粒径与粒径分布

仪器信息网粒径与粒径分布专题为您整合粒径与粒径分布相关的最新文章,在粒径与粒径分布专题,您不仅可以免费浏览粒径与粒径分布的资讯, 同时您还可以浏览粒径与粒径分布的相关资料、解决方案,参与社区粒径与粒径分布话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

粒径与粒径分布相关的耗材

  • 填料粒径3μm的手性色谱柱
    3&mu m色谱柱系列综合介绍 3&mu m色谱柱系列 &mdash &mdash 填料粒径3&mu m的手性色谱柱,实现更高的分离性能 涂敷型:CHIRALPAK® AD-3/AD-3R, CHIRALPAK® AS-3/AS-3R CHIRALCEL® OD-3/OD-3R, CHIRALCEL® OJ-3/OJ-3R CHIRALPAK® AY-3/AY-3R, CHIRALCEL® OZ-3/OZ-3R 耐溶剂型:CHIRALPAK® IA-3, CHIRALPAK® IB-3, CHIRALPAK® IC-3 产品描述: 3&mu m的手性色谱柱系列,由于使用了3&mu m填料,所以可得到很尖锐的峰。由于能实现很高的理论塔板数,即使是短柱也可以在缩短分析时间的基础上显示出优异的分离能力。另外由于使用了高通用性的手性选择剂,可对各类化合物进行光学拆分。 更小粒径填料的优点: - 更高效 - 更高流速 - 更快出峰时间 - 更高操作压力 - 优化HPLC系统 可根据用途选择最适合的色谱柱规格: 4.6*150mm Ø 用于通常分析 4.6*50mm Ø 用于高速分析 4.6*250mm Ø 用于特别需要高分离度的时候 2.1*150mm、2.1*250mm Ø 用作LC-MS或者微型HPLC 3&mu m与5&mu m分离度对比: Column: (L) CHIRALPAK® AD-3 (particle size 3&mu m) (R) CHIRALPAK® AD-H (particle size 5&mu m) Size: 4.6*250mm Mobile Phase: n-Hexane/IPA=90/10 Flow rate: 1ml/min Temperature: 25℃ Sample: &alpha -(Trifluoromethyl)-benzylalcohol
  • COSMOSIL 平均粒径 (球形?中性)填料 30511-64
    COSMOSIL 平均粒径 (球形?中性)填料 30511-64因为硅胶呈弱酸性,在用柱色谱分离的时候,一些对pH敏感的化合物会被酸性的硅胶分解。将硅胶60(球形、中性)的pH值调整到中性,不但能将对pH敏感的化合物分离,而且也能分离一些理化性质未知的新物质。订购信息● 平均粒径 (球形 中性)产品名称平均粒径产品编号包装尺寸平均粒径 60 (球形?中性)开放柱层析75 μm30511-64100 g30511-35500 g30511-511 kg30511-065 kg30511-2225 kg140 μm30518-94100 g30518-65500 g30518-811 kg30518-5225 kg● 平均粒径 (球形)产品名称Particle size孔径级别产品编号包装尺寸平均粒径 60, 球形约. 70 ~ 230 目60ASP30731-711 kg30731-4225 kg约. 150 ~ 325 目SP30733-511 kg30733-2225 kg平均粒径 120, 球形约. 70 ~ 230 目120ASP30734-411 kg约. 150 ~ 325 目30735-311 kg● 平均粒径 (不规则)产品名称Particle size孔径级别产品编号包装尺寸平均粒径 60约. 70 ~ 230 目60ASP30724-55500 g30724-711 kg30724-845 kg30724-4225 kg约. 230 ~ 400 目SP30721-85500 g30721-011 kg30721-145 kg30721-7225 kg
  • AQ 粒径/内径*柱长2.7μm/2.1×50mm
    CAPCELL CORE核壳柱§ 由1.7μm的实心核和0.5μm的多孔硅胶构成粒径为2.7μm的核-壳填料,可以实现UPLC和HPLC上的快速高效分析固定相粒径内径长度50mm价格长度100mm价格长度150mm价格C182.7μm2.1mmF511035500F511056500F5110670004.6mmF511145500F511167100F511177500AQ2.7μm2.1mmF511635800F511656900F5116674004.6mmF511745800F511767400F511777800MP2.7μm2.1mmF512135800F512156900F5121674004.6mm————F512267400F512277800WP2.7μm2.1mmF512335800F512356900F5123674004.6mm————F512467400F512477800PFP2.7μm2.1mmF511435800F511456900F5114674004.6mmF511545800F511567400F511577800PC2.7μm2.1mmF511235500F511256500F5112670004.6mmF511345500F511367100F511377500ADME2.7μm2.1mmF511835600F511856500F5118670004.6mmF511935700F511957200————

粒径与粒径分布相关的仪器

  • 借助 minispec 时域核磁共振分析,快速完成乳剂型产品的质量控制、工艺控制和研发水包油型或油包水型乳剂的液滴粒径分布无需制备,无需稀释批量测定不透明试样乳化效率量化乳剂稳定性动力学控制产品流变特性选择性吸收产品设计香精控释, API 优化颜色和外观减速化学变质控制微生物腐坏布鲁克的多功能台式时域核磁共振分析仪可以提供一个整包式解决方案,可在乳剂型产品生产过程中快速完成质量/工艺控制和研发。人性化的布鲁克 minispec 仪器可在短短数分钟内检测出整个试样中的全部氢原子产生的信号,而不受其颜色或浊度的影响。然后,通过分析核磁共振信号,计算出液滴内分子(油或水)的扩散系数,软件最后输出液滴粒径分布,包括体积和数量分数。此过程是在分子水平直接测量液滴粒径分布,不受絮凝影响,这一点不同于光学方法。时域核磁共振技术的优点有多种技术可供用于乳剂液滴粒径测试,但它们都有各种局限性,因而不适于分析多种不同乳剂系统: 光学显微镜术和成像分析——试样量小、耗时、液滴形状和尺寸失真。 共焦扫描显微镜术和成像分析——同光学显微镜术和成像分析一样。 小角激光光散射法——稀释步骤会彻底改变许多乳剂的结构,不能分辨液滴和悬浮颗粒,液滴簇被当成大液滴。 电传感技术——大多数情况下要求进行稀释,需要单独测定大量液滴。 超声技术——高固体含量试样的信号衰减严重。 相比于上述技术,基于时域核磁共振的液滴粒径分布测定技术具有以下属性,因而是适用于乳剂分析的强大工具: 对相对较大试样量进行液滴粒径分布测定样品颜色或透明度大小不影响测定其他颗粒物的存在不会被误当做液滴不要求在测定之前进行任何稀释步骤或其他预处理测定能力可以测定水包油型和油包水型试样的液滴粒径分布对整个1立方厘米试样进行液滴粒径分布测定4特斯拉/米的最大可用梯度强度允许对小至250纳米的大范围液滴粒径进行分析哪怕液滴内外都存在相同分子,也可以进行液滴粒径分布分析液滴粒径分布分析最终结果包括体积和数量分数、平均值和标准偏差可以在-5℃到+65℃试样温度范围内执行测定同一台仪器可用于其他分析,譬如但不限于,固体脂肪含量、结晶、水分迁移,等等适用场合水包油型或油包水型乳剂系统的液滴粒径分布乳剂稳定性动力学对规定升温条件下的乳剂特性变化进行动态研究水包油型乳剂的脂肪结晶和液滴粒径分布变化通过专门设计液滴粒径分布来控制产品流变特性、颜色/外观预测和抑制微生物和化学腐坏分子从液滴内部交换至外部控释活性成分(香精、药物,等等)设计食品产品的可控消化率和热量值软件 可借助 minispec ExpSpel 实验编辑器,进行灵活编程,设定:核磁共振脉冲序列核磁共振数据处理自定义自动化,等等 mq 系列系统适用于各种不同应用,可提供使用广泛、成熟的时域核磁共振脉冲序列,以及与联合利华合作开发的专有液滴粒径分布软件。 布鲁克 minispec 仪器采集的扩散数据 布鲁克 minispec 软件输出的液滴粒径分布分析结果 布鲁克 minispec 软件生成的详尽的统计信息(基于体积和数量的液滴粒径分布)
    留言咨询
  • 产品简介  粒径谱分析仪以激光二极管作为光源,31个粒径通道测量模块可准确计算颗粒物质量浓度和分布基础。该分析仪可检测固体颗粒物和小液滴粒径分布,测量过程没有半挥发性物质损失,适合官方作为PM10和PM2.5测量的组网仪器。在解决环境监测中需要解决的大气可吸入颗粒物等多种污染物的连续、实时、自动监测问题,特别是对颗粒物源解析、数浓度谱的研究有着重要的作用。功能特点  全自动无人值守在线实时监测,19寸机柜安装;  可同时测量PM1,PM2.5,PM10(可选配31个粒径通道),获得PM10,PM2.5 所有的EU及US-EPA认证;  粒径分布、相对温湿度探头、大气压力(三种选项);  不受震动影响,没有放射源,维护少,具有自动跟踪系统;  使用NAFION 作为除湿方法,使得SVC没有损失;  可做为大气监测系统的组网仪器;  维护费用、监测成本低。
    留言咨询
  • Fidas 200气溶胶粒径分布光谱仪 单颗粒气溶胶粒径分布光谱仪Fidas 200是专门为管制空气污染而开发的气溶胶光谱仪。它可以连续分析环境空气中存在的细粉尘颗粒,测量尺寸范围为180 nm–18 μm,并计算排放值PM10和PM2.5,支持法定单位进行监控。同时,仪器计算并记录PM1,PM4,PMtot,颗粒数浓度Cn和粒径分布。因此,仅通过Fidas 200计数和单颗粒测量原理,即可提供有关细尘颗粒的全面信息。 Fidas 200气溶胶粒径分布光谱仪可用于安装在空调监控站(温度范围5 – 40°C)。Fidas 200、Fidas 200E和Fidas 200S是目前少有的光学单颗粒测量设备,测量设备已获得型式认可,可根据VDI 4202-1、VDI标准、4203-3,EN 12341,EN 14907,EN 16450和欧盟等效性指南GDE同时监控PM10和PM2.5,并通过EN 15267-1和-2标准认证。此外,细粉尘测量设备Fidas 200以及Fidas 200 E和Fidas 200 S也在英国获得型式认可认证和Defra认证,符合“ MCERTS CAMS性能标准”和“ MCERTS(英国颗粒物)。 Fidas 200气溶胶粒径分布光谱仪利用公认的单颗粒光散射尺寸分析原理,并配备高强度(dp,min = 180 nm),高度稳定的光输出和长寿命的LED光源。可以使用单分散测试气溶胶验证仪器的校准,并在必要时随时方便、快捷地进行调整,即使在现场安装时也是如此。 Fidas 200的采样系统以大约0.3 m3 / h的体积流量运行。它配备符合VDI 2119-4标准的Sigma-2采样头,即使在强风条件下也可以进行代表性采样;还设有一条干燥线,可以防止凝结引起测量误差。干燥线(智能气溶胶干燥系统– IADS)是根据环境空气温度、压力和相对湿度来控制的。这些数据由气象站提供;可选地,还可以提供风速、风向和降水量数据。采样系统中集成用于圆形平面过滤器(直径47毫米)的过滤器支架,从而可以(举例来说)随后对气溶胶成分进行化学分析。 Fidas 200气溶胶粒径分布光谱仪提供多种通讯选项,允许对系统进行全面的远程控制和维护,并且进行在线数据访问。与系统一起提供的软件可提供用于评估(例如,全面的统计和平均值计算)和测量数据输出的通用选项。 气溶胶传感器是一种光学气溶胶光谱仪,使用Lorenz-Mie单个粒子散射光分析来确定粒径。粒子分别穿过光学限制的测量空间,该测量空间被多色光均匀照射。每个粒子都会产生以85°和95°之间角度检测到的散射光脉冲。基于散射光脉冲的数量确定粒子数量。粒径是从散射光脉冲的水平得出的。精密的光学器件、使用的多色LED的高光输出以及使用对数A / D转换的强大信号处理电子设备,可检测直径低至180 nm的颗粒。举例来说,在道路附近,检测高浓度小颗粒是尤其重要的。 Fidas 200传感器的测量体积使用T孔技术,在光学上进行准确定界,该技术可确定颗粒尺寸而不会出现边界带错误,从而有助于提高尺寸确定精度。强大的数字信号处理功能可以识别并补偿一致的读数(由多个粒子的同时存在引起)。优点: • 根据新的EN要求(EN 15267)进行型式认可和认证 • 连续和同时实时测量多个PM值 • 提供关于颗粒数浓度和粒度分布的其他信息 • 可调时间分辨率从 1 s到24 h • 光源:高稳定性,长寿命的LED • 长使用寿命 • 低维护 • 可以在现场进行外部校验 • 直观且易于操作 • 功能可靠,数据可用性极高( 99%) • 2台泵并联运行,冗余配置可提高运行安全性 • 连续监视状态,以及在线监视校准 • 轻松进行远程监控、维护和控制 • 通过Palas服务器云端进行全球数据检索 • 无放射性物质 • 没有消耗品 • 低能耗 • 减少您的运营费用应用领域 • 利用监控网络进行污染控管 • 环境空气监测运动 • 长期研究 • 排放源追溯 • 排放物扩散研究(例如大火,火山)
    留言咨询

粒径与粒径分布相关的方案

粒径与粒径分布相关的论坛

  • 粒径分布仪的采购问题

    想买台粒径分布仪,用于测量铝钾化合物一种粉末的粒径分布,基本上50%的粒径在10微米左右。大家有推荐的粒径分布仪的国内外品牌吗? 大家谈论下自己实验室有用过什么品牌的,各有什么优缺点,谢谢。

  • 关于粒径分布范围的疑问

    请各位高手帮帮忙!我测试颗粒度时设置了仪器自动测试三遍,三次的平均粒径都差不多,可在粒径分布图上每次的粒径分布范围的宽窄却相差很多,不解![em52] 我用的是BACKMAN N5的颗粒度计

粒径与粒径分布相关的资料

粒径与粒径分布相关的资讯

  • 布鲁克海文沉降粒度仪在碳黑粒径分布测量中的应用
    p  strongTesta Analytical Solutions注册公司发布了一份技术报告,描述了如何使用他们的BI系列圆盘式离心/沉降粒度仪精确测量碳黑样品的粒径。/strong/pp style="text-align: center "strongimg src="http://img1.17img.cn/17img/images/201806/insimg/d966dc87-88fd-44fd-852a-876a29b9fb20.jpg" title="BI-DCP圆盘式离心-沉降粒度仪.jpg" width="500" height="340" border="0" hspace="0" vspace="0" style="width: 500px height: 340px "//strong/pp  碳黑作为耐磨填料被span style="color: rgb(255, 0, 0) "广泛应用于轮胎制造业,以及许多其他橡胶材料的生产中/span。碳黑还被span style="color: rgb(255, 0, 0) "用作涂层、涂料、塑料、印刷油墨和黑色着色剂中的颜料/span。/pp  由于碳黑聚合物的粒径分布(PSD)与分散体的热学及力学性能关系紧密,碳黑PSD的测量成为其质量控制的重要组成部分。span style="color: rgb(255, 0, 0) "尽管谱图上经常只出现单个峰,但非团聚态碳黑的典型粒径分布范围却十分宽泛,可从10nm到500nm以上。/span/pp  作者介绍了使用圆盘式离心/沉降粒度仪测量粒径的原理,他们证明了为获取更精确测量的消光修正的重要性。/pp  给出了ASTM系列碳黑参比材料(A4-F4)的结果,并比较了不同参比材料的差异。讨论了不同样品制备方式,给出了这些制备方式随时间的稳定性。/pp  该报告的结论是,考虑到小粒径尺寸及典型分布的幅度,BI系列圆盘式离心/沉降粒度仪是测量碳黑粒径的优选仪器。BI系列圆盘式离心/沉降粒度仪不仅是一个坚固的仪器,且它的工作原理发展良好。如果进行了所有的修正,使用BI系列圆盘式离心/沉降粒度仪对碳黑样品粒径分布测量的精确性是非常卓越的。/p
  • 中国合成橡胶工业协会公示《合成橡胶胶乳 平均粒径及粒径分布的测定 动态光散射法》等3项团体标准
    各有关单位:根据《关于印发2023年中国合成橡胶工业协会团体标准项目计划的通知》(中合胶协字〔2023〕21号)的工作计划安排,《合成橡胶胶乳 平均粒径及粒径分布的测定 动态光散射法》等3项团体标准已完成征求意见稿(见附件1~3)编制工作,现予公示。欢迎社会各界对标准内容提出建议和意见,并于2024年9月27日之前将征求意见反馈表(见附件4)以电子邮件形式反馈至起草单位。 《合成橡胶胶乳 平均粒径及粒径分布的测定 动态光散射法》联系人:马楠联系电话:15888920488 邮箱:manan_panic@sina.com 《生物基衣康酸酯-丁二烯橡胶》联系人:侯红霞联系电话:18205305076邮箱:hongxia.hou@chambroad.com 《绿色设计产品评价规范 卤化异丁烯-异戊二烯橡胶》联系人:叶媛园联系电话:15858108854邮箱:yuanyuan.ye@cenwaymaterials.com中国合成橡胶工业协会2024年8月26日 附件:合成橡胶胶乳 平均粒径及粒径分布的测定 动态光散射法(征求意见稿)及编制说明.pdf 生物基衣康酸酯-丁二烯橡胶(征求意见稿)及编制说明.pdf绿色设计产品评价规范 卤化异丁烯-异戊二烯橡胶(征求意见稿)及编制说明.pdf 中国合成橡胶工业协会团体标准征求意见表.docx
  • 外泌体粒径分析该选谁?不同外泌体粒径分析技术间的比较
    测量外泌体的粒径分布一直以来都是外泌体表征的重要组成部分。但是由于外泌体的尺寸仅为30~200 nm,所以必须借助一些特殊的检测手段才能够对这种在光学显微镜下不可视的颗粒进行观测。本篇就外泌体粒径测量技术的发展进行简述,并对不同技术的差异进行比较。一、电镜技术在外泌体发现的早期,由于还没有专门针对这类尺寸颗粒的分析方法,因此直接在电镜下面观察粒径并统计成为了早的外泌体粒径统计方法。但是这种方法费时费力,且通量低,在面对临床和科研中的大量样本时显得十分无力。文献中外泌体在电镜TEM模式下的经典形态 二、动态光散射技术 & 纳米粒子跟踪分析技术由于外泌体与材料学所合成的脂质体在形态上十分相似,因此用于脂质体表征的动态光散射技术(DLS)便被应用于外泌体的尺寸测量上。DLS利用光射到远小于其波长的小颗粒上时会产生瑞利散射现象,通过观察散射光的强度随时间的变化推算出溶液中颗粒的大小。但是这种技术会受到测量物质的颜色、电性、磁性等理化特性的影响,并且对于灰尘和杂质十分敏感。因此使得DLS在测量尺寸较小的粒子时,测量出的粒径与实际的分布具有较大的偏差。为了弥补DLS的短板,纳米粒子跟踪分析(NTA)技术孕育而生。这种技术采用激光散射显微成像技术,用于记录纳米粒子在溶液中的布朗运动轨迹,并通过Stokes-Einstein方程推算粒子大小。这种技术能够对30~1000 nm的粒径进行测量,因此能够提供更为地粒径数据。在诸多文献的测试中均取得了较DLS更好的精度,因此成为目前为主流的外泌体尺寸测量手段。NTA技术的工作原理与DLS技术在测量不同尺寸纳米球的数据对比。可见相比于DLS,NTA测量的粒径分布更为。 虽然NTA取得了比DLS 更高的性,但是随着外泌体研究的深入,其局限性也十分明显。先NTA仅能够测量溶液中颗粒的平均粒径尺寸,但是NTA无法分辨其中的外泌体、囊泡、脂蛋白,也不能区别不同源性的外泌体。这直接限制了外泌体粒径表征的意义,使得研究者很难探究外泌体尺寸与外泌体来源之间的关系。另外NTA本身对于测试时的温度、浓度和校准都有着较高要求,因此使得NTA在测试较小的粒子时其精度仍不能达到令人满意的效果,其测试结果却仍与电镜、AFM等成像技术所观测到的粒径存在着明显差异。外泌体在TEM下的成像及粒径统计与NTA测量的结果对比。可见NTA测量到的粒径要比TEM直接测量的结果大50~100 nm。 三、单粒子干涉反射成像技术为了解决上述在实际测试中的问题,一种新型的单粒子干涉反射成像传感器(SP-IRIS)技术孕育而生。这种技术摒弃了布朗运动轨迹追踪方法,通过基底与颗粒形成的相干光进行成像,通过成像后的亮度来直接计算纳米粒子的大小。从而避免了NTA测量粒径轨迹误差大的短板,拥有更高的灵敏度和精度,即使对于NTA无法区分的40 nm与70 nm的粒子混合溶液也依然能够取得很好的分辨率。SP-IRIS的原理及芯片微阵列打印的成像效果和对混合不同粒径小球的区分效果。可见SP-IRIS技术拥有更高的测试通量和测量精度。得益于这种高精度测量方法,越来越多的研究者终于能够测量到与电镜直接观测相当的粒径。这种优势所带来的效果不单单是能够让TEM的数据与纳米粒子表征的数据更为一致,同时还能够表征不同来源的外泌体之间的粒径差异。SP-IRIS、NTA和TEM统计同一样品时所测量的粒径分布。SP-IRIS在测量不同尺寸的外泌体时,测量的粒径与TEM的尺寸统计基本一致,而NTA统计的粒径则比TEM大约50 nm。此外SP-IRIS技术还能够提供不同来源外泌体的尺寸差异,能够看出CD9来源的外泌体要比其它来源的外泌体大~10 nm。 SP-IRIS的另一个优势在于能够更换激光源的波长,因此除了能够实现外泌体的形貌成像外,还能够实现单外泌体的荧光成像。使得单外泌体的荧光共定位成为可能,研究者通过这种单外泌体荧光成像能够研究单外泌体的表型、载物、来源等生物信息。使用SP-IRIS 对受伤组和对照组小鼠不同时间点的血清CD9、CD81来源外泌体的分泌量监测。可以看到CD81来源的外泌体的分泌量呈现先增加后减少的趋势,而CD9来源的外泌体分泌量则一直在增加。 综上所述,由于SP-IRIS技术的高精度、高灵敏度、可做单外泌体荧光成像的优势,目前有越来越多的学者开始对比NTA技术和SP-SPIS技术,其结果均认为SP-SPIS技术测试的效果要明显优于NTA,这其中也不乏Cell等高水平期刊。相信在不久的将来,SP-IRIS技术将会越来越普及,为研究者研究外泌体打开新的大门。 参考文献:[1]. Ayuko Hoshino, et al, Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers,cell, 2020, 182, 1–18.[2]. Oguzhan Avci, et al., Interferometric Reflectance Imaging Sensor (IRIS)—A Platform Technology for Multiplexed Diagnostics and Digital Detection, Sensors 2015, 15, 17649-17665.[3]. George G. Daaboul, et al, Digital Detection of Exosomes by Interferometric Imaging, Scientific Reports,6, 37246.[4]. Federica Collino, et al, Extracellular Vesicles Derived from Induced Pluripotent Stem Cells Promote Renoprotection in Acute Kidney Injury Model, Cells 2020, 9, 453.[5]. Daniel Bachurski, et al, Extracellular vesicle measurements with nanoparticle tracking analysis – An accuracy and repeatability comparison between NanoSight NS300 and ZetaView, JOURNAL OF EXTRACELLULAR VESICLES 2019, 8, 1596016.[6]. Robert D. Boyd, et al, New approach to inter-technique comparisons for nanoparticle size measurements using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering, Colloids and Surfaces A: Physicochem. Eng. Aspects 387,2011, 35– 42.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制