脾组织磷脂质

仪器信息网脾组织磷脂质专题为您整合脾组织磷脂质相关的最新文章,在脾组织磷脂质专题,您不仅可以免费浏览脾组织磷脂质的资讯, 同时您还可以浏览脾组织磷脂质的相关资料、解决方案,参与社区脾组织磷脂质话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

脾组织磷脂质相关的耗材

  • Ostro 96孔磷脂去除板
    产品特点: *OstroTM 96孔磷脂去除板 &mdash 简单、迅速、洁净的去除血浆与血中的磷脂使用通用方法流程,无需或仅需最小调整,即可快速高效的去除血浆或血样本中的磷脂,同时确保对性质不同的分析物都能获得高回收、高重现的处理结果,从而改善您的实验室的工作流程与数据结果。Ostro 96孔提取板为您提供更灵敏的分析、更高的通量、以及更少的死机时间。 ■ 显著去除更多磷脂,提取更干净 ■ 改善重现性,使方法更稳定耐用 ■ 流程简便易行,提高通量 SiroccoTM 96孔蛋白沉淀板 Sirocco是业界技术最先进的蛋白沉淀板,有效加快生物样品前处理过程,同时得到澄清滤液,不必担心上样后堵塞仪器等现象的发生,满足高通量实验室的要求。该沉淀板由独特的过滤系统,密封盖及单向阀三部分组成,其中专利的单向阀允许蛋白沉淀过程在孔内进行,同时阻止孔堵塞,交叉污染以及漏液等情况的发生。其特点是: ■ 样品回收率最高 ■ 简化样品提取的步骤 ■ 降低交叉污染的可能性,结果更加可靠 ■ 独特单向阀设计能够有效控制流速 ■ 减少滤液中不明物的出现的可能,延长仪器正常运行时间 ■ 适合于自动化,高通量的样品前处理过程 订货信息: OstroTM 96孔磷脂去除板     产品描述 数量 部件号 Ostro 96孔磷脂去除板(25mg) 1/pk 186005518 Sirocco 96孔蛋白沉淀板 5/pk 186002448 Sirocco 96孔蛋白沉淀板1/pk 186003873 沃特世96位正压提取装置 1/pk 186005521 96孔2mL收集板 50/pk 186002482 用于96孔2mL收集板的盖板 50/pk 186002484 96孔1mL收集板 50/pk 186002481 用于96孔1mL收集板的盖板 50/pk 186002483
  • FastRemover 磷脂去除板 7510-11021
    FastRemover系列磷脂去除板1. 96 孔板形式,结合96 位负压固相萃取装置可对生物样品进行批量处理,可同时去除蛋白和磷脂;2. 利用金属氧化物(二氧化钛和氧化锆混合填料)特异性吸附含有磷酸基团物质, 可以去除90% 的磷脂类干扰物,降低MS 检测离子抑制,保护仪器和使色谱柱免受污染,降低仪器维护频率,提高色谱柱寿命;3. 采用高惰性材料,对待测物无吸附,不影响微量样品回收率。FastRemover 磷脂去除板和其它品牌磷脂去除板去除磷脂效果对比请注意: FastRemover for Phospholipid 所含填料会对磷酸基团物质有选择性吸附,如果目标分析物中含有磷酸基团,则不建议采用磷脂去除板,以避免影响目标组分回收率。订货信息DescriptionQuantityCat.No.FastRemover for Phospholipid(0.2um)17510-11021
  • 默克SupelcoHybridSPE磷脂SPE小柱52798-U
    默克SupelcoHybridSPE磷脂SPE小柱52798-U质量水平 100 形式固体 组成床重量, 15 mg 包装 pk of 20 技术固相萃取 (SPE): 适用体积 0.8 mL 基质活性基团 氧化锆基相 应用食品和饮料默克SupelcoHybridSPE磷脂SPE小柱52798-U说明一般描述HybridSPE-Phospholipid磷脂去除技术是一种简单且通用的样本制备平台,设计用于在 LC-MS 或 LC-MS/MS 分析之前,从生物血浆和血清中总体去除内源性蛋白和磷脂干扰。首先通过加入和混合酸化乙腈使生物血浆或血清发生蛋白沉淀。然后通过离心除去沉淀蛋白,并将所得上清液上样至 HybridSPE-Phospholipid 96 孔板或固相萃取柱上,其作为化学过滤器,专门靶向去除内源性样品磷脂。截留磷脂的原理是HybridSPE-Phospholipid固定相键合的专有氧化锆离子和所有磷脂都具有的磷酸根发生高度选择性的路易斯酸碱相互作用。得到的洗脱液可立即用于 LC-MS 或 LC-MS-MS 分析。HybridSPE-Phospholipid 96 孔板和Ultra固相萃取柱有“孔内”/“柱内”沉淀法可供选择。即先将生物血浆/血清加入孔内或柱内,接着加入酸化乙腈(沉淀剂)。短暂混合/涡旋后,抽真空。96孔板和 Ultra固相萃取柱含有一系列低孔隙率疏水滤膜/筛板,这些填充柱床的滤膜/筛板组件作为深层过滤器,有助于在提取过程中同时去除磷脂和沉淀蛋白。标准 HybridSPE-Phospholipid磷脂固相萃取小柱需要采用“离柱”沉淀法。特点和优势融合了蛋白质沉淀的简单性和固相萃取(SPE)定向除去磷脂的选择性通过除去磷脂和沉淀蛋白,减少离子抑制2-3 步通用流程方法开发最少,甚至不需要方法开发有 96 孔和 1 mL 萃取柱规格可供选择

脾组织磷脂质相关的仪器

  • 产品特点 专利的&ldquo 3维旋转高速运动&rdquo 技术用于快速破碎多种纤维状组织和难破碎细胞 五种破碎条件设定和存储,用户也可任意设定条件 旋转速度可在2000至5500rpm之间选择设定 无碳刷变频电机,不会产生碳颗粒,也不需要更换碳刷 样品管支架很容易取出 使用中心的旋钮,很容易固定样品管 可以通过透明上盖观察样品破碎情况 紧凑和经济性的桌上型系统,可以容纳12个2.0ml样品管 技术参数: 速度范围 2000~5500rpm,100rpm设定升降幅 破碎方式 微处理器控制&ldquo 3维旋转高速运动&rdquo (专利) 驱动方式 无碳刷变频电机 时间设定 1~300秒,或1~100秒在超过5100rpm时 显示 背光式LCD数字显示 容量 2.0ml× 12 安全装置 开盖检测,电机过热检测,电机不正常运转检测 尺寸重量 280W× 320D× 305Hmm,约17公斤 电源需要 AC 120V,3A,50/60Hz,1P AC 220V/230V/240V,2A,50/60Hz,1P
    留言咨询
  • Description50 microliter pre-assembled nanodisc, 0.5 mM concentrated, containing MSP1D1deltaH5-His protein and DMPC + 10% biotinylated PE lipids. For use in cell-free reactions.Product is shipped on dry ice - additional freight charges apply.产品简介:Nanodisc可使膜蛋白处于一个类似磷脂双分子层的环境中,从而保证膜蛋白能够像在天然的细胞膜中维持其构象和生物学功能。Nanodisc这种全新的膜蛋白提取工具打破了原有提取方法的瓶颈,能够很好地维持膜蛋白的稳定,如此可以推动膜蛋白领域的研究工作。Nanodisc是由膜支架蛋白(membrane scaffold proteins,MSPs)和磷脂分子构成的磷脂双分子层类膜结构。整合到Naonodisc中的膜蛋白可以保持其生物学活性,为膜蛋白的研究提供了便利。 根据不同的实验情况,科研人员可以使用两种不同的策略来包裹其想要获得的膜蛋白。对于已经分离并溶解在去污剂中的膜蛋白,我们推荐使用膜支架蛋白(MSPS)并配合磷脂分子使用。针对不同的需求我们提供多种膜支架蛋白和多种磷脂分子以及不同配合的试剂盒供选择。而用于无细胞表达系统所生产的膜蛋白,我们推荐使用已经组装好的空载纳米磷脂盘来包裹/插入其目标膜蛋白。您可以直接购买组装好的纳米磷脂盘或相应的试剂盒自行组装。 产品优势:1)德国制造, 欧美蛋白纯化产品供应商;2)专用于膜蛋白的研究,提供带有His-tag和不带标签的MSPs膜支架蛋白(人源和鼠源);3)提供四种不同尺寸的MSPs膜支架蛋白 (MSP1D1/MSP1D1-dH5/MSP1E3D1/MSP2N2);4)分别提供配备DMPC、POPC和DMPG磷脂的试剂盒(根据研究发现,不同膜蛋白在不同磷脂双分子环境下其活性有所不同,例如:真核磷脂环境和原核磷脂等环境,可按照实际需求订购,见图1);5)详尽的操作指南和专业技术支持;6)配合PureCube Rho1D4 Agarose使用,是有效的膜蛋白提取解决方案;7)Nanodisc系列产品MSP1D1-His和MSP1D1dH5-His的应用已刊登在《美国化学会-应用材料与界面》(ACS Applied Materials & Interfaces): Zeno, W.F. et al. Spectroscopic Characterization of Structural Changes in Membrane Scaffold Proteins Entrapped wit hin Mesoporous Silica Gel Monoliths. Applied Materials & Interfaces 2015, 7, 8640-8649. 图. 1: E. coli MraY转位酶在不同磷脂环境中的稳定性和活性。 数据来源于法兰克福大学Frank BernhardWhat our customers say:订购信息:26112MSP1D1-His, lyophilized protein (2 mg)26116MSP1D1-His, lyophilized protein (10 mg)26122MSP1D1 dH5-His, lyophilized protein (2 mg)26126MSP1D1 dH5-His, lyophilized protein (10 mg)26152MSP1E3D1-His, lyophilized protein (2 mg)26156MSP1E3D1-His, lyophilized protein (10 mg)26172MSP2N2-His, lyophilized protein (2 mg)26176MSP2N2-His, lyophilized protein (10 mg)26512mouse MSP1D1-His, lyophilized protein (2 mg)26516mouse MSP1D1-His, lyophilized protein (10 mg)26552mouse MSP1E3D1-His, lyophilized protein (2 mg)26556mouse MSP1E3D1-His, lyophilized protein (10 mg)26211Nanodisc Assembly Kit MSP1D1-His_DMPC26213Nanodisc Assembly Kit MSP1D1-His_POPC26221Nanodisc Assembly Kit MSP1D1 dH5-His_DMPC26223Nanodisc Assembly Kit MSP1D1 dH5-His_POPC26251Nanodisc Assembly Kit MSP1E3D1-His _DMPC26253Nanodisc Assembly Kit MSP1E3D1-His _POPC26311Nanodisc MSP1D1-His_DMPC (50 uL)26313Nanodisc MSP1D1-His_POPC (50 uL)26315Nanodisc MSP1D1-His_DMPG (50 uL)26321Nanodisc MSP1D1 dH5-His_DMPC (50 uL)26323Nanodisc MSP1D1 dH5-His_POPC (50 uL)26351Nanodisc MSP1E3D1-His_DMPC (50 uL)26353Nanodisc MSP1E3D1-His_POPC (50 uL)26355Nanodisc MSP1E3D1-His_DMPG (50 uL)26371Nanodisc MSP2N2-His_DMPC (50 uL)26373Nanodisc MSP2N2-His_POPC (50 uL)26421Nanodisc MSP1D1 dH5-His_DMPC_Biotinyl_PE (50 ul)26711Nanodisc mouse MSP1D1-His_DMPC (50 uL)26713Nanodisc mouse MSP1D1-His_POPC (50 uL)26751Nanodisc mouse MSP1E3D1-His_DMPC (50 uL)26753Nanodisc mouse MSP1E3D1-His_POPC (50 uL)
    留言咨询
  • 脂质纳米颗粒Lipid Nanoparticle (LNP)是目前较为先进的基因递送技术之一。LNP 克服了基因药物研发中的递送障碍,可以快速的将核酸递送到生物细胞中。LNP 可广泛应用于基因编辑、疫苗开发、肿瘤免疫和罕见病治疗中。 LNP 递送系统优势: 核酸包封率高,递送速度快。组织穿透能力强,毒性和免疫原性小。 使用微流控方法制备 LNP 具有以下优势: 核酸包封率高,大多在 95% 以上。批间重复性高。单次合成体积低至数百微升,节约核酸和磷脂。LNP 粒径、单分散度(PDI)等核心指标高度可控。 Fluidiclab-LNP 合成仪(LNP-S1-L) 的性能优势: 上百个用户验证过的芯片设计。流速控制精确稳定,粒径可到 50 nm,PDI 低至 0.02 。连接简便,使用简单,收到设备后 5 分钟即可开始制备 LNP。芯片可重复多次使用而不影响性能。结构强度高,无泄漏堵塞风险。附注:[1]为使用 MC3 阳离子磷脂(总磷脂浓度 8 mM),总流速 12 mL/min 下,流速比 3:1,未稀释样品的测量结果。 系统组成:LNP合成仪、微混合芯片夹具、微混合芯片实验结果:
    留言咨询

脾组织磷脂质相关的方案

脾组织磷脂质相关的论坛

  • 求助:那位测过磷脂??????

    那位测过植物组织中的磷脂含量,用什么方法?我查到有用三氯醋酸沉淀法的,但在期刊网和实验指导书中都没查到,请知道的告诉一下,谢谢!!!

  • 磷脂分离分析方法

    [align=center][font='times new roman'][size=16px]磷脂分离分析[/size][/font][font='times new roman'][size=16px]方法[/size][/font][/align] 2003年,Han等正式提出了脂质组学的概念,即对生物样品中脂质进行全面的系统分析,并以此为依据推测其他与脂质作用的生物分子的变化,进而阐明脂质在各种生命现象中的作用机制。脂质尤其是磷脂,是细胞膜的关键组分,磷脂代谢的改变对细胞膜结构有深远的影响,尤其是癌细胞需要更多的膜来实现快速增殖。因此,膜磷脂的含量、磷脂代谢物水平和磷脂谱的变化[font='times new roman'][sup][size=16px][99][/size][/sup][/font]通常被确定为癌症发展进程的标志,此外,磷脂代谢的改变也与糖尿病、人体衰老与肥胖有关。基于磷脂重要的生理与病理功能,需要快速、准确的分离分析手段实现对其的定性与定量分析,进而阐明其组分变化对机体的影响,为临床诊断和治疗提供重要依据。 磷脂分子是由亲水性头基和亲脂性/疏水性尾基组成,根据亲水性头基的取代基团的不同又可分为PC、PE、磷脂酰丝氨酸(PS)、磷脂酰肌醇(PI)和磷脂酰甘油(PG)等。目前,磷脂分离分析面临的主要挑战包括两方面,一方面是磷脂本身复杂和多样的结构信息,包括类别、脂肪酰基种类、脂肪酰基sn-位置和脂肪酰基中的C=C位置/几何形状(即顺式/反式)等,导致其识别与鉴定的难度很大。另一方面是分离分析工具与技术的限制。最初用于脂质组学的分析方法是基于质谱的鸟枪法,即直接将样品注入到质谱仪中,尽管该方法具有简便高效的优点,但是会导致样品中的杂质包括盐、极性代谢物和蛋白质等对脂质的电离造成影响,影响信号的稳定,最终会影响质谱的检测结果。此外,这些杂质也会污染质谱仪。近年来,高灵敏度和特异性的高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-质谱(HP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url])法成功弥补了鸟枪法的缺陷。由于在质谱分析之前增加了色谱分离过程,一方面可以有效减少样品中杂质的影响,另一方面基于其分离能力,可以将磷脂按照类别与种类进行初步的分离,减少了后续质谱分析的基质效应和离子抑制效应,大大改善了磷脂的分离分析效果。 色谱固定相作为HPLC的核心组成,发挥着至关重要作用。开发新型色谱固定相是脂质组学的重要研究方向之一。例如,Liang等以半胱氨酸为衍生化试剂,合成了苯乙烯马来酸共聚物色谱固定相Sil-SMA-amino acid,填充Sil-SMA-amino acid色谱柱对于亲疏水性的小分子具有良好的分离性能,同时该色谱柱具有RPLC/HILIC/IEC的混合模式保留机制,成功实现了部分PC和PE标准品的种类分离,并成功应用于胃癌细胞脂质提取物的分离分析,表现出了一定的应用潜力。Liu等以三辛基膦和烯丙基溴为原料合成了膦基离子液体三辛基(烯丙基)溴化膦([P[font='times new roman'][sub][size=16px]888Allyl[/size][/sub][/font]]Br)。以[P[font='times new roman'][sub][size=16px]888Allyl[/size][/sub][/font]]Br为聚合单体,通过点击化学反应合成了聚膦离子液体功能化二氧化硅球(PIL@SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font])。PIL@SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]填充色谱柱表现出RPLC/HILIC混合模式分离特点,可在较短的时间内实现核酸碱基与核苷类、磺胺类、酰胺类和苯胺类物质的快速分离,具有良好的分离选择性。其对于磷脂标准品的分离效果优于商业化的氨基柱,并可用于磷脂类别与种类的同时分离分析。此外,也实现了大豆卵磷脂的快速分离分析。

  • 磷脂的结构与功能

    磷脂的结构与功能

    [align=left][font='times new roman'][size=18px]磷脂的结构与[/size][/font][font='times new roman'][size=18px]功能[/size][/font][/align][font='times new roman'][size=16px]磷脂是一[/size][/font][font='times new roman'][size=16px]种[/size][/font][font='times new roman'][size=16px]脂类[/size][/font][font='times new roman'][size=16px]物质[/size][/font][font='times new roman'][size=16px],是植物和动物细胞中生物膜[/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]组织的基本成分。它们同时是具有亲水性和亲脂性的两亲[/size][/font][font='times new roman'][size=16px]性分子[/size][/font][font='times new roman'][size=16px]。如图所示,[/size][/font][font='times new roman'][size=16px]磷脂[/size][/font][font='times new roman'][size=16px]的分子结构[/size][/font][font='times new roman'][size=16px]中[/size][/font][font='times new roman'][size=16px]包含一个极性[/size][/font][font='times new roman'][size=16px]“[/size][/font][font='times new roman'][size=16px]头[/size][/font][font='times new roman'][size=16px]”[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]同时[/size][/font][font='times new roman'][size=16px]连接着两个[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]有时只有一个[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px]不同长度和不同饱和度的非极性链。一般对于极[/size][/font][font='times new roman'][size=16px]性[/size][/font][font='times new roman'][size=16px]头,磷酸基[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]酸性[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px]pKa≈0[/size][/font][font='times new roman'][size=16px]~[/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px],胺基[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]胆碱、乙醇胺和丝氨酸的基本官能团[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px]pKa≈9[/size][/font][font='times new roman'][size=16px]~[/size][/font][font='times new roman'][size=16px]11[/size][/font][font='times new roman'][size=16px],羧基[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]如[/size][/font][font='times new roman'][size=16px]R[/size][/font][font='times new roman'][sub][size=16px]1[/size][/sub][/font][font='times new roman'][size=16px]或[/size][/font][font='times new roman'][size=16px]R[/size][/font][font='times new roman'][sub][size=16px]2[/size][/sub][/font][font='times new roman'][size=16px]=H[/size][/font][font='times new roman'][size=16px]的甘油磷脂[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px]pKa≈3[/size][/font][font='times new roman'][size=16px]~[/size][/font][font='times new roman'][size=16px]5[/size][/font][font='times new roman'][size=16px]。从图[/size][/font][font='times new roman'][size=16px]中[/size][/font][font='times new roman'][size=16px]可以看出,磷脂有许多亚类,根据[/size][/font][font='times new roman'][size=16px]骨架[/size][/font][font='times new roman'][size=16px]的不同可分为两个亚群,鞘磷脂和甘油磷脂[/size][/font][font='times new roman'][size=16px];[/size][/font][font='times new roman'][size=16px]其他亚[/size][/font][font='times new roman'][size=16px]类[/size][/font][font='times new roman'][size=16px]可以根据脂肪链的数量进行分类[/size][/font][font='宋体'][size=16px],例如溶血卵磷脂是一类只含有一个非极性尾部的磷脂,[/size][/font][font='宋体'][size=16px]要么在[/size][/font][font='times new roman'][size=16px]sn-1[/size][/font][font='times new roman'][size=16px]位置[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]1-[/size][/font][font='times new roman'][size=16px]溶血[/size][/font][font='times new roman'][size=16px]卵[/size][/font][font='times new roman'][size=16px]磷脂[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px],要么在[/size][/font][font='times new roman'][size=16px]sn-2[/size][/font][font='times new roman'][size=16px]位置[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]2-[/size][/font][font='times new roman'][size=16px]溶[/size][/font][font='times new roman'][size=16px]血卵[/size][/font][font='times new roman'][size=16px]磷脂[/size][/font][font='times new roman'][size=16px]);[/size][/font][font='times new roman'][size=16px]还可以根据[/size][/font][font='times new roman'][size=16px]修饰[/size][/font][font='times new roman'][size=16px]在磷酸基上的[/size][/font][font='times new roman'][size=16px]R[/size][/font][font='times new roman'][sub][size=16px]3[/size][/sub][/font][font='times new roman'][size=16px]基团来分类,最常见的磷脂是磷脂酰胆碱[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]PC[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px],占血浆磷脂总量的[/size][/font][font='times new roman'][size=16px]60[/size][/font][font='times new roman'][size=16px]%[/size][/font][font='times new roman'][size=16px]-70%[/size][/font][font='times new roman'][size=16px]。几种[/size][/font][font='times new roman'][size=16px]常见磷脂及其亚类的分子结构[/size][/font][font='times new roman'][size=16px]如图[/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px]所示。[/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308012156432272_6764_5389809_3.png[/img][/align][align=center][font='times new roman']图[/font][font='times new roman']1 [/font][font='times new roman']磷脂分子的结构图[/font][/align][align=center][font='times new roman']Fig.1 Structural diagram of phospholipid molecules[/font][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308012156435665_2656_5389809_3.png[/img][/align][align=center][font='times new roman']图[/font][font='times new roman']2[/font][font='times new roman'] [/font][font='times new roman'] [/font][font='times new roman']常见磷脂及其亚类的分子结构[/font][font='times new roman'][sup][size=13px][4][/size][/sup][/font][/align][align=center][font='times new roman']Fig[/font][font='times new roman'].2 Molecular structure of common phospholipids and their subclasses[/font][/align][align=left][font='times new roman'][size=18px]2 [/size][/font][font='times new roman'][size=18px] [/size][/font][font='times new roman'][size=18px]磷脂[/size][/font][font='times new roman'][size=18px]的[/size][/font][font='times new roman'][size=18px]生理[/size][/font][font='times new roman'][size=18px]功能[/size][/font][/align][font='times new roman'][size=16px]磷脂是生命[/size][/font][font='times new roman'][size=16px]的[/size][/font][font='times new roman'][size=16px]基础物质,细胞膜中脂质含量高达[/size][/font][font='times new roman'][size=16px]50%[/size][/font][font='times new roman'][size=16px],其中大部分为磷脂。磷脂[/size][/font][font='times new roman'][size=16px],如[/size][/font][font='times new roman'][size=16px]卵磷脂、脑磷脂和肌醇磷脂等,分别对人体的不同器官起着[/size][/font][font='times new roman'][size=16px]不同[/size][/font][font='times new roman'][size=16px]的生理作用。磷脂的三种主要生理功能分别是乳化作用、增殖作用和活化细胞作用。[/size][/font][font='times new roman'][size=16px]磷脂的乳化作用主要体现在对心脑血管疾病的防治上,例如[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]糖尿病和肥胖代谢综合征[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]研究表明[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]磷脂可以分解体内过高的血脂和胆固醇,使血管通畅,有[/size][/font][font='times new roman'][size=16px]“[/size][/font][font='times new roman'][size=16px]血管清道夫[/size][/font][font='times new roman'][size=16px]”[/size][/font][font='times new roman'][size=16px]之称。[/size][/font][font='times new roman'][size=16px]磷脂具有活化细胞的作用[/size][/font][font='times new roman'][size=16px]——[/size][/font][font='times new roman'][size=16px]线粒体存在于大多数细胞中,是由两层磷脂双分子膜包被的细胞器,它是哺乳动物细胞的动力源[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]在细胞代谢、细胞凋亡、类固醇合成、信号转导等生理活动中发挥着关键作用[/size][/font][font='times new roman'][size=16px],磷脂作为线粒体膜的主要成分,肩负着重要使命。[/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308012156436790_9940_5389809_3.png[/img][/align][align=center][font='times new roman']图[/font][font='times new roman']3 [/font][font='times new roman']哺乳动物细胞线粒体(大鼠肝脏)膜的磷脂[/font][font='times new roman'][sup][size=13px][25][/size][/sup][/font][/align][align=center][font='times new roman']Fig[/font][font='times new roman'] [/font][font='times new roman']3[/font][font='times new roman'] [/font][font='times new roman']Phospholipids of the mitochondrial membranes in mammalian cells (rat liver)[/font][/align][font='times new roman'][size=16px]合理利用磷脂可以[/size][/font][font='times new roman'][size=16px]防治疾病[/size][/font][font='times new roman'][size=16px],而体内磷脂代谢失衡也会[/size][/font][font='times new roman'][size=16px]导[/size][/font][font='times new roman'][size=16px]致[/size][/font][font='times new roman'][size=16px]疾病的发生[/size][/font][font='times new roman'][size=16px]。值得注意的是,有研究表明,人体内磷脂[/size][/font][font='times new roman'][size=16px]代谢[/size][/font][font='times new roman'][size=16px]与[/size][/font][font='times new roman'][size=16px]多种[/size][/font][font='times new roman'][size=16px]癌症密切相关。除此之外,磷脂[/size][/font][font='times new roman'][size=16px]复合物[/size][/font][font='times new roman'][size=16px]还被用于药物递送,包括经皮药物递送、细胞内药物递送、透皮贴片给药、眼部给药和中枢神经系统靶向给药[/size][/font][font='times new roman'][size=16px]等[/size][/font][font='times new roman'][size=16px],图[/size][/font][font='times new roman'][size=16px]4[/size][/font][font='times new roman'][size=16px]为鼻给药[/size][/font][font='times new roman'][size=16px]之[/size][/font][font='times new roman'][size=16px]后,脂质纳米颗粒复合药物对中枢神经系统进行靶向治疗的可能途径。[/size][/font][font='times new roman'][size=16px]由于磷脂在生化和临床方面的重要性,需要快速和可靠的[/size][/font][font='times new roman'][size=16px]分离[/size][/font][font='times new roman'][size=16px]分析方法来识别和定量生物样本中的磷脂。[/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308012156437338_2831_5389809_3.png[/img][/align][align=center][font='times new roman']图[/font][font='times new roman']4 [/font][font='times new roman']鼻给药后药物转运的可能途径示意图[/font][font='times new roman'][sup][size=13px][34][/size][/sup][/font][/align][align=center][font='times new roman']Fig.4 Possible routes of drug transport after nasal administration[/font][/align]

脾组织磷脂质相关的资料

脾组织磷脂质相关的资讯

  • 创新进展|单进军、谢彤团队构建模拟谱库快速表征一类特殊复杂脂质——心磷脂及其氧化产物
    创新进展近日,南京中医药大学单进军、谢彤团队在Analytica Chimica Acta(分析化学一区,IF: 6.558)正式发表了题为In-silico-library-based method enables rapid and comprehensive annotation of cardiolipins and cardiolipin oxidation products using high resolution tandem mass spectrometer的研究性论文。该文章基于Orbitrap高分辨质谱平台,创新性的通过计算机模拟方式,建立了心磷脂及其氧化产物的质谱谱库。凭借高分辨质谱平台的超高分辨率、亚ppm级质量精度,及Stepped NCE 高能碎裂模式(HCD)获得的丰富二级碎片信息,使得该方法获得模拟谱图与真实检测样本的谱图匹配一致性高。该创新分析方法的建立,对于解决以心磷脂及其氧化物为代表的、具有结构多样性及低丰度分析挑战的代谢物/脂质,进而研究其在疾病发生发展过程中的生物学效应,都有着广泛而深远的参考与借鉴价值,为探索全新的疾病生物标志物带来可能!(点击查看大图)文章赏析心磷脂(CL)是含有3-4个脂肪酰基侧链的独特磷脂。在真核生物中,它主要分布在线粒体内膜,占线粒体内膜磷脂总量的10-25%。心磷脂独特的锥状结构能稳定线粒体膜结构,参与维持线粒体正常的嵴形态。大量文献报道心磷脂参与细胞色素c、电子呼吸链蛋白的正常功能。异常的心磷脂含量、结构和心磷脂氧化会促使细胞凋亡并触发免疫炎症反应。在非靶向脂质组学研究中,发现并快速注释心磷脂及其氧化产物有助于探索心磷脂代谢在疾病发生发展过程中的生物学效应。然而,由于心磷脂及其氧化物的结构多样性及低丰度特征,给其分析鉴定带来极大的挑战。为了解决这一问题,团队在色谱和质谱条件优化的基础上,基于计算机模拟方法建立了心磷脂及其氧化产物的质谱谱库。谱库中涵盖了31578个单溶血心磷脂、52160个心磷脂以及42180个氧化型心磷脂的质谱谱图(谱图数据基于Q-Exactive-MS/MS质谱方法裂解模拟)。该模拟谱库具有较好的兼容性,且谱库中的模拟谱图与真实检测样本的谱图匹配度好,匹配度得分值高,并成功地运用于线粒体非靶向心磷脂表征以及人工氧化心磷脂的研究中。(点击查看大图)该研究列出了样品与模拟谱库的匹配结果,并附上了谱图相似性评分(所有模拟谱库的二级碎片和丰度均来源于标准品模拟)。在优化的色谱条件下,模拟谱库涵盖了三个常规前体离子[M-2H]2-、[M-H]-和[M+NH4]+的二级谱图,扩充了质谱谱库中心磷脂特异性谱图的数量。三种前体离子的模拟谱库谱图相似性评分较高,均表现出较好的匹配度,体现了该方法的优势。(点击查看大图)运用此方法,该研究对心、肝、脾、肺、肾、大脑、小脑、回肠、结肠、十二指肠以及Hep2、A549两种细胞系中的心磷脂进行了定性定量分析。为了评估匹配结果、验证该数据库的可靠性,对不同谱图相似性得分段的谱图数进行统计,结果显示谱图得分值均较高。在10种动物组织线粒体和细胞系样品中,一共鉴定出392种心磷脂。通过新建的计算机模拟心磷脂谱库,能够很好的区分样本中单溶血心磷脂和心磷脂,实现对复杂生物样本中心磷脂的准确测量。(点击查看大图)该研究还建立了心磷脂氧化产物的模拟谱库,并成功对小鼠心脏和肝脏线粒体中的氧化型心磷脂进行了归属。比较了两种人工氧化方式氧化产物的偏好,发现Fenton反应易于生成+O或者+2O的氧化产物,而过氧化叔丁醇的氧化反应倾向于产生+3O或者+4O的氧化产物。通过对氧化碎片个数的统计,发现占比最多的氧化碎片是C18-OH和C18-OOH,提示含有十八个碳的脂肪酰基更易被氧化。有趣的是,在过氧化叔丁醇的反应中,肝脏线粒体中的心磷脂似乎表现出更高的氧化产率,虽然没有进一步的验证,但是推测这种氧化效率的差异可能源于肝脏和心脏不同的代谢能力。团队介绍单进军,博士,教授南京中医药大学中医儿科学研究所副所长,江苏省儿童呼吸疾病(中医药)重点实验室副主任,南京中医药大学——UC Davis医学代谢组学联合实验室中方负责人。江苏省“333高层次人才培养工程”中青年学术技术带头人,江苏省“六大人才高峰”高层次人才选拔培养对象,NIH West Coast Metabolomics Center访问学者。研究方向:代谢组学与中医药;复杂疾病代谢调控机理及中药防治作用。先后主持国家自然科学基金、江苏省自然科学基金、江苏省“333”工程科研项目和江苏省高校自然科学研究重大项目等课题;以第yi或(共同)通讯作者在Gut Microbes,Pharmacol Res,Anal Chim Acta,Phytomedicine和药学学报等国内外期刊发表学术论文60余篇;获国家发明专利3项;获教育部科学技术进步二等奖、世界中联中医药国际贡献奖-科技进步二等奖和江苏中医药科学技术奖一、二等奖。现为世界中联儿童医药健康产品产业分会常务理事兼副秘书长、世界中联儿科专业委员会常务理事、中华中医药学会中药实验药理分会青年委员, 中国中医药信息研究会儿科分会理事、中国研究型医院学会儿科学专业委员会青年委员,《世界科学技术-中医药现代化》杂志中青年编委。谢彤,博士,副教授研究方向:运用代谢组学/脂质组学技术研究(1)呼吸疾病发病机制及中药干预作用;(2)中药复杂组分的体内外物质基础研究;(3)药物安全性。如需合作转载本文,请文末留言。
  • TL2350 快速测定植物油中磷脂含量
    TL2350 快速测定植物油中磷脂含量哈希公司 4 days ago背景介绍植物油中的磷脂含量,是植物油生产中的重要质控指标。在加工工艺中,磷脂的存在会增加脱酸环节中中性油的损失以及脱色白土的用量,同时还会导致加氢催化剂的中毒。在油品储藏环节,磷脂会使油脂反色,同时也会导致大豆油等油品的回味。因此,磷脂作为油品加工工艺中的重要质控指标,一直受到关注。油品的磷脂测定一般采用钼蓝比色法(GB/T 5537-2008),该方法将油品灰化加酸预处理后用分光光度计测定,经典的钼蓝比色法虽然可以准确的测定油品磷含量,但却存在耗时过长,分析效率低的缺点。近年来,中储粮某下属油脂加工企业,开始采用 TL2350 浊度仪用于油品磷脂含量的快速检测,该方法能基本满足油品行业磷脂检测的内部质控要求。应用情况主要仪器及试剂:TL2350,浊度样品瓶(2084900),无磷一级精炼油,已知磷含量油脂,分析纯丙酮。用户采用 TL2350 浊度仪,以不含磷脂的一级精炼植物油为溶剂,将已知磷含量的油样配置为浓度为 50、100、150、200、250mg/kg 的标准油样,用 TL2350 测定标准系列的浊度值并记录和绘制标准曲线,计算回归方程。在大豆油磷脂含量<300mg/kg 时,浊度法测定磷脂含量可获得较良好的重复性,能满足压榨车间磷脂控制的日常监测需求,单个样品的测试时间可缩短至 10min。总结浊度法是一种行之有效的油品磷脂快速测试方法,传统的 GB/T5537 -2008 中单个样品的分析时间至少为 4 小时,而浊度法仅为 10min。该方法适用于磷脂含量小于 300mg/kg 的大豆毛油检测,能满足绝大部分大豆油的生产质控需要。但当油脂类型改变时需单独摸索浊度与磷脂的相关条件。方法的标准曲线需要定期校准,建议校准周期为一周。浊度法与国标法的检测数据差异在工艺许可的范围内,只要定时调准曲线,既可满足日常质控要求。浊度法比较适用于工厂内部的检化验室使用,可及时提供数据,服务压榨车间生产。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取便携乐扣弹跳杯哦!
  • 沃特世推出全新Oasis PRiME MCX小柱和样品板,可有效去除生物基质中的磷脂及其它干扰物质
    使用全新样品制备工作流程制备超洁净样品,实现稳定、准确的LC和LC-MS定量分析? 美国马萨诸塞州米尔福德市,2018年1月26日 - 沃特世公司正式推出Waters Oasis PRiME MCX小柱和96孔板,这款产品能够选择性地保留并浓缩碱性化合物,同时去除多达99%的磷脂,而且样品处理速度比传统混合模式固相萃取(SPE)产品提升了一倍。成功去除生物基质中含量最高的干扰物质—磷脂,将不仅有助于研究人员获取准确的信息,还能简化分析操作、提高方法的稳定性并延长仪器正常运行时间。 沃特世的全新Oasis PRiME MCX小柱和样品板,可有效去除生物基质中的磷脂及其它干扰杂质 沃特世公司化学品技术中心首席产品运营经理Kim Haynes表示:“尽管大家都知道样品净化具有减少基质效应、降低检出限等诸多优势,但由于没有时间去开发样品制备方法,许多研究人员会选择省去样品制备步骤。他们希望以尽可能少的步骤,更快地获得准确结果。为此,我们针对Oasis PRiME MCX开发了精简的三步和四步法方案,这些方案不仅能够稳定地、且可重现地制备更洁净的样品,而且相较于传统混合模式SPE速度更快。最终,研究人员可以借助这些优势提升定量结果的可靠性,从而更好地为临床试验、临床研究以及法医毒理学、食品或环境研究提供支持。” Oasis PRiME MCX是一款混合模式(反相和阳离子交换)吸附剂,在定量分析生物基质(如血清、血浆、全血或人类/动物组织,以及牛奶、肉类和鸡蛋等食品样品)中的目标物时,这款吸附剂能够轻松应对此类分析所固有的复杂性。此外,该产品无需活化和平衡即可使用的特点,为研究人员节省了大量的时间和精力。除了能够简化流程外,Oasis PRiME MCX还能制备更洁净的样品,减少了色谱柱堵塞、离子源污染等原因引起的离子抑制效应和仪器停机,从而为研究人员提供了高度一致的结果。另外,样品越洁净,意味着色谱柱的使用寿命就越长。 沃特世小柱和样品板采用经过优化的专利工艺生产,与正压萃取装置或负压真空萃取装置配合使用时,不仅能够大幅提升工作流程的重现性,还能缩短样品处理时间。此外,为进一步保障质量,每一批用于Oasis PRiME MCX小柱和样品板的吸附剂在质控时都使用通用四步磷脂去除方案进行了测试。 目前,沃特世已开始向全球供应Oasis PRiME MCX小柱和96孔板。Oasis PRiME MCX的推出,为处于市场领先地位的沃特世样品制备产品系列Oasis PRiME HLB、Ostro、Sep-Pak、Oasis HLB和Oasis Mixed Mode IEX又增添了新成员。 高品质样品制备成就高品质分析结果 过去十年来,分析仪器技术飞速发展,分析检测限(LOD)已创历史最低记录。LC-MS仪器检测和定量痕量样品成分的能力较之以往也有了显著提升。即便如此,某些样品成分可能仍然无法被检出,而未检出的样品成分自然也就无法进行定性和定量。因此,在当前要想获取高质量的LC-MS数据,样品制备过程比以往任何时候都更加重要。 去除样品中的干扰组分(例如血液或血浆样品中的脂质和色素)是提高质谱仪信号强度和灵敏度的关键,因为这些组分会干扰样品中目标分析物的信号响应。此外,实践证明,去除样品中的基质干扰物质也是延长色谱柱和质谱仪使用寿命的可靠方法。 关于沃特世公司 沃特世公司(纽约证券交易所代码:WAT)是全球领先的专业测量仪器公司,作为色谱、质谱和热分析创新技术的先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。公司在全球31个国家和地区直接运营,下设15个生产基地,拥有约7,000名员工,旗下产品销往100多个国家和地区。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制