工业用水

仪器信息网工业用水专题为您整合工业用水相关的最新文章,在工业用水专题,您不仅可以免费浏览工业用水的资讯, 同时您还可以浏览工业用水的相关资料、解决方案,参与社区工业用水话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

工业用水相关的耗材

  • 工业废水达标测试
    工业废水达标测试工业废水达标测试,检测工业废水排放是否安全,达到安全排放标准等,来进行一切的检测方法。产品名称:工业废水达标测试(工业废水测试包)日本共立KYORITSU 污水测试包,该污水测试剂套件有41款不同种类,透过测试包表面所显示的颜色,便能测出污水中金属或化学品的浓度,可广泛地使用在污水测试、饮用水测试、研究环境污染等多方面,使用方法非常简单而且非常安全,快速准确任何人都会使用。我公司供应日本共立理化学研究所-污水测试包 污水分析剂,水测试剂,水分析包,水测试包测试方法:污水测试包是利用一支长度约为7公分,外径1公分的PE塑胶制封闭性试管,内部装填了一次测定所需要用量的调制试药。使用时先将试管前端的预埋线拉出,再吸入欲测定的液体样本,待水溶液与试药反应发色后,于指定时间内比对标准色卡,判断其浓度值。污水测试包特长 :无需PH校正 …………… PH5~PH9之间都可以使用 不用任何器具…………… 只要将预埋线拉出 快速得出结果…………… 大部分项目仅需约5分钟时间轻巧方便 …………… 每只试管重量约1公克 不会损坏 …………… 外层以PE塑胶制试管制成其他离子如下:污水测试包 /肼 / 镁 / 锰 / 氨 / 镍铜 / 氟 / 铁 / 铝 / 砷 / 金 / 硼 / 钙 / 氯化物 / 二氧化氯 / 氰/ 6价铬 / 总铬 / 2价铁 / FOR /过氧化氢 / 亚硝酸 / 硝酸 / 臭氧 / PH 值 / TBL / BCG(酸雨)/ BTB / TBH / PMD(浴池,水池离子)/ PNL / 磷酸 / 硫化物 /二氧化硅 / 亚硫酸(高浓度) / 硬度 / 氮 / 锌 等离子测试。应用范围:工程管理—原物料品管,残留量检查,一般用水/循环用水/锅炉用水等管理。排水管理—最终放流水确认,污水处理设施运转管理,设备验收,异常处理,异常早期发现,操作指导,取缔。用水检查—自来水/工业水/地下水检查,自来水塔清洗消毒确认检查,紧急灾害,野外活动等等饮用水安全的确认检查,牧场农畜等饮用水检查。养殖管理—养殖渔业水质检查,取水口检查,观赏鱼/水族馆水质检查,活鱼搬运/递送管理。环境调查—河川湖泊水质调查,污水分布,残留调查,污染源追踪,酸雨调查,温泉水调查,海洋环境调查。教研机构—中小学环境教育,大专院校实习器材,科学实验,研究专案,食品检查。农业应用—水耕栽培营养液管理,农业用水检查。其他应用—大型精密仪器分析事前确认,毒性检查,调查研究,电解水检查。比色法:测定水样中化学需氧量COD离子的总浓度相关产品 污水测试包
  • 工业废水环保检查
    工业废水环保检查产品名称:工业废水环保检查(污水测试包)产品产地:日本产品运用领域:工程管理—原物料品管,残留量检查,一般用水/循环用水/锅炉用水等管理。排水管理—最终放流水确认,污水处理设施运转管理,设备验收,异常处理,异常早期发现,操作指导,取缔。用水检查—自来水/工业水/地下水检查,自来水塔清洗消毒确认检查,紧急灾害,野外活动等等饮用水安全的确认检查,牧场农畜等饮用水检查。养殖管理—养殖渔业水质检查,取水口检查,观赏鱼/水族馆水质检查,活鱼搬运/递送管理。环境调查—河川湖泊水质调查,污水分布,残留调查,污染源追踪,酸雨调查,温泉水调查,海洋环境调查。教研机构—中小学环境教育,大专院校实习器材,科学实验,研究专案,食品检查。农业应用—水耕栽培营养液管理,农业用水检查。其他应用—大型精密仪器分析事前确认,毒性检查,调查研究,电解水检查。比色法:测定水样中化学需氧量COD离子的总浓度。操作步骤示意图:
  • PP滤芯,pp滤芯,PP棉滤芯
    PP滤芯 pp滤芯(又称熔喷滤芯))是一种采用无毒无味聚丙烯为原料,经过加热熔融,喷射、牵引、接收成型而制成的滤材。pp滤芯具有孔径均匀,外疏内密的深层过滤结构,并具有过滤效率高,耐酸碱的优良特性。能有效地除去液体中的悬浮物、微粒、铁锈等杂质。PP滤芯特点:本滤芯由PP熔喷超细纤维制成,具有很高的孔隙率,阻碍力小流量大,过滤效果好,过滤孔径外大内小,具有优良的深层过滤效果,纤维不易脱离,适用于化学溶液、电镀液多种酸碱溶液的过滤。具有流量大、精度高、耐腐蚀、耐压高等特点PP滤芯过滤效率高、压力损失小,过滤效率稳定、使用寿命长,过滤成本低、安全性好、适应性强。规格:10"、20"、30"、40"适用领域:1、饮用水及食品业、水处理相关等系统2、化学制程中酸碱液体之过滤 3、化工原料、有机溶剂之过滤 水溶性油漆、油料、涂料之过滤系统 4、线路板行业 5、工业用水、电镀液之过滤、工业用纯水过滤前置系统。

工业用水相关的仪器

  • 产品概述谱育科技SUPEC 5500在线滴定分析系统,包括单因子光度滴定、单因子电位滴定、双因子滴定三种规格,具备自动取样、自动过滤、自动稀释、自动滴定分析、自动清洗排废等功能,能够进行pH、氧化还原、沉淀和络合滴定。可7天*24小时连续获取各工业制造过程中关键参数信息,适用于石化、化工、冶金、工业用水、食品、半导体、制药、造纸等众多行业的物质浓度分析。 性能优势全流程自动化系统实现自动采样、滴定分析、清洗排废、分析结果上传等全流程自动化,单次流程时间小于15min,实现了无人值守。精准分析采用1/20000高精度注射泵;配备高精度传感器,分析结果达ppm级;示值误差≤2%,RSD ≤1%。多样品流+多分析方法 一套系统支持多达4个点位的样品采集,支持光度滴定、比色法、电位滴定、直接电位四种分析方法,实现不同流路和方法的平行分析。数据可靠灵活设置清洗次数可减少管路及滴定杯的交叉污染,无人为操作误差,可定期标定、校准、质控样验证。防腐腔体采用微正压密封腔体,不锈钢表面喷塑外壳,全PTFE管路设计,IP65防护应对工况现场恶劣的腐蚀环境。核心算法无接触式光度传感器采用模拟人眼识别算法,平衡时间控制算法,自动温补算法,动态滴定、等体积滴定、设定滴定。系统运维维护周期7天;滴定杯组件易拆装,更换方便。 应用领域石化:油品的酸值/碱值、原油中的盐、石油溴指数、原油产品中氯含量冶金:稀土酸值、稀土总量,金浸出工艺中的氰离子,冶锌工艺中的锌、硫酸和铁,氧化铝生产中的铝酸钠化工:氯碱行业的盐水硬、 聚合物生产过程中的羟值、 单晶硅制绒液中的NaOH、Na2SiO3工业用水:核电站冷却水中的硼酸、电厂循环水的安定指数、锅炉水中的二氧化硅、工业用水总硬度食品:蔗糖糖分分析、食品中的酸值、食品中的过氧化值、葡萄酒中的游离态二氧化硫、维生素C含量半导体:电镀槽中硫酸、铜离子等的浓度, 显影液中的TMAH,研磨液中的H2O2制药:药物的含量分析,药物活性物质的纯度分析,铬、Cl-、SO2-等杂质限量分析 产品选型
    留言咨询
  • 哈希公司在DR900系列多参数水质分析仪的基础上,开发出多种特殊应用场所的CEL900系列便携式水质分析实验室,该系列产品不仅可满足野外各种环境的水质测试要求,也适用于突发事件的快速水质监测及实验室内常规水质参数的测量,使用户以较小的投入就可满足水质测试的需求。CEL/900系列便携式水质分析实验室按照不同领域水质分析测试的要求进行配置,适用于饮用水、污水、工业用水、锅炉用水、环境监测、农业、教育及科研系统的水质检测与分析。
    留言咨询
  • 产品概述:水质浊度快速测定仪用于测量悬浮于水或透明液体中不溶性颗粒物质所产生的光的散射程度,并能定量表征这些悬浮颗粒物质的含量.应用行业:可以广泛应用于发电厂、纯净水厂、自来水厂、生活污水处理厂、饮料厂、环保部门、工业用水、制酒行业及制药行业、防疫部门、医院、化工产品等部门的浊度测量.仪器特点:安卓智能系统操作更佳简便快捷;内置操作流程、操作简单、无需培训、直接上手;检测速度快,现场读取数据;便携式体积小,重量轻,方便户外检测;外形小巧美观,工作稳定免维护,具有较好的性价比;采用进口冷光源,光学性能稳定,寿命长达10万小时;参数指标:检测项目:浊度测量标准:GB13200-91测量范围:0.05~100(NTU)波长范围:340~800nm测量方式:光电比色测量误差:≤5%重复性:0.5%稳定性:0.5%波长选择:自动操作系统:安卓智能操作系统显示屏幕:3.5寸彩色液晶触摸屏灵敏度(吸光度):0.001使用环境:温度0~50℃,湿度0~90%数据存储:80000条以上通讯:Type-C、WIFI、热点、蓝牙电池:5600mAh锂电池连续工作时间:12小时供电电压:5V/DC直流尺寸:180mm*80mm*70mm重量:700g支持语言:简体中文或英文
    留言咨询

工业用水相关的试剂

工业用水相关的方案

工业用水相关的论坛

工业用水相关的资料

工业用水相关的资讯

  • 在线溶解氧分析仪在工业用水处理中的应用
    溶解氧是指水中溶解的氧气含量,它对于工业用水处理和环境生态都非常重要。在工业用水处理中,溶解氧的含量直接影响到水处理的效率和效果。如果水中溶解氧含量过低,就会导致水体腐败、异味和污染环境;如果水中溶解氧含量过高,就会导致水生生物缺氧而死亡。因此,准确监测水中溶解氧含量是非常必要的在污水处理过程中,溶解氧是一个非常重要的参数。在线溶解氧分析仪可以实时监测水中溶解氧含量,为污水处理提供准确的数据支持,帮助管理人员调整曝气量等参数,确保污水处理的效率和效果。化工行业是工业用水处理中另一个非常重要的领域。在化工生产中,需要用到大量的水和电,如果用水不当会导致生产成本的增加和环境污染。在线溶解氧分析仪可以实时监测化工生产过程中的水质量,保证产品的质量和生产过程的稳定性。电力行业是工业用水处理中非常重要的一个领域。在火力发电等发电过程中,需要用到大量的水来进行冷却和循环,如果用水不当会导致发电效率下降和环境污染。在线溶解氧分析仪可以实时监测发电过程中的水质情况,保证发电效率和生产过程的稳定性。
  • 增强化工处理的工业用水管理:有关合规性、可持续性和成本效益的策略
    对化工企业而言,工业废水管理有利于提高效率,从而获得更多机遇。在制造业中,水起到至关重要的作用,可用于处理、加热、冷却、清洗或作为产品的重要成分。然而,工业用水中有90%或以上最终将成为废水1。在再利用或排放到环境之前进行废水处理通常会产生大量成本,但有时也会产生机遇。随着能源和材料成本不断的提高,且消费者和监管机构的要求也越来越高,全球有越来越多的行业面临着可持续性方面的问题。通过处理有毒的废水,化工企业可减少其水足迹并提高水的再利用率,从而实现更好的整体水管理。对于在缺水和干旱对生产造成威胁的地区运营的化工企业来说,水的回用尤其重要。此外,有毒物质排放可能会影响公司的声誉,公众会要求问责并采取行动纠正这种情况,包括更好的环境保护。然而,在废水管理方面,成本始终是化工企业的考虑因素之一。因此,尽量减少废水量成为减少废水处理成本的最佳途径。废水处理可根据流量和污染负荷,并结合排水质量要求,组合运用生物、化学和物理等处理手段。现场对水回收的投资可以快速抵消排放罚款和取水成本。这就是整个工厂的总体水足迹和水成本发挥作用的地方。为实现现场水回用,通常需要采用紫外(UV)、离子交换、活性炭、反渗透等先进的处理技术。水处理的要求通常取决于回收水的目的,比如:冷却水的水质要求低于锅炉给水。水处理策略与实践各种指导方针旨在限制制造业排放,鼓励工业更高效、更可持续地运营。例如欧盟成员国的工业排放指令,提出最佳可行技术(BAT,Best Available Techniques)和相关排放水平(AEL,Associated Emissions Levels),以指导各部门如何实现合规和改进。同样,美国《清洁水法案(Clean Water Act)》,也在不断发展,以推动废水处理的改进,避免污染或有毒事件。在企业层面,很多公司目前发布了环保项目和长期水质目标,并定期更新最新进展。虽然有部分目标可能相对较低,但对于股东、客户以及当地社区而言是负责任的表现。其中一项关键BAT技术是在关键位置监测关键工艺参数。出水口过往是首选的监测位置,但只有在上游增设监测才能真正实现优化和成本节约。为实现排水合规,必须确定废水的来源及其对废水处理造成的影响。运营方应创建工厂的水足迹图,以确定可能存在污染的区域以及有优化潜力的区域。然后,可根据水足迹图增设监测点,获取相关重要数据并做好水处理决策。通过水足迹图,工厂可确定目前的“痛点”并确保理解数据的目的所在。收集整个工厂的实验室数据通常是一个很好的起点。最初,如果多台工艺装置间没有变化,则可以认为它们是非关键点。但是,当处理阶段或处理步骤导致水质或水量发生显着变化时,运营方应将其视为关键控制点。为确定需监测的参数,除了原水和排水的质量之外,工厂需要仔细研究现场的处理方式和产品。如,在化工行业中,基础化学品或大宗化学品为塑料和聚合物,通常是能源行业和消费品的重要材料。因为原材料为有机化合物,所以此类化学品制造排放的废水通常含有极高含量的有机物,而且随生产发生剧烈变化。因此,为符合相关法规要求,很多制造商均设计采用缓冲罐来处理高浓度和低浓度。在特种化学品方面,材料由氮、硫、氯化合物等无机物制成。有时,环境或加工过程中的有机化合物会干扰纯度或加工效率。例如,氯碱生产使用饱和盐水和膜电解来生产氯和相关产品。回收盐水存在有机污染物积累的风险。有机污染会污染膜系统并导致计划外维护。跟踪污染物可以帮助保护膜系统免受损坏并保持生产力。除了温度、压力、流量、pH 值和电导率等物理和基本化学参数外,操作员还应考虑它们如何影响工艺控制、合规性和产品质量。就排放到环境中的物质而言,常见的关注参数包括有机物、无机物和营养物。有机物和营养物(碳、氮、磷)会导致藻类爆发和富营养化,影响当地环境,必须通过处理去除。这就是为什么监测和消除有机污染至关重要。检测方法许多地区检测需氧量是为了表明排放到环境中的有机物含量。生物需氧量BOD通过检测样品中化合物在五天或更长时间内的生物降解情况来实现这一点。由于消毒剂和清洁剂的干扰,其精度和灵敏度有限。化学需氧量COD使用强氧化剂(有时含毒性)在两到三个小时内化学分解样品中的化合物。然而,COD对有机物没有选择性,并且包括亚硝酸盐、氨和亚硫酸盐等无机物。含铁化合物也会影响COD检测的准确性。这使得在此过程中很难做出可操作的决策。例如,如果COD很高,很难确定它是来自有机物还是氨。由于重复性和灵敏度问题,如果废水中的BOD很低,低于20 ppm,则很难确保低于20 ppm的限值。总有机碳TOC通常是监测废水的首选,因为它不依赖使用有毒化合物,并在合理可行的时间范围内以适当的准确度(~2-5%)和精确度(~2-5%)提供读数。虽然历史数据库和许可证通常是针对COD编写的,但针对特定地点的评估对于转向TOC非常有价值。运营方通过将有机物氧化成二氧化碳,然后检测所得的二氧化碳来确定TOC。有多种技术可以检测TOC,包括TOC分析仪和尝试与分析仪关联的TOC传感器。传感器的缺点是,虽然速度更快,但它们存在干扰,关键化合物的回收率不足,并且只能捕获一部分有机物。TOC分析仪有不同的氧化技术和检测技术,具体取决于所需的应用。当检测与锅炉给水结合并产生蒸汽的回流冷凝水时,则所采用的技术必须能确定样品中确实不存在污染物。在这种情况下,灵敏度和速度是检测任何偏差的关键。对于其他应用,例如跟踪废水的负荷和污染度变化,稳固性是处理盐、固体、无机物和高有机负荷所需的关键属性。对于所有应用而言,与TOC检测技术同样重要的是TOC分析仪投入使用后以及整个工艺过程监测计划成功实施过程中的支持。除了性能之外,维护、附加参数、验证和自动化都是需要考虑的因素。在考虑成本和节水工作时必须考虑这些因素。分析工具旨在帮助回答问题并推动决策,因此企业可以从废水处理优化甚至现场回收的机会中受益。Sievers® TOC-R3在线TOC分析仪维护需求低、在线时间长,能使工业制造商提高盈利、避免停机、降低维护成本尽一切努力合规并提高可持续性改进工业用水管理为化工企业提供了确保遵守不断变化的法规、改善其公众形象、满足消费者需求、促进强大的环境和可持续文化并降低成本的机会。为了实现这些利益,企业必须衡量处理有效性、是否合规以及处理效率。除了废水优化之外,企业还可以通过监测策略了解与用水相关的其他潜在改进。例如,他们可以使用实际的清洁度数据来改善化学品和水的使用,而不是根据估计的清洁时间或循环次数做出决策。这些数据驱动的决策可以帮助化工企业避免过度清洁、最大限度地减少产品浪费并节省资源。他们还可以使用这些监测技术来跟踪蒸汽系统的供水,以保护热交换器、冷凝器等设备免受有害污染物的影响。控制工业用水能造福于各行业的制造商,原因不仅限于合规和成本,还因为管理工业用水能为改善运营、实现可持续发展目标和满足消费者需求,提供极佳的机遇。通过监测整个工厂的关键控制点,可减轻废水处理压力(特别是面向消费者的行业),从而更好地控制工业废水。改善污染跟踪的技术可帮助化工企业快速做出决策,确保合规并把握水回收和再利用的机会。作者:Amanda TyndallAmanda Tyndall是Sievers分析仪工业与环境市场产品经理。Amanda在水处理行业具有10多年经验。Amanda及其团队在工业和市政领域,通过从超纯水到废水检测的仪器解决方案,为客户解决水质挑战。Amanda拥有化学工程背景,获得范德堡大学(Vanderbilt University)学士学位和剑桥大学(University of Cambridge)硕士学位。参考文献"Water for Chemicals: Market Trends and Forecasts," 2023-2030. Insight Report. Bluefield Research. September 2023.◆ ◆ ◆联系我们,了解更多!
  • 哈希水质监测仪器在工业用水和废水处理过程中应用研讨会成功举办
    近日,哈希水质监测仪器在工业用水和废水处理过程中应用研讨会成功举办,包括工业用水和废水处理等相关行业的项目经理、设计工程师、现场维护人员在内的三百多位注册用户共同聚焦水质监测仪器在工业用水和废水处理过程中的应用探讨,就水质监测仪器发展前景、水质监测仪器技术在产业中的应用等热点问题进行了深入探讨。   水资源越来越宝贵,这已经被许多行业和领域所共识。流程工业和装配工业中,水起着重要的作用,从工业加工介质到能量动力的传输,水充当着重要的角色。合格的水质是工业过程顺利操作运行的保证,对水质进行及时准确的监测,是保证水处理过程的重要手段。工业用水水质监测,范围非常广。HACH公司作为世界一流的水质分析与监测的专业厂商,不仅能够为广大用户提供性能优良的水质分析监测用的仪器,也能根据不同领域不同行业的特点,为用户提供水质监测的技术解决方案。   此次研讨会,主要探讨的内容有1、进厂原水的质量监测2、冷却水/循环水监测3、热电及蒸汽用水   监测4、工艺物料用水监测5、工业污水的处理与中水回用,用户可以充分了解HACH公司产品范围/仪器   应用特点/工艺过程中水质监测的解决方案概况。同时,对于用户日常工作中所遇到的一些水质检测问题,也可以通过在线平台交流意见,集大家智慧解决问题。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制