS-Mining自动矿石特征分析系统技术指标最小可识别矿物:1微米样品测量时间(直径30厘米):15分钟数据库:2000种以上基本矿物样品台样品数:高精度5轴电动9桩样品台 AMICS-Mining自动矿石特征分析系统的能谱仪技术指标硅漂移探头(BRUKER等)超快速脉冲处理电制冷(无需液氮)参照系统选择的能谱仪术指标 AMICS-Mining自动矿石特征分析系统的电镜技术指标参照系统选择的电镜技术指标 AMICS-Oil&Gas矿物特征自动定量分析系统作为一个为石油、天然气行业、地质科研、生产打造的专用岩芯、岩屑特征的定量分析工具,AMICS-Oil&Gas自动矿石特征分析系统软件主要功能。 数据采集 数据分析 结果显示 智能信息管理系统 AMICS-Oil&Gas可以快速而准确地对岩芯、岩屑样品进行分析,分析结果样品矿物成分样品元素成分岩屑颗粒、单体矿物颗粒尺寸分布孔隙度及孔隙尺寸分布矿物相关关系孔隙与矿物相关关系可定制分析 系统可生成的分析图表样品BES图样品矿物成分分布图矿物成分图、表矿物元素图、表岩屑颗粒尺寸分布图、表矿物颗粒尺寸分布图、表岩屑颗粒比重分布图、表矿物连生关系表岩屑岩性分析图、表 样品矿物成分分布图 矿物成分图、表 矿物连生关系表 AMICS-Oil&Gas的应用范围十分广阔油田勘探、开发地质分析压裂点的选择(水平井)测井数据修正辅助录井为现代数字化油田提供基础数据特殊应用功能定制
    留言咨询
  • 中图仪器Novator系列复杂特征批量影像测量仪具备多种测量功能,包括表面尺寸、轮廓、角度与位置、形位公差、3D空间形貌与尺寸结构等的精密测量。可以自动抓取数据点,测量点、线、圆、弧、椭圆、矩形等几何特征,自动分析测量特征的各种参数,如宽度、直径、位置、直线度、圆锥度、圆柱度等各种几何尺寸。Novator系列复杂特征批量影像测量仪特点是可以自动抓取产品的边界和表面,尤其是在测量一些弱边缘特征(如过渡曲线、圆角加工等)时能完成自动抓取。结合专用测量软件对测绘要素数据进行处理、评价和输出。在保证精度的前提下,测量效率更高。测量功能1.量测工具:扫描提取边缘点、多段提取边缘点、圆形提取边缘点、椭圆提取、框选提取轮廓线、聚焦点、最近点等。2.可测几何量: 点、线、圆(圆心坐标、半径、直径)、圆弧、中心、角度、距、线宽、孔位、孔径、孔数、孔到孔的距离、孔到边的距离、弧线中心到孔的距离、弧线中心到边的距离、弧线高点到弧线高点的距离、交叉点到交叉点的距离等。3.构建特征:交点、中心点、极值点、端点、两点连线、平行线、垂线、切线、平分线、中心线、线段融合、半径画圆、三线内切圆、两线半径内切圆等。4.形位公差:直线度、圆度、轮廓度、位置度、平面度、对称度、垂直度、同心度、平行度等形位公差评定。 5.坐标系:仪器坐标系、点线、两点 X、两线等工件坐标系;图像配准坐标系;可平移、旋转、手工调整坐标系。6.快速工具:R角、水平节距、圆周节距、筛网、槽孔、轮廓比对、弹簧、O型圈等特殊工具快速测量。7.支持公差批量设置、比例等级划分、颜色自定义管理。高度测量Novator系列影像测量仪配备(1)触发式测头;(2)点激光(激光同轴位移计);(3)三角激光三种传感器配置,能精准测量零件高度尺寸。1、接触式测量影像测量仪+触发式测头组合相当于一台小的三坐标测量仪,也就是我们说的复合式影像测量仪,在需要测量高度的地方,用探针取元素(点或者面),然后运用影像测量仪软件中的Z轴自动对焦功能,测量得出高度。2、非接触式测量通过搭载点激光(激光同轴位移计)、三角激光传感器配置,点激光轮廓扫描测量以及线激光3D扫描成像进行高度测量,平面度测量,针对镜面和光滑斜面均可测量;或是运用影像测量仪软件中的Z轴自动对焦功能,测量得出高度,这样的测量方法可以减少人为误差,不管是谁来测量,都可以测得同样的数值,非常简单方便。平面度测量在测量平面度时,可以将待测物放置在二维影像仪的工作台上,使用光学放大镜头和图像处理软件来检测物体表面的高低差异,并计算出物体表面的平坦度参数。通过与标准样品的比较,可以判断物体表面是否符合规定的平面度要求。需要注意的是,二维影像仪在测量平面度时,需要选择合适的光学放大倍率和图像处理算法,以保证测量结果的准确性和可靠性。光学测头平面度测量3D形貌测量搭载高精度线扫激光测头,无接触扫描3D轮廓成像,抑制多重反射,能够快速实现尺寸的精准批量测量。通过3D成像视图,可观察到产品形貌的微小特征,可实时输出2D、3D图像保存,支持2D、3D产品尺寸测量。由于不同行业和领域的测量需求各不相同,Novator系列复杂特征批量影像测量仪功能的研发和应用可以根据具体情况进行定制和改进。国产品牌多点多地的本地化服务,响应速度快。产品优势稳固移动平台、高测量精度1.精密大理石机台,稳定性好,精度高。 2.精密线性滑轨和伺服控制系统,超低分贝静音级运动。3.三轴全自动可编程检测,实现复杂特征批量检测。激光扫描成像、3D复合测量1.支持点激光轮廓扫描测量,进行高度方向上的轮廓测量。2.支持线激光3D扫描成像,可实现3D扫描成像和空间测量。3.VisionX测量软件支持多种轮廓测量和3D空间测量,无缝连接2D/3D混合测量。频闪照明光源、高速硬件飞拍1.具备频闪照明光源,支持频闪和普通双模式。2.支持飞拍模式测量,测量效率提升5~10倍。3.融入中图闪测仪的拼接测量功能,发挥综合优势。可更换RGB表光、独立升降表光1.可更换RGB表光和白色表光,适应多种复杂颜色和材料表面。2.表光可独立升降,更好的观察样品表面。3.支持六环八分区表面光、透射光、同轴光分段编程控制。自动测量,批量更快1.程序匹配工件坐标系,自动执行测量流程。 2.支持CAD图纸和Gerber图纸导入,坐标系匹配测量。3、CNC固定坐标系模式下,可快速精确地进行批量测量。操作简单,轻松无忧1.具备大幅面导航相机,快速实现工件定位。2.具有镜头防撞功能,轻松无忧。3.一体化操作界面,任何人都能轻松设定和测量。Novator可实现各种复杂零件的表面尺寸、轮廓、角度与位置、形位公差、3D空间形貌与尺寸结构等精密测量。Novator可用于机械、电子、模具、注塑、五金、橡胶、低压电器、磁性材料、精密冲压、接插件、连接器、端子、手机、家电、印刷电路板、医疗器械、钟表、刀具、计量检测等领域。部分技术规格型号 Novator432 行程范围X(mm) 400Y(mm) 300Z(mm) 200图像传感器高清彩色工业摄像机 显示器24英寸 LCD显示器(1920×1080)镜头13.3X电动连续变倍放大倍率光学放大0.6~8.0X 影像放大17~232X 3D扫描成像测量 Z向测量范围5mm扫描宽度30mm扫描速度10~80mm/s支持飞拍测量模式支持支持导航相机支持外形尺寸(mm)860*1350*1670仪器重量(kg)650承重(kg)25恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。
    留言咨询
  • 进口恒湿箱法生锈特征测定仪 AD1748型恒湿箱法生锈特征测定仪的技术特点:1)符合ASTM D1748、IP366标准; 2)该仪器为立式,包括不锈钢浴锅和旋转机械。侧面有个包括电子的控制盒;3)陶瓷镀层的不锈钢结构,立式,带旋转臂;4)不锈钢浴锅带水龙头管子和阀门;5)带自动调节水位的装置;6)不锈钢加热器,专用开关可用于辅助加热器;7)圆圈状散光器带有20个氧化铝制成的空气散光核;8)空气供应系统包括喷嘴、滤器、压力调节器、0-400 kPa表盘、高精度的250 mm的流量计(刻度范围0-1200 l/h)、玻璃塔,可选配内置空气泵;9)不锈钢旋转台,转速为0.33rpm。外部固定着齿轮减速马达;10)旋转台下有个接收盘,可收集面板滴下的油和冷凝水;11)不锈钢盖子带有2层特别的棉布;12)微处理恒温器及PID控制,数字显示温度,精度0.1℃,Pt100 RTD温度探头; 13)在工作温度48.9℃时的调节精度为± 0.5℃;14)提供安全设施以防止过温和低限;15)220 V/50 Hz,功率1500W;16)尺寸LWH850 x 750 x 1100mm,重量140 kg; ●AD1748型恒湿箱法生锈特征测定仪的订购信息:1)AD1748-100:恒湿箱法生锈特征测定仪;配件:2)AD1748-A00:可选择的水位调节系统;3)AD1748-A01:内置空气泵;4)CAL001:PT100模拟器;5)CAL002:官方认证的PT100模拟器;
    留言咨询

漆皮特征相关的试剂

漆皮特征相关的方案

漆皮特征相关的论坛

  • 毛皮与皮革的结构特征分析

    毛皮与皮革的结构特征分析毛皮与皮革的结构特征分析:毛皮的构造与组成、天然毛皮、天然皮革、人造毛皮与皮革。 一、基本概念 裘皮与皮革是珍贵的服装面料。一般将鞣制后的动物毛皮称为裘皮,而把经过加工处理的光面或绒面皮板称为皮革。裘皮是防寒服装理想的材料,取其保暖、轻便、耐用,且华丽高贵的品质。皮革经过染色处理后可得到各种外观风格,深受人们的喜爱。近年来,毛皮与皮革服装成为流行的主流,因此有必要对其结构作一了解和认识。 二、毛皮的构造与组成 毛皮兽的毛皮是由毛被和皮板组成的。毛被由针毛、绒毛和粗毛等三种体毛构成,它随着毛的生长过程而变换。针毛生长数量少,是长而伸出到最外部的毛,呈针状,具有一定的弹性和鲜丽的光泽,给毛皮以华丽的外观;绒毛生长数量多,是在针、粗毛下面密集生长着的纤细而柔软的毛,主要起保持调节体温的作用,绒毛的密度和厚度越大,毛皮的防寒性能就越好;粗毛的数量和长度介于针毛和绒毛之间,毛多呈弯曲状态,具有防水性和表现外观毛色和光泽的作用。 皮板是由表皮层、真皮层和皮下层组成的。表皮层很薄,主要起保护动物体免受外来伤害的作用,其牢度很低,在皮革加工中被除去。真皮层是原料皮的基本组成部分,也是鞣制成皮革的部分,分上下两层。上层的乳头层具有粒状构造,形成皮革表面的“粒面效应”。下层的网状层主要由胶原纤维、弹性纤维和网状纤维呈网状交错而构成,起使皮革结实、有弹性、能整体抗击外来冲击的作用。皮下层的主要成分是脂肪,非常松软,制革工序中要除去。 三、天然毛皮 天然毛皮主要来源于毛皮兽。一般兽毛皮是由表皮层及其表面密生着的针毛、绒毛、粗毛所组成,但因动物种类不同,则这几种毛组成比例不同,因而决定了毛皮的质量有高低、好坏之差异。用作服装材料的毛皮,以具有密生的绒毛、厚度厚、重量轻、含气性好为上乘。就服装用毛皮来说,有以下种类:1、貂皮:分紫貂皮、白貂皮、黑貂皮、水貂皮等。其针毛粗、长、亮,毛被绵软,绒毛绸密,质软坚韧,为高级毛皮。用于服装的外套、长袍、披肩等。2、水獭皮:毛被密生着大量的绒毛,其中含有粗毛,属针毛劣而绒毛好的皮种,其皮板坚韧有力。多用于服装的长、短大衣、毛皮帽等。3、狐狸毛皮:因生长地区不同,有各种品种,如红狐狸、白狐狸、灰狐狸、银狐狸等,其质量有差异。一般北方产的狐狸皮品质较好,毛细绒足,皮板厚软,拉力强。狐皮的毛色光亮艳丽,属高级毛皮。多用于女用披肩、围巾、外套、斗蓬等。4、羔皮:指羔羊毛皮,其毛被花弯绺絮多样,无针毛,整体为绒毛,色泽光润,皮板绵软耐用,为较珍贵的毛皮。一般用于外套、袖笼、衣领等。5、绵羊皮:属中档毛皮,其毛被毛多呈弯曲状,粗毛退化后成绒毛,光泽柔和,皮板厚薄均匀、不板结。主要用来做帽、坎肩、衣里、褥垫等。6、貂毛皮:皮大绒厚,皮色鲜艳,斑点清晰优美,绒毛短平油亮,较为珍贵。因属野生动物保护品种,目前很少使用。7、狗毛皮:毛皮特点是针毛峰尖长,毛厚板韧,颜色甚多,一般用在被褥、衣里、帽子上。8、兔毛皮:属低档毛皮,毛色较杂,毛绒丰厚,色泽光润,皮板柔软。可用于衣帽及童大衣等。 四、天然皮革 各种兽皮、鱼皮等的真皮层厚度比较厚的原皮,经单宁酸鞣皮或重铬酸钾的铬鞣、明矾鞣、油鞣等方法制成熟皮革,作为服装材料使用已有着悠久的历史。衣用皮革主要是服装革和鞋用革,多以猪、羊、牛、马、鹿皮为主要原料皮,此外鱼类皮革、爬虫类皮革也用于服装的装饰革及箱包等的加工制作。各种服用皮革的分类见下表。目前,我们常见的几种服用皮革是:1、牛皮革:牛皮革的结构特点是真皮组织中的纤维束相互垂直交错或略倾斜成网状交错,坚实致密,因而强度较大,耐磨耐折。粒面毛孔细密、分散、均匀,表面平整光滑,磨光后亮度较高,且透气性良好,是优良的服装材料。常用于袋料、运动上衣、鞋类及皮包类等。2、猪皮革:猪皮的结构特点是真皮组织比较粗糙,且又不规则,毛根深且穿过皮层到脂肪层,因而皮革毛孔有空隙,透气性优于牛皮,但皮质粗糙、弹性欠佳。粒面凹凸不平,毛孔粗大而深,明显地三点组成一小撮则是猪皮革独有的风格。主要用于制鞋业。3、山羊皮革:皮身较薄,真皮层的纤维皮质较细、在表面上平行排列较多,组织较紧密,所以表面有较强的光泽,且透气、柔韧、坚牢。粒面毛孔呈扁圆形斜伸入革内,粗纹向上凸,几个毛孔成一组呈鱼鳞状排列。被用于做外套、运动上衣等。4、绵羊皮革:绵羊皮革的特点是表皮薄,革内纤维束交织紧密,成品革手感滑润,延伸性和弹性较好,但强度稍差。广泛用于服装、鞋、帽、手套、背包等。5、马皮革:比牛皮革组织稍粗,特别是后背部分的皮质细密坚实,可用于制鞋。其毛孔稍大呈椭圆形,斜伸入革内,形成波浪形排列。马皮革在服装上用的较少。 此外,鹿皮革、蛇皮革、鳄鱼皮革等也常在衣用服装和装饰用具上有应用。 五、人造毛皮与皮革 裘皮与皮革服装的天然优越性,加深了人们对它的偏爱,其价值也随之大幅度地上涨,到今天,一件做工精细的高档裘皮服装,价值连城,已成为一种富有、高贵身份的象征。为了降低天然毛皮与皮革产品的成本,扩大其来源,近年来,人造毛皮与皮革有了较大发展。1、人造毛皮:人造毛皮是指采用机织、针织或胶粘的方式,在织物表面形成长短不一的绒毛,具有接近天然毛皮的外观和服用性能。针织人造毛皮是指在针织毛皮机上采用长毛绒组织,由腈纶、氯纶或粘胶纤维做毛纱,在织物表面形成类似于针毛与绒毛的层结构。其外观相似于天然毛皮,且保暖性、透气性和弹性均较好。 机织人造毛皮是采用双层结构的经起毛组织,经割绒后在织物表面形成毛绒。这种人造毛皮绒毛固结牢固,毛绒整齐、弹性好,保暖与透气性可与天然毛皮相仿。 人造卷毛皮是采用胶粘法,在各种机织、针织或无纺织物的底布上粘满仿羔皮的卷毛纱线,从而形成天然毛皮外观特征的毛被。其表面有类似天然的花绺花弯,毛绒柔软,质地轻,保暖性和排湿透气性好,不易腐蚀,易洗易干,被广泛地用在各个方面。2、人造皮革:人造皮革主要是在棉布、化纤布等底布上,涂有乙烯、尼龙等,使表面具有类似于天然皮革的结构。乙烯涂制的人造革与天然皮革相比,有许多优点,如耐用性好、弹度、弹性好、不易变形、耐污易洗等,但缺少透气性和吸水性,影响穿着的舒适感。尼龙树脂制成的人造革比乙烯涂层人造革有所改观,增加了一定的透气和透湿效果。 聚氨酯合成革是近年发展起来的一种人造皮革,目前使用较为普遍。原因是这种合成皮革采用了具有微孔结构的聚氨酯作面层,以聚酯纤维制成的无纺织布作底布,既具有较好的耐水性和耐磨性,又提高了其透水汽性,仿真效果好,有类似于动物皮革的纤维结构,加之,易洗、易缝、易修补、价格便宜,因此成为一种广泛、普遍使用的产品。 裘皮服装:芬兰是世界最大的生产国之一,用芬兰养殖的貂皮和狐皮制作的高档裘皮时装具有原皮质量高,而且加工后像绸缎一样柔软的特点,因此着装效果带有飘逸感。一件精美的大衣可能只有一公斤重,叠放在衣箱内也不会起皱。

  • 生物识别:常见的生物特征识别方式

    生物识别:常见的生物特征识别方式生物识别技术主要是指通过人类生物特征进行身份认证的一种技术,这里的生物特征通常具有唯一的(与他人不同)、可以测量或可自动识别和验证、遗传性或终身不变等特点。所谓生物识别的核心在于如何获取这些生物特征,并将之转换为数字信息,存储于计算机中,利用可靠的匹配算法来完成验证与识别个人身份的过程。一、生物识别技术概念生物识别技术的特征分类生物识别的涵义很广,大致上可分为身体特征和行为特征两类。身体特征包括:指纹、静脉、掌型、视网膜、虹膜、人体气味、脸型、甚至血管、DNA、骨骼等;行为特征则包括:签名、语音、行走步态等。生物识别系统则对生物特征进行取样,提取其唯一的特征转化成数字代码,并进一步将这些代码组成特征模板,当人们同识别系统交互进行身份认证时,识别系统通过获取其特征与数据库中的特征模板进行比对,以确定二者是否匹配,从而决定接受或拒绝该人。下表对五类主要的人体生物特征的自然属性进行了比较自然属性虹膜指纹面部DNA静脉唯一性因人而异因人而异因人而异亲子相近同卵双胞胎相同唯一性稳定性终身不变终身不变随年龄段改变终身不变终生不变抗磨损性不易磨损易磨损较易磨损不受影响不受影响痕迹残留不留痕迹接触时留有痕迹不留痕迹体液、细胞中含有不留痕迹遮蔽情况可戴手套面罩不能戴手套不能戴手套不需接触从上表列出的特性可以看出,某一应用领域可能特别需要某种生物特征,如刑侦应用与静脉、指纹识别、亲子鉴定与DNA等。与其他生物特征相比,虹膜组织更适合于信息安全和通道控制领域。例如,虽然多种特征都具有因人而异的自然属性,但虹膜的重复率极低,远远低于其他特征。又如,容易留痕迹可以给刑侦带来很大方便,但痕迹易被他人利用来造假,则不利于信息安全。再则,虹膜相对不易因伤受损,更加大大减少了因外伤而导致无法进行识别的可能性。而静脉识别更完美,精确度可以和虹膜识别媲美,无需接触,操作方便,适应人群广泛。二、几种常见的生物特征识别方式1.指纹识别指纹是指人的手指末端正面皮肤上凸凹不平产生的纹线。纹线有规律的排列形成不同的纹型。纹线的起点、终点、结合点和分叉点,称为指纹的细节特征点。指纹识别即指通过比较不同指纹的细节特征点来进行鉴别。由于每个人的指纹不同,就是同一人的十指之间,指纹也有明显区别,因此指纹可用于身份鉴定。指纹识别技术是目前最成熟且价格便宜的生物特征识别技术。目前来说指纹识别的技术应用最为广泛,我们不仅在门禁、考勤系统中可以看到指纹识别技术的身影,市场上有了更多指纹识别的应用:如笔记本电脑、手机、汽车、银行支付都可应用指纹识别的技术。2.静脉识别静脉识别系统就是首先通过静脉识别仪取得个人静脉分布图,从静脉分布图依据专用比对算法提取特征值,通过红外线CMOS摄像头获取手指静脉、手掌静脉、手背静脉的图像,将静脉的数字图像存贮在计算机系统中,将特征值存储。静脉比对时,实时采取静脉图,提取特征值,运用先进的滤波、图像二值化、细化手段对数字图像提取特征,同存储在主机中静脉特征值比对,采用复杂的匹配算法对静脉特征进行匹配,从而对个人进行身份鉴定,确认身份。全过程采用非接触式。3.虹膜识别虹膜是位于人眼表面黑色瞳孔和白色巩膜之间的圆环状区域,在红外光下呈现出丰富的纹理信息,如斑点、条纹、细丝、冠状、隐窝等细节特征。虹膜从婴儿胚胎期的第3个月起开始发育,到第8个月虹膜的主要纹理结构已经成形。除非经历危及眼睛的外科手术,此后几乎终生不变。虹膜识别通过对比虹膜图像特征之间的相似性来确定人们的身份,其核心是使用模式识别、图像处理等方法对人眼睛的虹膜特征进行描述和匹配,从而实现自动的个人身份认证。英国国家物理实验室的测试结果表明:虹膜识别是各种生物特征识别方法中错误率最低的。从普通家庭门禁、单位考勤到银行保险柜、金融交易确认,应用后都可有效简化通行验证手续、确保安全。如果手机加载“虹膜识别”,即使丢失也不用担心信息泄露。机场通关安检中采用虹膜识别技术,将缩短通关时间,提高安全等级。4.视网膜识别视网膜是眼睛底部的血液细胞层。视网膜扫描是采用低密度的红外线去捕捉视网膜的独特特征,血液细胞的唯一模式就因此被捕捉下来。视网膜识别的优点就在于它是一种极其固定的生物特征,因为它是“隐藏”的,故而不可能受到磨损,老化等影响;使用者也无需和设备进行直接的接触;同时它是一个最难欺骗的系统,因为视网膜是不可见的,故而不会被伪造。另一方面,视网膜识别也有一些不完善的,如:视网膜技术可能会给使用者带来健康的损坏,这需要进一步的研究;设备投入较为昂贵,识别过程的要求也高,因此角膜扫描识别在普遍推广应用上具有一定的难度。5.面部识别面部识别是根据人的面部特征来进行身份识别的技术,包括标准视频识别和热成像技术两种。标准视频识别是透过普通摄像头记录下被拍摄者眼睛、鼻子、嘴的形状及相对位置等面部特征,然后将其转换成数字信号,再利用计算机进行身份识别。视频面部识别是一种常见的身份识别方式,现已被广泛用于公共安全领域。热成像技术主要透过分析面部血液产生的热辐射来产生面部图像。与视频识别不同的是,热成像技术不需要良好的光源,即使在黑暗情况下也能正常使用。6.手掌几何学识别手掌几何学识别就是通过测量使用者的手掌和手指的物理特征来进行识别,高级的产品还可以识别三维图象。作为一种已经确立的方法,手掌几何学识别不仅性能好,而且使用比较方便。它适用的场合是用户人数比较多,或者用户虽然不经常使用,但使用时很容易接受。如果需要,这种技术的准确性可以非常高,同时可以灵活地调整性能以适应相当广泛的使用要求。手形读取器使用的范围很广,且很容易集成到其他系统中,因此成为许多生物特征识别项目中的首选技术。7.DNA识别人体内的DNA在整个人类范围内具有唯一性(除了同卵双胞胎可能具有同样结构的DNA外)和永久性。因此,除了对同卵双胞胎个体的鉴别可能失去它应有的功能外,这种方法具有绝对的权威性和准确性。DNA鉴别方法主要根据人体细胞中DNA分子的结构因人而异的特点进行身份鉴别。这种方法的准确性优于其它任何身份鉴别方法,同时有较好的防伪性。然而,DNA的获取和鉴别方法(DNA鉴别必须在一定的化学环境下进行)限制了DNA鉴别技术的实时性;另外,某些特殊疾病可能改变人体DNA的结构组成,系统无法正确的对这类人群进行鉴别。8.声音和签字识别声音和签字识别属于行为识别的范畴。声音识别主要是利用人的声音特点进行身份识别。声音识别的优点在于它是一种非接触识别技术,容易为公众所接受。但声音会随音量、音速和音质的变化而影响。比如,一个人感冒时说话和平时说话就会有明显差异。再者,一个人也可有意识地对自己的声音进行伪装和控制,从而给鉴别带来一定困难。签字是一种传统身份认证手段。现代签字识别技术,主要是透过测量签字者的字形及不同笔划间的速度、顺序和压力特征,对签字者的身份进行鉴别。签字与声音识别一样,也是一种行为测定,因此,同样会受人为因素的影响。9.亲子鉴定(基因识别)由于人体约有30亿个核苷酸构成整个染色体系统,而且在生殖细胞形成前的互换和组合是随机的,所以世界上没有任何两个人具有完全相同的30亿个核苷酸的组成序列,这就是人的遗传多态性。尽管遗传多态性的存在,但每一个人的染色体必然也只能来自其父母,这就是DNA亲子鉴定的理论基础。三、生物特征识别在中国的发展状况我国生物特征识别行业最早发展的是指纹识别技术,基本与国外同步,早在80年代初就开始了研究,并掌握了核心技术,产业发展相对比较成熟。而我国对于人脸识别、虹膜识别、掌形识别等生物认证技术研究的开展则在1996年之后。1996年,现任中国科学院副秘书长、模式识别国家重点实验室主任的谭铁牛入选中科院的“百人计划”,辞去英国雷丁大学的终身教职务回国,开辟了基于人的生物特征的身份鉴别等国际前沿领域新的学科研究方向,开始了我国对人脸、虹膜、掌纹等生物特征识别领域的研究。目前,中科院自动化研究所是我国最具权威的生物特征识别认证科研机构,在人脸识别、虹膜识别、指纹识别、掌纹识别等领域均已取得了国内或国际领先的研究成果。以国内顶级科研单位、著名高校的生物特征识别科研成果为依托,北京中科虹霸、北京行者、中科奥森、北京数字指通、北大高科、杭州中正生物认证有限公司、上海银晨科技、道肯奇等一批生物特征识别领域的高新技术公司慢慢发展起来,带动着行业的发展。自2003年后,生物特征识别行业步入成长期,主要特征有:产品体系已建立,技术标准逐渐完善,行业内企业数量激增(全球目前从业公司已上千家),产品成本已大幅度下降,技术已获得客户广泛认可,各领域应用渐趋普及,行业体系也已成型。在此阶段,中国生物特征识别行业开始诞生了一批在细分市场具有领导优势的企业,如北京艾迪沃德指纹科技(IDworld)、北大高科、中控电子在科刑侦和社保指纹门锁指纹考勤等领域,都取得了一定优势。以中科院自动化所科研成果为依托的北京中科虹霸科技有限公司在虹膜识别产业化方面积极探索,于2006年10月研发出国内第一款嵌入式网络化虹膜识别仪,其性能达到国际领先。部分企业在技术研发等领域也取得突破,如亚略特、银晨科技在人脸识别等技术上都取得了领先水平。

漆皮特征相关的资料

漆皮特征相关的资讯

  • 单细胞测序绘制人类大脑皮层图谱,揭示神经发育中分子动态特征
    从解剖学角度来看,大脑可以被细分为多个特定区域,包括新皮层(neocortex)。大脑皮层是高级认知的中枢,是人类进化过程中大脑中扩张和多样化最多的区域。早期的大脑分区和皮层分区是由形态发生梯度(morphogenetic gradient)引导建立的【1-2】,但随着发育进程的展开,这些早期模式如何产生更加精细更加离散的空间差异目前还不是很清楚【3】。大脑皮层的发育过程已被研究了一个多世纪,历史上科学家通过每次只观察一种细胞类型,研究少量的基因,随后逐步拼接整个发育事件来进行探索。但我们必须意识到,大脑在同一时间并不是只产生一种细胞类型,而是数百种细胞类型一起发生发展,就像交响乐一样美妙且复杂。随着单细胞和空间转录组学的出现和发展,结合大数据分析,我们已经能够去探究神经发育这支交响乐中所隐藏的规律。2021年10月6日,来自美国加州大学的Arnold R. Kriegstein团队在Nature杂志上在线发表了题为An atlas of cortical arealization identifies dynamic molecular signatures的研究论文。该研究利用单细胞测序研究了神经发育和早期胶质生成阶段10个主要的脑区和6个新皮层区域,揭示了不同皮层区域不同细胞纵向发育的分子图谱。绘制人类大脑发育图谱 为了描绘大脑发育过程中不同脑区及皮质区域的细胞多样性,作者收集了妊娠中期(怀孕3-6个月,神经发育高峰期)的大脑组织,随后进行为分割(大脑细分后的区域称为“regions”,皮层细分后的区域称为“areas”)和单细胞转录测序(图1)。作者从13个个体中拿到了10个脑区(主要是前脑、中脑和后脑)样本及6个新皮层区域样本(prefrontal cortex(PFC), motor, somatosensory, parietal, temporal 和primary visual(V1)皮层),最终获得了698,820个高质量的单细胞数据。通过UMPA(uniform manifold approximation and projection,新的降维技术,用于数据可视化和探索)分析,作者发现了预期的细胞类群(包括excitatory neurons,intermediate progenitor cells(IPCs),radial glia等)。数据表明,在整个大脑中,细胞类型是产生区域分化隔离的主要因素。区域特定基因分析显示,一些区域特异性基因存在于同一区域中的多个细胞类型中,说明某些区域性表达基因特征在细胞类型中具有高度渗透性。图1. 测序样本收集示意图新皮质中的细胞类型 已有研究表明新皮质包括几十个专门从事认知过程的功能区【4】。V1和PFC中的神经元在出生后就完全不同【5】,而其他的细胞类型并没有展示出明显的区域特异性差异。为了进一步扩展已有的研究,作者对来自于特定皮层区域的单细胞进行测序分析,获得了387,141个高质量的单细胞数据。通过分析,作者发现了预期的细胞类型,包括Cajal-Retzius neurons, dividing cells, excitatory neurons等。随后,按细胞类型进行分层聚类得到了138个新皮质细胞群,其中104个细胞群是由来自多个皮层区域的细胞组成的。动态区域性基因特征 为了探究新皮质发育过程中的细胞区域性差异,作者在皮质不同区域的兴奋性谱系中(radial glial (RG), IPCs和excitatory neurons)寻找每个细胞类型中的差异表达基因,同时通过检测已知的区域特异性基因的表达来评估皮质区域划分的可靠性。作者构建了星座图来探索不同皮质区域细胞类型之间的关系:RG节点主要在同细胞类型之间相互连接;IPC与兴奋神经元之间存在相互连接;PFC 和 V1 细胞类型节点之间没有连接,说明这两个基因表达模式之间相互排斥。在每一组区域标记基因中,作者鉴定了编码转录因子的基因,这些转录因子在特定区域的细胞中大量富集。其中包括一些在区域化过程中功能已知的转录因子,例如NR2F1和BCL11A,这两个基因都与神经发育疾病相关【6】。作者还发现一些与皮层区域化不相关的转录因子:在V1中,包括NF1A, NF1B和NF1X,它们是大脑发育的重要调节因子,与大头症和认知障碍有关【7】;ZBTB18, 大脑扩张驱动因子,与神经元分化和皮层迁移有关;在PFC中,包括HMGB2和HMGB3,它们在发育的不同阶段在神经干细胞中差异性表达,是神经分化的关键性调节因子,但它们在皮层区域化的过程中的功能未被研究和报道。原位杂交验证候选标志物 上述单细胞数据揭示了人类大脑发育过程中皮层的6个不同区域内细胞类型的多样性和转录谱。接下来,作者选择了兴奋神经元簇的候选标记基因进行验证,采用单分子荧光原位杂交(single-molecule fluorescent in situ hybridization, (smFISH))量化了20个样本中(来自4个皮质区域)31个RNA转录本的表达情况(图2)。与之前的报道一致,神经基因SATB2和BCL11B呈现区域动态性表达:他们在frontal区域共表达,但在occipital区域相互排斥。通过分析所有的区域,作者找到了新的亚细胞群标志物候选基因:NEFL, SERPINI1和NR4A1。这三个基因在PFC, somatosensory, temporal和V1皮层细胞中的表达量基本相等,但是它们相对的空间位置发生巨大改变:NEFL, SERPINI1和NR4A1在PFC中共表达,但在其他区域中相互排斥;在somatosensory皮层中,这些标记基因主要表达在上层分子层中。图2. 自动化空间RNA转录检测流程综上所述,该研究对新皮质区域不同细胞类型的基因表达特征提供了细致的理解。作者发现:(1) 在主要的大脑结构中,区域特征在不同的细胞类型中非常普遍;(2) 新皮质中的区域特征非常特殊,受限于单个细胞类型;(3) 除了细胞类型特征外,细胞的发育阶段(即妊娠周)是基因表达特征组合的有力决定因素。这些发现表明,区域特异性基因表达特征的动态变化速度非常快,而且是细胞类型特异性的(图3),这与之前的理论似乎不太一致,在以前认知中,基因表达模式通常被认为是一旦建立就会持续存在。通过绘制大脑发育过程中的基因表达图谱,研究人员对大脑皮层是如何形成有了更好的理解,有助于探索大脑皮层是如何在神经发育疾病中受到影响的。图3. 发育过程中皮层区域化模式图原文链接:https://doi.org/10.1038/s41586-021-03910-8
  • 侧柏叶配方颗粒的特征图谱和槲皮苷含量测定
    今天为您带来侧柏叶配方颗粒的特征图谱和其中槲皮苷含量的测定。 参考标准中药配方颗粒统一标准公示稿 特征谱图色谱条件色谱柱:月旭Ultimate® Plus C18(4.6×250mm,5μm);检测波长:210nm(26分钟前),256nm(26分钟后);柱温:35℃;流速:1.0 mL/min;进样量:10 μl。 谱图和数据侧柏叶配方颗粒供试品特征图谱结论含量测定色谱条件色谱柱:月旭Ultimate® XB- C18(4.6×250mm,5μm);流动相:甲醇/0.01mol/L磷酸二氢钾溶液/冰醋酸=40/60/1.5;检测波长:254nm;柱温:25℃;流速:1mL/min;进样量:10μl。 谱图和数据结论月旭Ultimate® Plus C18(4.6×250mm,5μm)色谱柱符合特征谱图测定要求;月旭Ultimate® XB-C18(4.6×250mm,5μm)色谱柱符合含量测定要求。谱图和数
  • OPTON微观世界 | 连铸坯典型内部缺陷断口形貌特征简介
    1连铸坯质量及内部典型缺陷类型 连铸坯质量决定着最终钢铁产品的质量。从广义来说所谓连铸坯质量是得到合格产品所允许的连铸坯缺陷的严重程度,连铸坯存在的缺陷在允许范围以内,叫合格产品。 连铸坯的质量缺陷主要为内部质量缺陷和表面质量缺陷,因其成因不同,控制,抑制缺陷的产生及提高质量的措施和方法也不尽相同。 连铸坯内部缺陷主要有中心疏松、中心缩孔、夹杂物、气孔、裂纹、氢脆等,连铸坯质量是从以下几个方面进行评价的:(1)连铸坯的纯净度:指钢中夹杂物的含量,形态和分布。 (2)连铸坯的表面质量:主要是指连铸坯表面是否存在裂纹、夹渣及皮下气泡等缺陷。连铸坯这些表面缺陷主要是钢液在结晶器内坯壳形成生长过程中产生的,与浇注温度、拉坯速度、保护渣性能、浸入式水口的设计,结晶式的内腔形状、水缝均匀情况,结晶器振动以及结晶器液面的稳定因素有关。(3)连铸坯的内部质量:是指连铸坯是否具有正确的凝固结构,以及裂纹、偏析、疏松、夹杂、气孔等缺陷程度。二冷区冷却水的合理分配、支撑系统的严格对中是保证铸坯质量的关键。 只有提供高质量的连铸坯,才能轧制高品质的产品。因此在钢生产流程中,生产无缺陷或不影响终端产品性能的可容忍缺陷铸坯,生产无缺陷或不影响结构件安全可靠性能的可容忍缺陷的钢材是冶金工作者的重要任务。随着科学技术的不断发展以及传统物理学、材料学的不断完善,连铸钢缺陷检测已经进入了纳米检测时代。扫描电镜以其高分辨率、高放大倍数及大景深的特点为连铸钢缺陷分析与对策研究提供了无限可能,使得材料分析变得更加具有科学性和实用性。扫描电镜广泛用于材料的形貌组织观察、材料断口分析和失效分析、材料实时微区成分分析、元素定量、定性成分分析、快速的多元素面扫描和线扫描分布测量、晶体/晶粒的相鉴定、晶粒与夹杂物尺寸和形状分析、晶体、晶粒取向测量等领域。电子显微镜已经成为钢铁行业在产品研发、质量检验、缺陷分析、产品失效分析等方面强有力的工具和检测手段。2连铸坯典型内部缺陷宏观和微观特征及形成机理简介2.1 缩孔缺陷特征 在横向酸浸低倍试片上存在于铸坯中心区域、形状不规则、孔壁粗糙并带有枝晶状的孔洞,孔洞暗黑。一般出现于铸坯最后凝固部位,在铸坯纵向轴线方向呈现的是间断分布的孔洞。形成机理 连铸圆坯在凝固冷却过程中由于温度梯度大、冷却速度快和结晶生长的不规则性,局部优先生长的树枝晶产生“搭桥”现象,把正在凝固中的铸坯分隔成若干个小区域,造成钢水补充不足,钢液完全凝固时引起体积收缩,在铸坯最后凝固的中心区域形成缩孔。另外,拉坯速度过快,浇注温度高,钢水过热度大等都将影响铸坯中心缩孔的大小。因连铸时钢水不断补充到液相,故连铸圆坯中纵向无连续的集中缩孔,只是间断出现缩孔。微观特征 缩孔内壁呈现自由凝固光滑枝晶特征,见图1。图1 连铸坯心部断口中不致密的疏松和缩孔2.2 疏松缺陷特征 在横向酸浸低倍试片的中心区域呈现出的分散小黑点、不规则多边形或圆形小孔隙组成的不致密组织。较严重时,有连接成海绵状的趋势。形成机理 连铸过程中浇注温度过高,中包钢水过热度较大,铸坯在二冷区冷却凝固过程中由于温度梯度作用,柱状晶强烈向中心方向生长。中心疏松的产生可看成是铸坯中心的柱状晶向中心生长,碰到一起造成了“搭桥”阻止了桥上面的钢液向桥下面钢液凝固收缩的补充,当桥下面钢液全部凝固后就留下了许多小孔隙;或钢液以枝状晶凝固时,枝晶间富集杂质的低熔点钢液在最后凝固过程中产生收缩,与此同时,脱溶气体逸出而产生孔隙;或是钢中的非金属夹杂物在热酸浸时被腐蚀掉而留下孔隙。钢中含有较多的气体和夹杂时,会加重疏松程度。疏松对钢材性质的影响程度取决于疏松点的大小、数量和密集程度。微观特征 不致密的自由凝固枝晶特征,常有夹杂物伴生,见图2、图3。图2 连铸坯心部断口中疏松与枝晶状硫化物图3 连铸坯心部断口中不致密的疏松缺陷图4 连铸坯中部断口中柱状晶及小气孔缺陷2.3柱状晶发达缺陷特征 在横向酸浸低倍试片上,铸坯的上半弧枝晶发达至中心,下半弧枝晶相对细小。形成原因 连铸结晶器内钢液的凝固热传导对铸坯表面质量有非常大的影响。研究发现随着结晶器冷却强度(热流)的增加,坯壳的不均匀程度提高。如果冷却水冷却不均匀,上弧冷却强,就可能造成上弧柱状晶发达穿透至中心;下弧冷却弱,柱状晶就相对比较细小。微观特征 发达的枝晶状柱状晶其上常有小气孔或夹杂物存在,见图4。2.4 非金属夹杂物缺陷特征 在横向酸浸低倍试片上的连铸坯内弧侧、皮下1/4—1/5半径部位分布有不同形状的孔隙或空洞(夹杂被酸浸掉)。在硫印图片上能观察到随机分布的黑点。形成机理 按夹杂物来源,非金属夹杂物分为内生夹杂和外来夹杂。内生夹杂是指冶炼时脱氧产物和浇注过程中钢水的二次氧化所生成的产物未能排出而残留在钢中的夹杂物。外来夹杂是指冶炼和浇注过程中由外部混入钢中的耐火材料、保护渣、未融化的合金料等外来产物。这些内生或外来夹杂在连铸上浮过程中被内弧侧捕捉而不能上浮到结晶器液面是造成内弧夹杂物聚集的原因。微观特征 连铸坯中夹杂物多呈球状、块状、颗粒状,分布在疏松、气孔、晶界等部位,见图5、图6 图5 连铸坯心部断口晶界上的颗粒状碳氮化物图6 连铸坯心部断口中光滑气孔及枝晶状硫化物2.5 氢致裂纹缺陷特征 在横向酸浸低倍试片上氢致裂纹的分布形态是距铸坯周边一定距离的细短裂纹,有的裂纹呈锯齿状。在纵向试样上,氢致裂纹与纤维方向大致平行或成一定角度,裂缝的锯齿状特征更明显。在纵向断口上呈现的是椭圆形的银灰色斑点,一般称之为铸态白点。形成机理 氢致裂纹是由于熔于钢液中的氢原子在连铸坯凝固冷却过程中脱熔并析集到夹杂、疏松等空隙中化合成分子氢产生巨大的压力并与钢相变时产生的热应力、组织应力叠加,在局部缺陷区域产生巨大的气体压力,当超过钢的强度极限时,导致钢坯内部产生裂纹。微观特征 断口呈氢脆解理或准解理特征,见图7、图8。图7 连铸坯断口上的氢脆解理特征(H 5.4PPm)图8 连铸坯断口上的氢脆解理及颗粒状氧化物2.6连铸坯正常
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制