剧烈变化反应流场

仪器信息网剧烈变化反应流场专题为您整合剧烈变化反应流场相关的最新文章,在剧烈变化反应流场专题,您不仅可以免费浏览剧烈变化反应流场的资讯, 同时您还可以浏览剧烈变化反应流场的相关资料、解决方案,参与社区剧烈变化反应流场话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

剧烈变化反应流场相关的耗材

  • 数字PCR生物芯片盒(四联排)
    臻准数字PCR芯片制备方式采用的是固相分割”路线,利用MEMS工艺刻蚀加工晶圆,形成微米级腔室,微体系反应液在固相微腔中完成PCR过程,避免了交叉干扰和剧烈热反应造成的稳定性破坏。在此基础上,微体系组分的变化并不影响物理结构,从而为平台带来了更强的开放性。芯片式除了均一稳定的优势之外,还有一些其他的特点,每个微单元可以独立观测、芯片可以反复阅读、图像可以溯源等等,非常利于研发人员进行分析和溯源。臻准微腔式芯片优势特点:工艺硅基芯片,腔室稳定均一;单孔可独立观测;芯片可反复观测;数据图像可追溯;芯片封闭无污染;
  • 数字PCR生物芯片盒(单芯片)
    臻准数字PCR芯片制备方式采用的是“固相分割”路线,利用MEMS工艺刻蚀加工晶圆,形成微米级腔室,微体系反应液在固相微腔中完成PCR过程,避免了交叉干扰和剧烈热反应造成的稳定性破坏。在此基础上,微体系组分的变化并不影响物理结构,从而为平台带来了更强的开放性。芯片式除了均一稳定的优势之外,还有一些其他的特点,每个微单元可以独立观测、芯片可以反复阅读、图像可以溯源等等,非常利于研发人员进行分析和溯源。 臻准微腔式芯片优势特点:工艺硅基芯片,腔室稳定均一;单孔可独立观测;芯片可反复观测;数据图像可追溯;芯片封闭无污染;
  • 特氟龙耐氢氟酸PTFE 烧瓶反应瓶装置可定制可配套冷凝回流装置
    四氟烧瓶、反应瓶四氟烧瓶:聚四氟乙烯反应瓶、圆底烧瓶、三颈烧瓶等。其主要特性有:1、通常有单颈、三颈和四颈,17、19、24等标准口,均配有塞子;可拆卸清洗,内壁光滑;用于:水浴锅、油浴锅等加热,使用温度:-200℃~250℃。 2、可根据您的要求定向加工四氟圆底烧瓶。 3、聚四氟乙烯烧瓶通常有平底和圆底之分。平底的叫做平底烧瓶,圆底的叫圆底烧瓶。 4、蒸馏烧瓶一种用于液体蒸馏或分馏物质的四氟容器。常与冷凝管、接液管、接液器配套使用,所以一般做成3颈,也可装配气体发生器。 5、通常具有圆肚细颈的外观,与烧杯明显地不同;窄口是用来防止溶液溅出或是减少溶液的蒸发,并可配合橡皮塞的使用,来连接其它的聚四氟乙烯器材。6、当溶液需要长时间的反应或是加热回流时,一般都会选择使用聚四氟乙烯烧瓶作为容器。 烧瓶的开口没有像烧杯般的突出缺口,倾倒溶液时更易沿外壁流下,所以通常都会用四氟搅拌棒轻触瓶口以防止溶液沿外壁流下。7、烧瓶因瓶口很窄,若需要搅拌时,可以手握瓶口微转手腕即可顺利搅拌均匀。若加热回流时,则可於瓶内放入磁搅拌子,以加热搅拌器加以搅拌。8、通常平底烧瓶用在室温下的反应,而圆底烧瓶则用在较高温的反应。这是因为圆底烧瓶的四氟材料厚薄较均匀,可承受较大的温度变化。 9、①应放在石棉网上加热,使其受热均匀;加热时,烧瓶外壁应无水滴。 ②平底烧瓶不能长时间用来加热。 ③不加热时,若用平底烧瓶作反应容器,无需用铁架台固定。 10、使用注意事项1.加热时要垫石棉网,也可以用其他热浴加热。加热时,液体量不超过容积的2/3,不少于容积的1/3。  2.配置附件(如温度计等)时,应选用合适的橡胶塞,特别注意检查气密性是否良好。  3.蒸馏时事先在瓶底加入少量沸石,以防暴沸。  4.加热时应放在石棉网上,使之均匀受热。 5.蒸馏完毕必须先关闭活塞后再停止加热,防止倒吸。品名规格(ml)材质四氟烧瓶50-200ml高纯实验级PTFE2505001000200030004000500012、四氟系列产品:取样瓶,烧杯、坩埚、离心管、消解管、试管、试管架、培养皿、蒸发皿、表面皿、镊子、药勺、铲子、烧瓶、三角瓶、研钵、搅拌棒、搅拌桨、消解瓶、消化罐、消解罐内衬、反应釜内胆、烧瓶塞、药典专用砝码、漏斗、布氏漏斗、抽滤瓶及装置、球磨罐、阀门接头、四氟管类、仪器配件、耗材配件、微波消解罐、盖子、垫片、塞子、反应柱、储液罐、四氟桶、各种方盘、圆盘、水槽、连续反应装置、容量瓶以及各种定制配件、耗材等等产品。详情请来电咨询!

剧烈变化反应流场相关的仪器

  • Thermo Scientific™ HyPerforma™ 振荡式生物反应器为振荡式生物反应器带来控制和检测功能。它由HyPerforma G3Lab控制器和TruBio软件控制,为研究、工艺开发或种子罐生产提供全套解决方案。该振荡式生物反应器使用Thermo Scientific™ Rock-IT生物工艺罐体(BPC),可提供高达25 L的工作体积,包含一个新型TruFluor pH+dO2传感器,可测定pH值、DO和温度。特点:• 适用于大部分细胞培养应用• 振荡运动是可调节的-从平滑的波浪形(极大程度地减小剪切力,适用于敏感细胞系),经过四档选择,再到剧烈运动(极大程度地提高氧气传递,适用于氧气需求较高的稳定细胞)• 采用G3Lab通用控制器和TruBio软件进行快速简单的安装• 可选的托盘适配器,可使用10 L和20 L BPC• 每种Rock-IT BPC有10、20和50 L体积可供选择,附带全部相关证书,已经过γ-辐照(25至40 kGy),符合USPClass 6标准• 标准化服务包• 符合cGMP要求• 可选的称重传感器,用于重量控制• 可用于灌注培养• TruFluor pH+dO2嵌入式传感器可实现关键工艺参数的检测和控制:pH值、DO和温度
    留言咨询
  • 中试反应系统 ● 釜体容积:10L~200L● 釜体材质:玻璃,316L 不锈钢,哈氏合金,PTFE● 釜体形状:圆柱形,球形,管式● 釜体:单层、夹套、双夹套● 温度控制系统:德国JULABO Presto 动态温度控制系统● 系统集成:数字式进样及液体滴加,常减压蒸馏,在线监测等● 控制软件:JULABO EasyTemp Professional 多功能控制软件, 新推出了新的中央自动控制软件Auto Reactor, 它集成了更多的功能 , 液晶触摸屏是操作更方便更快捷● 反应釜支架带滑动脚轮,移动方便。独特的结构设计,可满足底部固定和顶部搅拌对稳定性的要求,可选择安全防护罩● 多种下放料可选,底部放料阀带防腐蚀材质O 型圈,有极好的抗化学腐蚀 中试型反应系统可选择与反应体积相适合的温度控制设备、顶置式搅拌器及各种附件联用: ● 可选择单层或夹套两种釜体,推荐使用带下放料阀的釜体● 温控方面使用JULABO 高精度温度控制循环器或JULABO 密闭式温度控制循环器● 提供-100~300º C 宽温度范围的循环管路、浴油、温度传感器等温度控制相关附件● 顶置式搅拌系统,均选用顶级机械搅拌器● 所有与液体接触部分均为硼硅玻璃或抗化学腐蚀的PTFE材质● 玻璃磨口加工精细,保证了真空操作下的密封性;磨口可安装PTFE薄膜,不会产生粘连的现象;安装后以磨口夹固定,使得反应釜操作安全,方便● 回流冷凝管,恒压滴液漏斗,蒸馏装置等多种附件可选● 一体式不锈钢支架,结构稳定,方便组装;底部带脚轮,方便移动● 整个系统的控制可由JULABO 手持式无线遥控器进行远程控制, 用户在自己的办公室即可实时监测并控制实验室内的反应进程, 控制距离可达上百米 注意事项:玻璃的强度主要决定于其表面状况、厚度和均匀性。表面应力过大会引起装置的破损。所以, 当搬运玻璃器具时, 避免划伤表面和冲击器具的内部和外部。热应力可能引起破损。避免快速温度变化和较大内外温差, 对于保护玻璃装置非常重要。外部加热套和内部反应剧烈放热, 当冷的浴液快速通入热的反应釜内, 均可能引起以上后果。 最高操作温度:标准反应釜, 最高操作温度为230º C,允许的最大釜内外温度偏差为80℃。当对反应釜进行加热或制冷操作时, 推荐对釜内外温度进行连续监测, 避免出现事故。当使用加热套, 对反应釜从室温开始加热直到350℃以上时, 必须谨慎操作。如果使用可调压温度控制器, 建议在加热过程中使用3/4 电压, 并逐渐的升高电压, 直到釜内温度达到设定值且不超出最大内外温度偏差。 最大压力:球形釜盖, 标准锥形磨口, 最高操作压力为5psi。最高真空度:在内外温差小于50º C 的情况下, 球形和圆柱形反应釜允许的最高真空度为:10L 反应釜---5mmHg30&50 L 圆柱形反应釜---50mm Hg50, 72&100L 球形反应釜---50mm Hg100 & 200 L 圆柱形反应釜---200mmHg200 L 球形反应釜---200mmHg 技术参数:● 反应瓶体积:10L、20L、30L、50L、100L、150L、200L● 整套系统所有与反应液接触部分均为玻璃或者PTFE● 玻璃连接不需要真空硅酯,保证了整个反应系统的高洁净度● 反应瓶形状:有分体式或一体式、单层或夹套、有无下放料阀 我公司还提供以下产品:特色反应系统:优莱博光化学反应釜系统:大量超声化学反应套装氢化/气体反应装置实验室过滤反应系统100-6000mlMiniBlockTM——紧凑型平行合成反应模块平行反应器优莱博® 实验室分散均质反应系统无氧操作反应器微量化学反应设备优莱博® KALTGAS 超低温反应中试反应装置优莱博® 便携式球形反应釜套装——12L/22L/50L/72L/100L/200L10L/20/30L/50L L/100L夹套反应釜优莱博® 圆柱形10L/20L/30L/50L/100L/200L单层反应釜
    留言咨询
  • Julie Z9母乳分析仪 400-860-5168转2390
    高精度牛奶分析仪Julie Z9母乳成分分析仪/德国Gerber牛奶分析仪/德国盖博Julie Z9母乳成分分析仪适合大型乳产品企业实验室、认证实验室、国准实验室及科研机构Julie z9适用于检测各种动物奶、豆制品乳液、及人类母乳的分析牛奶分析仪特点:●高精确度:精确稳定检测,Z9的每项成分检测都配有单独的传感器,与传统意义超声波分析仪不同,所有成分直接检测,没有计算数值,误差小,检测精确可靠。●全自动清洗:无需人为操作,自动清洗所有软管系统,同时进行检测校准。●长寿命:厂家承诺五年质保期,所有内置泵无需维修更换。●检测时间短:Z9显著特点为可直接检测冷样品,无需预热,且不影响检测精度。●随时打印:可随时打印检测时间,样品名字及检测量。●随时清洗:自动清洗检测样品●自动提醒:专门的传感器自动声光报警是否缺少清洗液 牛奶分析仪配置介绍:-3mm铝合金机身-伊诺克斯不锈钢控制面板-100%伊诺克斯不锈钢操作按钮-100%伊诺克斯不锈钢连接部件-伊诺克斯不锈钢移液管-伊诺克斯不锈钢灯光显示-伊诺克斯不锈钢喷嘴-宽大LCD显示屏-4行,20个字符-全自动操作。独特的传感器控制清洗和设置校准。-电脑连接套装Julie Z9全自动牛奶分析仪所有零部件由世界知名生产商研发生产牛奶分析仪技术参数参数类型测量范围精度检测方式脂肪0% - 50%±0.01%罗紫-哥特里法蛋白质0% - 15%±0.01%凯氏法乳糖0% - 20%±0.01%旋光法非脂乳固体0% - 50%±0.01%干燥法灰份0% - 10%±0.01%重量分析密度1000-1200 kg/m3±0.1 kg/m3比重仪加水率0% - 100%±1%冰点测定冰点-0,400 tо -0,700°C0,005 °C样品温度5 - 30°CPH0-14pH±0.01% 中国地区总代理 高精度牛奶分析仪:单个或同一样品的测量偏差:所有参数在±0.01%Julie Z9进口高精度母乳成分分析,母乳成分分析,羊乳成分分析,乳成份分析,牛奶分析,全自动牛奶分析仪,Julie C2,Julie C3,Julie C5,Julie C6,Julie C8,Julie Z9,乳品分析仪
    留言咨询

剧烈变化反应流场相关的试剂

剧烈变化反应流场相关的方案

  • 聚烯烃材料断裂伸长率变化的微观结构差异化分析
    在聚烯烃生产和加工应用过程中,经常遇到材料断裂伸长率发生比较大的变化的情况,而影响聚烯烃材料断裂伸长率的因素有很多,其中聚烯烃材料的微观结构的差异,是主要影响因素,如何能够全面快速的得到材料的微观结构的信息,对于正确判断原因和及时采取措施至关重要,我公司的CFC设备可以在很短的时间内给出详尽的微观结构的信息,从而成为解决这一问题的强有力的手段。
  • 利用微秒时间分辨超灵敏红外光谱仪研究高温反应动力学
    近期,斯坦福大学的NICOLAS H. PINKOWSKI研究团队与IRsweep公司合作成功利用微秒时间分辨超灵敏双光梳红外光谱仪-IRis-F1(Dual-comb spectrometer, DCS)演示了中红外QCL的双梳状光谱仪在高能气相反应中的微秒分辨单次测量的应用。实验中配备了两个频率梳和多套立的验证测量系统,在压力驱动下的高温、高压反应釜中研究了一种剧烈的丙炔氧化化学反应 。具体而言,作者在1225 K,2.8 大气压和2%p-C3H4 / 18%O2的预点火条件下,测量了丙炔与氧气之间1.0 毫秒高温反应的详细动力学光谱。实验所采用的量子联激光的双梳状光谱仪(DCS)是由两个立运行的,非固定频率的频率梳组成,其发射波长带宽为179 cm-1 (1174 cm-1-1233 cm-1), 具有9.86 GHz的自由频谱范围和5 MHz的频梳间距,可实现实测4 μ s的时间分辨率(理论时间分辨率 2 μ s)。同时,作者使用另一套立的带间联激光(ICL)光谱仪对DCS测量的精度做了仔细的对比研究,确认了DCS测量的准确性。研究结果表明,单脉冲DCS可以以4 μ s时间分辨测量速率解析丙炔氧化动力学,DCS数据清楚显示:在反应早期(0-0.6 ms)能观察到宽带丙炔吸收特征峰,而在0.75 ms之后可以观察到水的精细特征光谱。在剧烈的高温高压反应中(1 ms 内约2500K和60倍的温度和压力变化)DCS数据显示了出良好的信噪比,其信号的自然噪声抑制和时间分辨率在高焓测试环境中显示出明显优势。同时,立的辅助激光测量光谱(ICL)结果与DCS系统测量结果具有良好的一致性。此外,DCS能够解析与温度直接相关的量子态信息。并且,随着光谱模型和高温截面数据库的改进,将来DCS系统的测量准确性会进一步提升。 随着中红外双梳光谱技术的出现,为超灵敏双光梳红外光谱仪在高焓反应和非平衡环境的反应动力学研究中提供了广阔的研究机遇。研究者坚信超灵敏双光梳红外光谱仪在高能反应动力学研究中将会有更多应用前景。
  • 复旦大学聂明团队揭示土壤微生物产甲烷作用应对气候变暖的补偿性反应
    CH4的百年增温潜势为CO2的28倍,因此预计它将在未来的气候变化中发挥重要作用。土壤厌氧产CH4通量是全球CH4排放的重要组成部分。短期实验表明,土壤微生物产CH4对温度有强烈的正依赖性。利用这一信息进行的CH4循环模拟表明随着全球气温的升高,土壤厌氧产CH4速率可能急剧增加,从而引发积极的气候变化-CH4排放反馈。但是,这种气候变化- CH4反馈的强度尚不确定,主要是因为微生物呼吸对长期温度变化的响应可能不同于其瞬时响应。越来越多的证据表明,在森林和草地等有氧土壤中,微生物群落的补偿反应可以显著降低温度变化对土壤CO2呼吸速率的影响。土壤微生物呼吸速率对温度变化的响应可能是由驯化(个体的生理响应)、适应(物种内部的遗传变异)和/或物种更替(群落物种组成的变化)引起。将这种补偿反应纳入模型可以改善对全球土壤碳流失率的预测。因此,考虑到温度对生物代谢的基本影响,我们可以合理地得出这样的结论:有氧土壤(就产生CO2而言)和厌氧土壤(就产生CH4而言)的补偿热响应可能是相似的。然而,直到现在,还没有尝试去检验微生物产甲烷是否对温度变化表现出补偿性反应。为了研究厌氧土壤微生物产甲烷对温度变化的补偿响应,聂明团队在大兴安岭(GKR)的4个试验点、长江三角洲的4个试验点和青藏高原(TP)采集了湿地土壤样品。因为土壤中产CH4群落和物理化性质存在差异,所以选取了GKR、TP地区土壤样品。在这些差异土壤中,产CH4菌对温度变化的热响应可能存在很大差异,利用这些土壤样品可以得到令人信服地微生物CH4呼吸对温度变化的补偿响应及其潜在机制。

剧烈变化反应流场相关的论坛

  • 测砷未赶酸,加硫脲反应剧烈还变成黄色,怎么回事

    昨天做实验,微波处理完样品,冷后直接洗入容量瓶,再加硫脲,放置半小时后测砷,值太低,于是想可能温度太低(室温也就十几度吧),反应不完全吧,所以就用热水加热一下,谁知道,开始大量冒泡,颜色也变成黄色,测定的时候还由于反应太过于剧烈,液体都冲出二极气液分离器了。为什么温度一高就会这样呢,求解?

剧烈变化反应流场相关的资料

剧烈变化反应流场相关的资讯

  • 【新案例】重氮乙酸乙酯微反应连续流新工艺
    重氮乙酸乙酯是重要的合成片段,在有机合成中具有非常重要的作用,主要应用在C-H键的插入反应和不饱和键上的环化反应。 重氮乙酸乙酯在路易斯酸催化剂的存在下,与醛发生的C-H键插入反应具有十分重要的应用价值,因为产物 β-酮酸乙酯是多种原料药的中间体。 重氮乙酸乙酯试剂在加热情况下会引起分解和爆炸,还会自动分解出有毒物质,储存和运输都需要特别注意。 目前重氮乙酸乙酯的生产主要采用间歇釜式滴加工艺,即向釜内反应体系滴入亚硝酸钠水溶液,由于该滴加过程伴随着剧烈的热量释放,若不能及时有效地移走这些热量,将会造成局部飙温,导致产物分解,严重时甚至引起安全事故。 与传统釜式反应器相比,微通道反应器 面积/体积比提高了上千倍,反应传热快速且稳定,避免局部温度过高造成爆炸。 此外,由于采用连续化操作方式,生成的产物能够及时移出反应器进行冷却处理,从而最大限度地避免产物分解。 本文将向读者介绍今年6月份常州大学张跃教授研究团队发表在《现代化工》上的“重氮乙酸乙酯的连续合成工艺研究”研究成果。 该研究以甘氨酸乙酯盐酸盐和亚硝酸钠、硫酸为原料,合成重氮乙酸乙酯,采用微通道连续流反应器系统研究重氮乙酸乙酯的连续合成工艺。该工艺提高了产品收率并具有系统结构简单、操作简便、安全性高、易于自动化控制等优点。 研究介绍 一、微通道反应器模块结构通道反应系统由一系列特定的模块以及连接件组成,通过微通道模块、连接配件、物料输送装置的组合,形成适用于本反应的反应器系统。二、实验步骤1. 在室温下,将甘氨酸乙酯盐酸盐溶于定量的水记为原料1。2. 按照物料配比将亚硝酸钠溶于水记为原料2。3. 再按照物料配比将浓硫酸配制成5% 硫酸记为原料3。4. 在进行实验前将原料1和原料3混合在一起记为混合原料,待换热器系统温度稳定后,混合原料与原料2分别通过质量计量泵进入预冷模片,在2股物料分别充分预冷后,进入反应区中进行重氮化反应。5. 产物从出口连续出料,系统运行稳定后取样进行分析检测。反应装置及流程如图2所示。三、反应条件研究 研究者对重氮乙酸乙酯的微通道连续合成工艺多个影响因素进行了考察,探究亚硝酸钠用量、反应温度、酸用量和停留时间对反应的影响,研究过程分别如下图。最终研究者获得了该合成工艺的最佳条件:取用 n(甘氨酸乙酯盐酸盐):n(亚硝酸钠):n(5%硫酸) = 1 : 1.1 : 2,反应停留时间120 s,反应体系温度为10℃,此时收率可达92.8%。结果讨论与小结 研究者成功应用微通道反应器进行重氮乙酸乙酯的合成,大大缩短了反应时间,扩大工艺条件选择区间,实现对重氮化反应的有效控制,增加了安全系数,提高了反应效率并得到较高的收率 从乙酸乙酯的重氮化反应工艺研究过程来看,连续流技术充分发挥了其技术优势 连续流微反应器持液量小、高效的传热传质特点,保证了反应快速平稳的进行及反应安全性 康宁反应器无缝放大的优势为后续工业化应用提供了研究基础 该工艺可以实现重氮乙酸乙酯的连续化生产,为在其它反应中该产物现制现用提供了可能性,降低了储存和运输的安全风险 参考文献[1]岳家委,辜顺林,刘建武,朱佳慧,李孟金,张跃,严生虎.重氮乙酸乙酯的连续合成工艺研究[J].现代化工,2021,41(06):205-208.
  • 全球首款甲流核酸“干式”反应即时检测试剂盒量产 常温30分钟显示结果
    近日,东南大学附属中大医院医学检验科吴国球教授团队联合中大医院重症医学科/江苏重症医学重点实验室杨毅教授团队,以临床需求为导向,聚焦呼吸道病原微生物感染(如甲流)监测,创新性的利用“干式”反应原理,结合新材料、新工艺、新方法,成功研发甲流核酸即时检测(POCT)试剂盒并实现量产。该试剂盒可常温、目视、一步法实现呼吸道样本的床旁核酸检测,在30分钟内即可获得检测结果。据中大医院重症医学科主任杨毅教授介绍,“甲流”是甲型流感的简称,是由甲型流感病毒感染引起的急性呼吸道传染病。流感病毒主要通过空气飞沫传播,也可以通过口腔、鼻腔、眼睛等黏膜直接或间接接触传播。轻症流感常与普通感冒表现相似,但其发热和全身症状更明显。重症病例可出现病毒性肺炎、继发细菌性肺炎、急性呼吸窘迫综合征、休克、弥漫性血管内凝血、心血管和神经系统等肺外表现及多种并发症,甚至死亡。治疗重点是缓解发烧、咳嗽等流感样症状,一旦出现持续高热,伴有剧烈咳嗽、呼吸困难、神志改变、严重呕吐与腹泻等重症倾向,应及时就诊。中大医院医学检验科主任吴国球教授介绍,长期以来,POCT的内容主要以免疫、生化技术为主,而分子诊断技术的融入使POCT进入新的发展阶段,成为IVD行业新的研究前沿和热点。2019年新型冠状病毒肺炎(COVID-19)大流行引发了临床实验室对分子诊断前所未有的关注以及公众对核酸检测的关切。分子即时检测省去了分区标本处理/核酸提取和大型仪器设备检测等步骤,可直接快速地得到可靠的结果,在重大公共卫生事件紧急应对、院内感染管理、居家监测等提供重要的技术支撑。分子POCT技术壁垒高,当前诸多产品仍集成于小型仪器且需要专业人员操作。团队自2020年基于催化发夹自组装结合免疫层析试纸条(胶体金/荧光)研发了一系列分子POCT试纸条,授权了多个相关专利,并发表了一系列原创性论文,包括甲/乙流、呼吸道合胞、HCV、解脲支原体,HPV E6/E7 mRNA检测等,为分子POCT试剂盒的成功研制奠定了基础。作为全球首款灵敏检测甲流核酸的床旁试剂盒,可视化或利用团队开发的手机APP,在30分钟内即可获得检测结果;与商品化PCR试剂盒比较,阳性符合率82%,阴性符合率100%;Ct32时,阴、阳性符合率为100%,各项指标均可达到临床使用要求。吴国球教授表示,该成果的取得是医学检验科以“自由探索”和“目标导向”双驱动,实现“临床引领、基础创新、转化应用”的目标迈出了坚实一步,也是中大医院作为综合性大学教学医院“医工交叉”“产教融合”取得的又一标志性成果。
  • 高能所等应用同步辐射纳米分辨谱学成像技术揭示氧化还原反应的相变过程
    p style=" text-align: justify " & nbsp & nbsp & nbsp & nbsp 中国科学院高能物理研究所多学科中心X射线成像实验站副研究员袁清习和国内外课题组合作,建立了基于同步辐射纳米分辨谱学成像技术追踪氧化还原反应相变过程的方法,并成功应用于锂离子电池电料相变过程的研究。研究成果近期发表在《自然-通讯》(Nature Communications)期刊上。 /p p style=" text-align: justify " & nbsp & nbsp 同步辐射谱学成像(XANES imaging)是利用特定元素对X射线能量的不同响应特性来获得样品内部对应元素的化学价态三维分布。基于波带片全场成像方法的纳米分辨谱学成像技术可以获得高空间分辨的形貌和化学信息,近年来受到了越来越多的重视,在材料科学领域尤其是在能源材料领域的研究中表现出重要潜力。 /p p style=" text-align: justify " & nbsp & nbsp 针对纳米分辨谱学成像方法学和应用研究,高能所多学科中心X射线成像实验站近年来开展了大量的工作。其中,袁清习和国内外多个同步辐射装置建立紧密联系,在技术研发、科研应用等方面开展了广泛的合作。近期,袁清习联合美国斯坦福同步辐射光源研究员刘宜晋课题组、弗吉尼亚理工大学教授林锋课题组提出了应用同步辐射纳米分辨谱学成像技术研究氧化还原反应的不均匀相变过程的新方法。这个联合团队成功将他们提出的新方法应用于Li(NixMnyCoz)O2(NMC) 三元正极材料的研究中,揭示了该材料热稳定性的一系列问题。该项工作发表于Nature Communications9, 2810,2018,共同第一作者为弗吉尼亚理工大学博士穆林沁和高能所袁清习。 /p p style=" text-align: justify " & nbsp & nbsp 以NMC正极材料中的应用为实例,该实验方法的工作流程如下:首先,为了研究该材料体系在不同温度下的行为,开展原位实验,利用谱学成像获得大量空间分辨的吸收谱数据;其次,提取Ni元素K边吸收能量表示相应的化学状态,高能量代表高价态(相对氧化态),低能量代表低价态(相对还原态)。进而使用样品在不同温度条件下的化学价态分布结果来表征氧化还原相变过程;第三,选择特定的Ni元素价态(例如,选择氧化还原反应最剧烈的能量点代表的价态),利用所采集的大量数据来描绘Ni元素等价态面的三维分布,对比不同反应条件下的等价态面分布来表征相变的发生、发展及相变前沿的推进过程;最后,引入等价面局域曲率(反应界面局域曲率)的概念,来描绘成核生长及整个相变的复杂过程。 /p p style=" text-align: justify " & nbsp & nbsp 图1为Ni的价态随NMC材料加热过程的变化,其中的每一条曲线代表了相应条件下基于全部像素的Ni价态的分布情况,可以看出化学反应从开始到结束全过程Ni元素价态分布的演变情况。图2给出了四个特定反应条件下Ni等价态面的发生、发展过程,所选择的Ni价态为8341eV对应的价态。从图1可以看出,8341eV代表的价态可以代表是化学反应最剧烈情况。图3中用不同颜色表示了镍元素的吸收边能量代表的镍元素的价态。受由晶粒边界和其局域的化学环境(不同组分和缺陷)所影响,相变过程通常非常复杂,如图3a所示,镍阳离子三维的形貌由不同的价态组成,从相对还原态(低能量态)到相对氧化状态(高能量态)。这些三维的价态推进前端提供了一个直观的三维立体多面体。还原态和氧化态分别代表了子相和母相,相变反应的推移前端从图3a到图3c。同时,作者将这些三维多面体每个局域的曲率计算出来,并分别用红色和蓝色代表局域曲率为正值和负值。从图3d、e可以看出相变过程中局域价态曲率的演化过程。 br/ /p p style=" text-align: justify " & nbsp & nbsp 这项工作不仅对锂离子电极材料的热稳定性和热致相变给出了详细的描述,还为下一步的储能材料优化提供了一些思路。研究工作所使用的方法可以推广到更加广阔的研究领域,尤其是复杂体系的非均匀相变过程等的研究中。特别是考虑到下一代同步辐射光源的发展,更高的亮度将会大大降低实验的时间,从而能够更好地捕捉到相变过程中的非稳定状态,为能源材料、环境科学等研究领域提供有力的工具。 /p p br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/863601e7-f186-445f-b8b1-ff31fd5d1984.jpg" title=" 图1111.jpg" / /p p style=" text-align: center " 图1 NMC样品中镍元素的价态随加热过程的变化。(a)为镍元素的局域价态直方图。(b-e)为原位观测镍价态信息示意图。镍的价态由Ni 的K吸收边能量表示,高能量和低能量分别代表了高价态和低价态。 /p p br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/974970c5-2fc2-4129-beeb-217abf22612c.jpg" title=" 图2222.jpg" / /p p style=" text-align: center " 图2 NMC样品不同反应条件下Ni等价态面的产生、发展及推进过程 /p p br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/d29d8585-987d-4cf3-9540-9ad6e2f158af.jpg" title=" 图3333.jpg" / /p p style=" text-align: center " 图3 局部镍元素价态曲率随相转变的演化。(a,b,c)分别代表了不同能量(8339, 8340 和8341 eV)的Ni K-edge的等值面形成的三维曲面。图d和e表示了在不同能量范围内价态曲率随着能量值的变化。 /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制