喷雾液滴粒径分布

仪器信息网喷雾液滴粒径分布专题为您整合喷雾液滴粒径分布相关的最新文章,在喷雾液滴粒径分布专题,您不仅可以免费浏览喷雾液滴粒径分布的资讯, 同时您还可以浏览喷雾液滴粒径分布的相关资料、解决方案,参与社区喷雾液滴粒径分布话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

喷雾液滴粒径分布相关的耗材

  • 薄层色谱电动喷雾器
    薄层色谱电动喷雾器由充电器和 2 种喷头的泵组成。喷头 A 适合普通粘度的喷雾液,如低浓度乙醇溶液;喷头 B 适合高粘度液体,如硫酸试剂。- 使用方便,具有电动气动喷雾功能- 形成粒径 0.3 到 10μm 的精细的气雾颗粒- 试剂消耗低,分布均匀
  • 喷雾干燥机玻璃干燥塔
    主要特征:1、干燥速度迅速。料液经离心喷雾后,表面积大大增加,在高温气流中,瞬间就可蒸发95-98%的水分,完成干燥时间需十几秒钟。2、采用并流型喷雾干燥,干燥过程中,液滴的温度不高,产品质量好。在喷雾干燥室内,液滴与热风同方向流动,虽然热风的温度较高,但由于热风进入干燥室内立即与喷雾液滴接触,室内温度急降,不致使干燥物料受热过度,适宜于热敏性物料的干燥,排出产品的温度取决排风温度,且低于排风温度。3、使用范围广。根据物料的物性,可以用热风干燥,也冷风造型。大批特性差异很大的产品都能用此机生产,常勇的有下列各类:聚合物和树脂类,染料,颜色色料类,陶瓷,玻璃类,除莠类,杀虫药类,碳水化合物类,乳蛋制品类,糅酸类,屠宰场的副产品,血和鱼制品类洗涤剂和表面污性剂类,肥料类,有机化合物类,无机化合物类。4、干燥过程是在瞬间完成的,产品的颗粒基本上能保持液滴近似的球状,产品具有良好的分散性,流动性和溶解性。5、生产过程简化,操作控制方便。喷雾干燥通常用于湿含量40-60%的溶剂,特殊物料即使湿含量高达90%,同样能一次干燥成粉状产品,大部分产品干燥后不需要再进行粉碎和筛选,减少了生产工序,简化了生产工艺流程,提供了产品的纯度。对于产品的粒径、精密度、水分,在一定范围内,可改变操作条件进行调整,控制、管理都很方便。6、为使物料不受污染和延长设备寿命,凡与物料接触部分,均采用304不锈钢材料制作,为使操作方便,控制系统采用一体化操作,即在控制柜安装各部件的指示装置和启闭装置。7、内置无油空压机,喷粉的颗径呈正态分布,流动性非常好,而且噪音非常低,小于60db,符合实验室噪音标准(可选离心式雾化)。8、二流体喷雾的雾化结构,整机采用优质不锈钢材料精密制造,设计紧凑,无需附属设备,方便使用,历久如新。(可选离心式雾化)9、实时调控PID恒温控制技术,控温准确,加热控温精度±1℃。
  • Aka-Spray 金刚石喷雾
    Akasel是一家丹麦公司,专门从事开发、生产和销售高质量的金相耗材以及最佳的金相制备方法。 凭借创始人Morten Damgaard在金相学方面的专业知识和实践经验,再加上对可持续性创新解决方案的不懈追求,不断努力,推进金相耗材的开发,提高金相样品制备的效果,创造易于执行的制备方法。经过多年的发展,这个在车库里迈出第一步的公司现在已经成功地将高品质的金相耗材以及高效的制备方法传播到全世界。 如果您为目前样品制备过程的繁琐所累,请联系我们,我们的技术专家将免费为您进行制备流程优化。金刚石喷雾多晶和单晶金刚石;9 μm至0.25 μm如果制备的材料不耐水或其他液体,则金刚石喷雾剂就是理想的选择。Aka-Spray多晶和Aka-Spray单晶金刚石喷雾以“最纯净”的形式为金刚石抛光提供金刚石,而不需要任何液体,让抛光所有类型的敏感材料成为可能,效果快速且可重现。使用diamonds as spray可确保磨料完美分布于抛光布。我们的产品使用的是二氧化碳而不是传统的打火机气体,因此不易燃。常见问题解答:金刚石喷雾是如何用于金刚石抛光的?可在制备之前使用金刚石喷雾对抛光布进行涂底处理,也可在制备过程中使用金刚石喷雾剂,用以保持必要的金刚石含量,以实现持续的高去除率。金刚石喷雾必须始终与润滑剂配合使用,以适应待制备的材料。这使得金刚石喷雾也非常适合用于水敏感材料的制备。金刚石喷雾应该喷在离抛光布多远的地方?将喷雾罐保持在抛光布上约20-25 cm处,spray2秒钟,一边喷一边将喷雾罐移过抛光布的整个表面。金刚石喷雾仅适用于水敏感样品吗?不,它不是。金刚石喷雾非常适合用于水敏感材料的制备。同时,由于它可以与各种不同的润滑剂一起使用,因此可以用于所有类型的材料。

喷雾液滴粒径分布相关的仪器

  • 借助 minispec 时域核磁共振分析,快速完成乳剂型产品的质量控制、工艺控制和研发水包油型或油包水型乳剂的液滴粒径分布无需制备,无需稀释批量测定不透明试样乳化效率量化乳剂稳定性动力学控制产品流变特性选择性吸收产品设计香精控释, API 优化颜色和外观减速化学变质控制微生物腐坏布鲁克的多功能台式时域核磁共振分析仪可以提供一个整包式解决方案,可在乳剂型产品生产过程中快速完成质量/工艺控制和研发。人性化的布鲁克 minispec 仪器可在短短数分钟内检测出整个试样中的全部氢原子产生的信号,而不受其颜色或浊度的影响。然后,通过分析核磁共振信号,计算出液滴内分子(油或水)的扩散系数,软件最后输出液滴粒径分布,包括体积和数量分数。此过程是在分子水平直接测量液滴粒径分布,不受絮凝影响,这一点不同于光学方法。时域核磁共振技术的优点有多种技术可供用于乳剂液滴粒径测试,但它们都有各种局限性,因而不适于分析多种不同乳剂系统: 光学显微镜术和成像分析——试样量小、耗时、液滴形状和尺寸失真。 共焦扫描显微镜术和成像分析——同光学显微镜术和成像分析一样。 小角激光光散射法——稀释步骤会彻底改变许多乳剂的结构,不能分辨液滴和悬浮颗粒,液滴簇被当成大液滴。 电传感技术——大多数情况下要求进行稀释,需要单独测定大量液滴。 超声技术——高固体含量试样的信号衰减严重。 相比于上述技术,基于时域核磁共振的液滴粒径分布测定技术具有以下属性,因而是适用于乳剂分析的强大工具: 对相对较大试样量进行液滴粒径分布测定样品颜色或透明度大小不影响测定其他颗粒物的存在不会被误当做液滴不要求在测定之前进行任何稀释步骤或其他预处理测定能力可以测定水包油型和油包水型试样的液滴粒径分布对整个1立方厘米试样进行液滴粒径分布测定4特斯拉/米的最大可用梯度强度允许对小至250纳米的大范围液滴粒径进行分析哪怕液滴内外都存在相同分子,也可以进行液滴粒径分布分析液滴粒径分布分析最终结果包括体积和数量分数、平均值和标准偏差可以在-5℃到+65℃试样温度范围内执行测定同一台仪器可用于其他分析,譬如但不限于,固体脂肪含量、结晶、水分迁移,等等适用场合水包油型或油包水型乳剂系统的液滴粒径分布乳剂稳定性动力学对规定升温条件下的乳剂特性变化进行动态研究水包油型乳剂的脂肪结晶和液滴粒径分布变化通过专门设计液滴粒径分布来控制产品流变特性、颜色/外观预测和抑制微生物和化学腐坏分子从液滴内部交换至外部控释活性成分(香精、药物,等等)设计食品产品的可控消化率和热量值软件 可借助 minispec ExpSpel 实验编辑器,进行灵活编程,设定:核磁共振脉冲序列核磁共振数据处理自定义自动化,等等 mq 系列系统适用于各种不同应用,可提供使用广泛、成熟的时域核磁共振脉冲序列,以及与联合利华合作开发的专有液滴粒径分布软件。 布鲁克 minispec 仪器采集的扩散数据 布鲁克 minispec 软件输出的液滴粒径分布分析结果 布鲁克 minispec 软件生成的详尽的统计信息(基于体积和数量的液滴粒径分布)
    留言咨询
  • 产品介绍 JL-3000A型喷雾激光粒度仪(连体式),是专为小体积雾滴粒径测量而设计的一款高性能粒度仪。全量程米氏散射理论,采用精新公司(无约束)自由分布模式计算粒度分布,确保每一级的粒度都达到最高分辨率。充分检测出每一粒级细节的细微,机箱外壳全密封设计,防尘防水,使仪器具有良好的电磁屏蔽抗干扰性能。 测试动态范围宽,操作简便。主机与辅机间距400mm,非常适合医药喷雾、小型喷嘴、加湿器等雾滴粒径的测试,整个测试过程在电脑控制下自动开启/关闭,对所测水雾、油雾、烟雾等快速分析其粒径分布数据,独特的精密机械结构,使得测试速度快,重复性好、稳定性好。通过对雾滴测量的粒度分布数据,可优化喷嘴设计,优化喷雾条件,评价喷雾效果,达到研发和控制产品质量的目的。应用领域 广泛适用于小型喷嘴、医药喷雾、加湿器、雾化器、水雾、烟雾、粉雾、气雾剂生产、科研院校研究等。参数指标项目指标项目指标测量原理全量程米氏散射理论测量范围0.1μm~3000μm测试时间1秒/次,可以单次或多次自动测试进样方式开放式进样重复性误差≤3%(标准物质D50偏差)光路系统平行光路光束,富氏透镜准确性误差≤3%(标准物质D50偏差)主、辅机间距400mm信号光源进口半导体激光器,波长650nm探测器128级仪器体积长1130*高340*宽200(mm)仪器重量约:50kg工作电源AC220V ±22V;50Hz ±0.5Hz;环境要求温度:5℃~35℃;湿度:85%;仪器优点1.根据所测物件(使用方提供)安装于主机与辅机之间,主机与辅机间距400mm固定不需调整光源,非常适合小范围喷雾粒径测量。只需安装好喷头,点击软件菜单,控制器自动开启和断开所测液体或气体,自动完成测试。2.仪器采用傅里叶光学系统,大直径平行光源测试截面大,数据代表性强。大口径镜头,采集信号角度宽,可以充分收集到喷雾的散射信号 。3.128级多元探测器。粒径分档多,级差小,散射信号检测精细分辨率高。探测器背景光每一级独立补偿,能达到最高的增益,高速采集信号放大,动态响应灵敏快速。探测器后方具有完整的光斑图像探测系统。4.进口半导体激光器,光源波长650nm,30mw,寿命>70000h。5.高钢性的光学结构,光路稳定可靠,在使用过程中不需做任何调整。6.由于喷雾粒度大小和喷雾直径差别非常大,激光的功率可以在全范围内调整,以保证仪器的最高分辨率和准确性。7.采用RS232和USB数据传输方式,传输距离可达100米。8.测试数据有:累积分布、频度分布、累积10%、50%、90%、97%、平均粒径和比表面积等数据,全面表征样品的粒度特征。测试一次的时间数秒钟,可单次、多次连续测试。9.软件操作界面可选择中文或者英文,输出结果可以直接打印,或转换为PDF和格式保存。10.为适应不同用户的需要,配有程序触发,TTL电平和开关触发高速测试,每秒50次完整测试,作为动态喷雾等研究提供更好的分析数据。11.分析软件兼容Windows XP/Win7/Win10系统。
    留言咨询
  • 产品介绍 JL-3000A型喷雾激光粒度仪(连体式),是专为小体积雾滴粒径测量而设计的一款高性能粒度仪。全量程米氏散射理论,采用精新公司(无约束)自由分布模式计算粒度分布,确保每一级的粒度都达到最高分辨率。充分检测出每一粒级细节的细微,机箱外壳全密封设计,防尘防水,使仪器具有良好的电磁屏蔽抗干扰性能。 测试动态范围宽,操作简便。主机与辅机间距400mm,非常适合医药喷雾、小型喷嘴、加湿器等雾滴粒径的测试,整个测试过程在电脑控制下自动开启/关闭,对所测水雾、油雾、烟雾等快速分析其粒径分布数据,独特的精密机械结构,使得测试速度快,重复性好、稳定性好。通过对雾滴测量的粒度分布数据,可优化喷嘴设计,优化喷雾条件,评价喷雾效果,达到研发和控制产品质量的目的。应用领域 广泛适用于小型喷嘴、医药喷雾、加湿器、雾化器、水雾、烟雾、粉雾、气雾剂生产、科研院校研究等。参数指标项目指标项目指标测量原理全量程米氏散射理论测量范围0.1μm~3000μm测试时间1秒/次,可以单次或多次自动测试进样方式开放式进样重复性误差≤3%(标准物质D50偏差)光路系统平行光路光束,富氏透镜准确性误差≤3%(标准物质D50偏差)主、辅机间距400mm信号光源进口半导体激光器,波长650nm探测器128级仪器体积长1130*高340*宽200(mm)仪器重量约:50kg工作电源AC220V ±22V;50Hz ±0.5Hz;环境要求温度:5℃~35℃;湿度:85%;仪器优点1.根据所测物件(使用方提供)安装于主机与辅机之间,主机与辅机间距400mm固定不需调整光源,非常适合小范围喷雾粒径测量。只需安装好喷头,点击软件菜单,控制器自动开启和断开所测液体或气体,自动完成测试。2.仪器采用傅里叶光学系统,大直径平行光源测试截面大,数据代表性强。大口径镜头,采集信号角度宽,可以充分收集到喷雾的散射信号 。3.128级多元探测器。粒径分档多,级差小,散射信号检测精细分辨率高。探测器背景光每一级独立补偿,能达到最高的增益,高速采集信号放大,动态响应灵敏快速。探测器后方具有完整的光斑图像探测系统。4.进口半导体激光器,光源波长650nm,30mw,寿命>70000h。5.高钢性的光学结构,光路稳定可靠,在使用过程中不需做任何调整。6.由于喷雾粒度大小和喷雾直径差别非常大,激光的功率可以在全范围内调整,以保证仪器的最高分辨率和准确性。7.采用RS232和USB数据传输方式,传输距离可达100米。8.测试数据有:累积分布、频度分布、累积10%、50%、90%、97%、平均粒径和比表面积等数据,全面表征样品的粒度特征。测试一次的时间数秒钟,可单次、多次连续测试。9.软件操作界面可选择中文或者英文,输出结果可以直接打印,或转换为PDF和格式保存。10.为适应不同用户的需要,配有程序触发,TTL电平和开关触发高速测试,每秒50次完整测试,作为动态喷雾等研究提供更好的分析数据。11.分析软件兼容Windows XP/Win7/Win10系统。
    留言咨询

喷雾液滴粒径分布相关的方案

喷雾液滴粒径分布相关的论坛

  • 喷雾干燥液滴粒径表示方法

    喷雾干燥液滴粒径表示方法

    [align=left]一、图示法[/align][align=left]与列表法相比,图示法具有下列优点:[/align][align=left] 由图示法所提供的数据,可以迅速地估算某些参数。[/align][align=left]‚ 由图示法所提供的尺寸分布曲线可以很快地看出其分布关系。在数据甚多的情况下,图示法尤为清晰。[/align][align=left]常用的图示法有矩形图、粒度频率曲线图和累积分布曲线图等。[/align][align=left] A、矩形图[/align][align=left] 矩形图是表示雾滴(或颗粒)尺寸分布的一种最简单的方法。在一给尺寸范围(尺寸间隔)内,对液滴(或颗粒)数所占百分比作图。这个矩形图直接表示出液滴(或颗粒)群的尺寸分布。例如,表2-1的第1列(液滴尺寸间隔)和第四列(各尺寸液滴数目所占百分比)的数据做成矩形图。第1列为矩形宽度,第4列为矩形高度,连接第2列(每一间隔的代表尺寸)各值,即得各折线,如图2-1所示。[/align][align=center][img=,360,300]https://ng1.17img.cn/bbsfiles/images/2019/05/201905132210197711_1478_676_3.png!w360x300.jpg[/img][/align][align=left]B、粒度频率曲线图[/align][align=left][img=,30,24]file:///D:/Personal/Temp/ksohtml892/wps1.png[/img] 采用大量的尺寸间隔 ,来表示尺寸分布所做的曲线图更便于实际应用。[/align][align=center][img=,664,305]https://ng1.17img.cn/bbsfiles/images/2019/05/201905132211525776_2548_676_3.png!w664x305.jpg[/img][/align][align=left] [/align]

  • 喷雾干燥中液滴粒径表示方法-列表法

    喷雾干燥中液滴粒径表示方法-列表法

    [align=left]如果采用某一种测量方法,测得一些颗粒(或液滴)的数据,这些数据需用不同的方法来处理和表示,才能显示其特征。数据的表示方法有列表法和图示法等。现介绍如下。[/align]一、列表法这是一种很精确的表示雾滴尺寸的通用方法。表格能够表示出每一种尺寸的分布情况。下表就是其中一例,占百分数最大的液滴直径范围是25〜 35µ m,其百分数为39.5%。可以根据霜要,列出所需要的数量之间的关系。但是,大量的数据要做成表格的形式是很麻烦的,而且要一下子看明白表中的数据并作出说明也是困难的。因此在实际上往往采用图示法。[align=center][img=,521,229]https://ng1.17img.cn/bbsfiles/images/2019/05/201905132208383306_8642_676_3.png!w521x229.jpg[/img][/align]

喷雾液滴粒径分布相关的资料

喷雾液滴粒径分布相关的资讯

  • 应用 | 揭秘动态表面张力对个人护理中喷雾产品粒径的影响
    研究背景制备个人护理应用方面的喷雾产品对于配方师来说是个很大的挑战。产品要求在雾化容易的同时, 最佳尺寸范围的乳化液滴要确保足够数量在目标区域上的沉积,但也需避免形成小液滴(小于100 μM)来减小喷射漂移。后者对使用者来说也是一种潜在的危险(小液滴可能会导致吸入口中),也可能造成喷射产品的效能降低。为了满足以上的需求 , 喷射乳液的配方必须保证符合以下的标准 :1.最合适的液滴尺寸分布,确保在目标区域上的最大沉积和附着 , 而且无漂移现象 2.在目标区域表面的良好涂布性和肤感。以上两个标准要求表面活性剂在气 / 液界面迅速吸附(降低动力学表面张力)。然而 , 这个表面张力不能低于临界值,从而可以防止乳化液滴尺寸过小而产生漂移 。喷雾液滴的形成原理在喷射过程中, 液体被压经喷嘴, 并在静力学压力下形成液滴 。高于某个静力学压力值, 液体通过喷嘴形成连续喷射, 而后分散成小液滴 。这个连续喷射, 而后分散成小液滴的过程是受到表面压力的结果 。球形的表面积和它的表面自由能(表面积 ×表面张力)小于其他对称体 。因此 , 少量的其它形状的液滴将会形成更小的球形液滴 。动态表面张力与粒径的关系表面活性剂和聚合物对于喷雾液滴尺寸分布的影响 , 在于他们对于表面张力的影响,表面张力一定程度上推动着雾化的产生。因为表面活性剂降低了水的表面张力 , 会形成粒径更小的液滴 。配方中含表面活性剂 , 帮助降低表面张力, 其雾化所需要的能量比不含表面活性剂的产品要少。因此 , 同样的能量输入, 会得到更小尺寸的液滴 。然而, 实际情况并不是这样简单 。在雾化的过程中,会不断形成新液体的表面。这种溶液的表面张力, 依赖于形成新界面的时间与表面活性剂从溶液内部迁移到气/ 液表面的吸附速度和扩散速度。如果形成新界面的时间比表面活性剂扩散和吸附的速度快, 那么喷雾液体的表面张力不会比纯水大很多,会形成大尺寸液滴 。相反, 如果形成新界面的时间比表面活性剂吸附的速度慢 , 那么喷雾液体的表面张力会进一步降低,形成较小的液滴尺寸 。图1显示两个不同表面活性剂体系A和B在不同吸附速度下 , 随时间t而变化的表面张力 γ,也可以叫作动态表面张力。这些曲线可以通过使用KRÜ SS最大气泡压力法来测量。气泡在表面活性剂溶液中以不同的频率形成,控制气泡形成的时间并且测量气泡中所产生的最大压强,可以得到不同时间下的表面张力。在短时间内,观察到表面活性剂体系B比A的体系所带来的表面张力更小 。许多体系的动态表面张力和时间对数的曲线可分为4个阶段:诱导区、表面张力快速下降区、介平衡区和平衡区。在诱导区,由于吸附在界面层上的助剂质量浓度太低,溶液的表面张力较大;随着助剂大量被吸附到溶液表面,表面张力急剧降低,就形成了快速下降区;而随着溶液表面助剂分子的积累,吸附接近饱和时吸附速度变慢,就形成了介平衡区;足够长的时间后当表面吸附达到饱和体系进入动态平衡阶段表面张力达到平衡,此即为平衡表面张力。表面活性剂种类和质量浓度不同,其溶液体系达到上述各阶段所需时间不同,表现为各溶液体系间动态表面活性的差异。从线性相关性关系的角度上来说,时间指标越小,动态表面张力与雾滴指标之间的关系越倾向于线性状态,可以通过测试表面活性剂体系的动态表面张力来优化雾滴尺寸和粒径。传统意义上采用静态表面张力为指标研究雾滴形成的方式并不合理,在有关喷雾的实践工作过程当中,选取动态表面张力作为研究指标有着更为显著的优势。 图2. 动态表面吸附曲线图动态表面张力与粒径关系的示例图3. 不同表面活性剂溶液的动态表面张力曲线表1. 不同表面活性剂溶液的粒径分布从图3和表1示例曲线可以明显看到,可以通过控制动态表面张力来优化雾滴的粒径,张力在一定时间内下降的越快,雾滴粒径越细腻。为了避免雾滴尺寸过小而产生雾滴的漂移,可以将表面活性剂的张力调控在一定范围。在实际生产中,喷头尺寸、喷雾压力也是改变喷量、雾滴粒径的重要手段之一。本文仅讨论了动态表面张力的改变对喷雾粒径的影响,期望能为配方设计工作者提供合适的思路。本文有删减,详细信息见原文萨瓦特 塔琼斯,玛丽克莱尔 堤尔曼,杜 晶.喷雾型产品的配方原理[J].日用化学品科学, 2004.
  • Winner311XP喷雾粒度仪助力雾化吸入式疫苗研发
    Winner311XP喷雾粒度仪助力雾化吸入式新冠疫苗研发截至6月16日,全球新冠确诊达到176303596例;死亡病例达到3820026例。现在成百上千万的确诊病例,数十上百万的死亡病例,在一条条的新闻报道前面,都成了冷冰冰的数字。看着它一天天的上涨,就仿佛急救室里,任你如何电击,也没有任何波澜的绿色线条,配着哔哔哔的仪器声,让人近乎窒息。幸运的是,我们生在中国。对于战胜新冠病毒疫情,除了治疗以外就是预防,研制有效的疫苗就是预防形式。6月3日中国工程院院士-陈薇院士提到,其团队正在研究双非疫苗,即非注射、非冷链疫苗。我们都知道现在疫苗都是通过注射,但其实还可以通过别的方式接种的,比如雾化吸入,其实雾化吸入疫苗早已经有过应用,比如流感疫苗就有注射、雾化吸入、鼻喷入等应用。吸入式疫苗是通过口腔、鼻腔等黏膜部位给药,刺激鼻腔黏膜和呼吸道黏膜产生免疫反应的疫苗类型,这种疫苗并非是新冠疫苗,在去年,流感疫苗就已经研发出鼻喷的疫苗剂型,通过鼻腔给药的方式让人体产生对流感病毒的免疫力。 鼻喷器也可以应用新冠疫苗方面 鼻喷疫苗使用的是“黏膜接种”技术。其中鼻喷流感疫苗早在2003年和2012年批准美国和欧盟这些发达国家就以批准使用,在全球范围内,鼻喷疫苗已经使用了数亿剂次,安全性已经得到了验证。下图装置为一种雾化给药装置,该装置由推杆,储液管,阻断器,伞状喷雾器,限位剂量器等零件组装而成。预期用途是将液体药剂转化为雾状粒子,并喷洒在人体表面组织(或器官)表面,使之充分接触,从而使给药效果大化。 鼻喷疫苗的优点 鼻腔给药雾化装置是一体化设计无污染风险;透气阻菌包装,微粒化喷头,药物快速吸收,无针无痛:伞状喷雾,不会对人体造成任何损伤、或刺激。准确给药,病人可自行用药;不需要无菌技术、静脉导管或其他侵入式装置;提高患者的依从性;简单易用、安全和方便;。 鼻喷疫苗产生效果的关键点 鼻喷式疫苗接种或者治疗给药最核心点是要让喷入鼻腔的雾化效果要好,而雾化效果的好坏关键点是:雾滴粒径、喷雾角、喷雾缕等指标。 有效雾化颗粒直径与其沉积部位的关系: 疫苗雾滴粒径大小和分布的重要性 雾化吸入治疗是呼吸系统疾病治疗方法中一种十分有效的治疗方法。雾化治疗一般采用雾化器将药液雾化成微小颗粒,使药物通过呼吸吸入的方式进入呼吸道和肺部,从而达到无痛和迅速有效治疗的目的。雾化的药物液滴的大小直接影响药物的吸收效果。如果液滴大,雾化快,导致患者吸入过多的水蒸气,使呼吸道湿化,呼吸道内原先部分堵塞支气管的干稠分泌物吸收水分后膨胀,加大呼吸道阻力,可能会产生缺氧现象,且会使药液结成水珠挂在内腔壁上,对药物需求量大,造成浪费的现象,并且对于疾病雾化治疗的效果不佳。所以,雾化出来的粒度决定了雾化器的治疗效果和质量。 Winner311XP喷雾粒度仪的作用 济南微纳颗粒仪器股份有限公司研究开发的Winner311XP喷雾激光粒度分析仪能够对雾化液滴、烟雾、油雾等雾滴颗粒的粒度分布进行快速准确的测试分析并给出测试报告。Win311XP喷雾激光粒度仪是以Mie散射为原理,针对国家药典中对吸入型气雾剂、喷雾剂、粉雾剂等粒度要求而研发的台式喷雾激光粒度仪,可以对各种小型喷雾装置进行测试,融和了济南微纳多种研发技术,外观小巧,能很好地对小型喷雾粒度进行测试,并实现数据的快速采集,能够可靠地在喷雾过程中实时连续测量雾化液滴的粒度分布,1分钟内即可完成测量,并提供详细的数据报告。能够有效指导生产厂家进行成品检验和科技研发。 Winner311XP喷雾粒度仪采用了单光束平行光路和双镜头双阵列探测器技术,保证了不同角度散射光的采集。激光器发出的细窄光束,通过扩束镜进行会聚后发散,然后再通过一个准直透镜将出射光变成平行光,当平行光束通过测试区域时,由于雾滴的遮挡,光束向四周散射,由于不同粒度的颗粒的散射角度不同,我们在光路的前方以及上方设计了多个探测器来收集不同角度的散射光,之后探测器将接收到的光信号传输转换为电信号并通过计算机进行计算,得出颗粒的粒度分布。Winner311XP喷雾粒度分析仪使用平行平晶来对平行光进行校准,并使用国家标样来对测试数据进行标定,能够很好地保证测试数据的准确性和重复性。 Winner311XP喷雾粒度仪测试步骤: 1 开启Winner311XP,首次使用时需要验证光路是否为平行光,在测试区域放置一块平晶,观察通过平晶前后面反射后的两个光斑重叠区域是否存在明暗相间条纹,如果是,就证明是光束平行性较好,满足测试要求,否则就需调节光路。 2 联机测试,观察背景是否为稳定、均匀的能谱图,否则需要调节探测器,使其中心小孔位于主光汇聚位置,并保证透过小孔的出射光斑为圆形光斑。光路正常后测试背景,背景测试完毕后进入能谱测试界面。 3 组装某医疗器械公司生产的雾化器,雾化杯里加入药液至刻度线,打开开关,预先雾化1-2分钟,使雾化气流稳定。 4 然后将雾化杯口对准winner311XP的测试区域,握住雾化杯,保持平稳,且保持每次测量时位置不变。当雾滴通过主光束时即开始数据采集,电脑开始显示采集到的能谱图,并在能谱图稳定后保存数据。 测试结果分析 由测试报告得出,该样品(雾化装置)的雾化粒径基本控制在10μm以内:D10值:小于2.587μm的粒径颗粒体积含量占全部颗粒的10%;D50值(中值粒径):该样品的所有粒径的颗粒中,大于4.135μm的颗粒占50%,小于4.135μm的颗粒也占50%;D90值:小于6.334μm的粒径颗粒体积含量占全部颗粒的90%;平均粒径:该样品雾化后雾滴颗粒的平均粒径是4.320μm; 结论: 雾化液滴的粒度、雾化夹角、雾化缕直接关系到雾化治疗的效果好坏,通过激光粒度测试技术(Winner311XP激光粒度分析仪)能够快速准确测试分析雾滴粒径分布,重现性1%,并详细给出特殊尺寸的雾滴的累积百分数;通过喷雾图像采集分析系统(Winner311- Imaging)能够快速准确的测量雾化夹角,是测试雾化器雾滴粒径分布的一项新技术;能够为雾化器厂商提供准确的数据来检验雾化器的性能。
  • 【瑞士步琦】喷雾干燥技术在香精香料微囊化中的应用
    香精香料微胶囊化在上一篇文章中,我们从喷雾干燥技术和珍贵化合物生产影响因素两方面介绍了保护香精香料的方法和可能遇到的问题。本篇文章将继续从举例分析喷雾干燥技术微胶囊化的应用及微囊化后如何评价进行展开!1香精香料微囊化的应用研究小组已经研究了许多将香精或香料封装到载体材料中的应用,从而实现有效包埋、高产量和长保质期的目的。表1概述了使用步琦喷雾干燥仪进行的香精香料微囊化研究,列举出香精香料品类、载体及带来的益处等。表1:使用 BUCHI 喷雾干燥仪进行微囊化的应用列表香精和香料载体材料发现和益处硫磺香精阿拉伯树胶、麦芽糊精或其混合物获得良好的包封率,高回收率,提高储存稳定性薄荷精油八种不同的变性淀粉不同载体在喷雾干燥过程中对薄荷精油的包封效果葛缕子精油WPC、SMP 及其与麦芽糊精的混合物发现 WPC 本身以及碳水化合物的结合可成功用作壁材,WPC 表现出比 SMP 更好的封装性能柠檬烯油阿拉伯树胶、 WPC 及其与木薯粉的混合物创造了具有均匀表面且无开裂的微胶囊形态,为柠檬烯油提供足够保护椰子油(含维生素A)阿拉伯树胶颗粒呈球形,表面粗糙,粒径范围为 3.5 到 10.4μm,保护和稳定胶囊中的维生素A奇亚籽油WPC/果胶+麦芽糊精WPC+Hi-Cap® 100不同载体封装,最终微胶囊增加了诱导时间,提高了稳定性鱼油WPI研究喷嘴类型和工艺设计(二流体喷嘴、三流体喷嘴和超声波喷嘴)对鱼油包封率和微胶囊性能的影响石榴籽油SMP实现 95.6% 高包封率的最佳操作条件菜籽油扁豆分离蛋白和麦芽糊精将菜籽油封装在最有效的壁材中,以防止其降解氧化核桃油和奇亚籽油HPMC、麦芽糊精微囊化工艺保护核桃油和奇亚籽油植物甾醇阿拉伯树胶和麦芽糊精喷雾干燥法制备了性能优良的植物甾醇微粒葵花籽油HPMC、麦芽糊精基于 RSM 开发优化封装工艺2微胶囊的特征理想的香精或香料包封工艺可以得到含水率低、粒径均匀、表面含油量小、产率高、芯材保留量大的干粉;在这里,我们将重点讨论这些产品指标。2.1 水分含量和水分活度众所周知,水分会影响油的氧化、风味保留和颗粒的微观结构。通常,微粒的水分含量通过热重分析法测量。研究表明,核桃油和奇亚籽油胶囊的水分含量在 0.95-2.13% 之间,葵花籽油粉的含量在 2.34-4.86% 之间。水分活度通常与水分含量有关,可以用水分活度计来测量。它会影响香味的释放,因为它会改变包衣基质的结构。低水分活度减缓挥发物的释放并抑制微生物腐败。在较高的水分活度水平下,基质可能会开始塑化;因此,会增加流动香精的释放速率。研究发现,在较高水分活度水平下,储存过程中薄荷精油挥发物的损失更为明显。2.2 粒度、分布和微观结构最终粉末的粒度、分布和微观结构也是产品加工和处理的重要因素。它们会影响产品的风味、颜色、质地和气味,以及产品的流动性和分散性。通常,需要均匀、均质并成球型的颗粒形态。使用二流体喷嘴时,经 BUCHI 喷雾干燥仪 B-290 处理的颗粒粒径范围为 1-25μm,而用超声波喷嘴时粒径范围为 10-60μm。科学家研究了三种类型的喷嘴对最终粉末的影响,结果发现:用二流体喷嘴生产的鱼油微胶囊平均直径最小,为 7.3μm;其次是超声波喷嘴和三流体喷嘴,分别为 11.3μm 和 12.0μm。此外,与其它两种喷嘴比较,超声波喷嘴可以产生最窄的粒径尺寸分布。一般来说,表面光滑、凹陷和褶皱少的微胶囊有益于包封率,当然对稳定性也有帮助。微胶囊的微观结构可以用扫描电镜观察。研究发现,以分离小扁豆蛋白、麦芽糊精和海藻酸钠作为壁材包埋菜籽油,制备的微胶囊具有坚固的囊壁结构可以保护囊芯。此外,对于含有维生素A的椰子油微胶囊,当壁材浓度分别在 15% 和 20% 时,外表呈球形且表面粗糙,壁材起到有效保护和稳定维生素 A 的作用。2.3 产率产率可以通过将微胶囊固体质量的重量除以待喷雾干燥的固体质量的总和来计算。喷雾干燥过程中可以重点考察芯壁材料、芯壳比、表面活性剂、入口温度、进料浓度等因素的影响。通常,BUCHI 喷雾干燥仪 B-290 的产率高达 70%。有研究发现,通过降低进料固体浓度和增加芯壁材料比,产率会增加,通过提高进口空气温度,产率也会增加。2.4 总含油量、表面含油量和包封率微胶囊的总含油量包括表面油和包封油。粉末表面上存在的油是一种不良特性,会影响存储稳定性。通过喷雾干燥后保留的总油减去表面油的含量,或通过有机溶剂洗去表面油从基质中提取精油的水蒸馏法计算包封率。制备的奇亚籽油微胶囊的包封率很高,超过 99%,因此表面油的损失率小于1%。有研究报道,不同改性淀粉对薄荷精油的包封率随壁材性质的不同通常在 39.2%-97.4% 之间波动。显然,当微胶囊的包封率最高、即微胶囊表面含油量最低时,对于隔离周围环境起到保护包封化合物的效果最好。2.5 储存稳定性在存储期间,含有香精和香料的微胶囊会被氧化,导致气味变质。可见存储性是决定包封率的最重要因素之一。可以通过测试过氧化值(PV)和 2-硫代巴比妥酸反应物质(TBARS)来确定储存稳定性。含有菜籽油的扁豆蛋白-麦芽糊精-海藻酸盐微胶囊比游离菜籽油具有更好的氧化稳定性:在 30 天的储存期内,微胶囊的 PV 显著降低,这说明包埋具有强大的益处。即使在 25 天后,TBARS 值与微胶囊制备后第 1 天相比也没有太大变化。3结论喷雾干燥技术在香精和香料的包埋中已经得到了广泛关注和应用。它可以生产高质量的包埋粉末并延长产品的保质期。本文综述了载体性质、乳液特性和喷雾干燥参数对微胶囊干燥的影响。BUCHI 喷雾干燥仪 B-290 为许多客户提供了可靠且受欢迎的解决方案,以支持他们的微胶囊研究。使用该设备开发的产品现在和将来都将被纳入到广泛领域内,例如增强健康油脂输送的补充剂等等。4参考文献Gharsallaoui., A. Roudaut., G. Chambin, O. Voilley., A. Saure, R., Spray Drying Microencapsulation of Food Ingredients. Food Research International 2007, 40, 1107-1021.Di Battista, C. A. Constenla, D. Ramírez-Rigo, M. V. Piñ a, J., The use of arabic gum, maltodextrin and surfactants in the microencapsulation of phytosterols by spray drying. Powder Technology 2015, 286, 193-201.Noello, C. Carvalho, A. G. S. Silva, V. M. Hubinger, M. D., Spray dried microparticles of chia oil using emulsion stabilized by wheyprotein concentrate and pectin by electrostatic deposition. Food Research International 2016, 89, 549-557.转载请注明出处!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制