风味物质变化

仪器信息网风味物质变化专题为您整合风味物质变化相关的最新文章,在风味物质变化专题,您不仅可以免费浏览风味物质变化的资讯, 同时您还可以浏览风味物质变化的相关资料、解决方案,参与社区风味物质变化话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

风味物质变化相关的耗材

  • 瑞思泰康 Rt-γDEXsa 有机分子/果汁风味化合物手性柱
    Rt-γDEXsa 手性色谱柱(熔融石英)(2,3-二-乙酰氧基-6-O-叔丁基二甲基甲硅烷基γ-环糊精加入14%氰丙基/86%二甲基聚硅氧烷)用途:更大的有机分子。也有用果汁中的风味化合物。订货信息:IDdf温度限30米0.25 mm0.25 μm40 to 230 °C131130.32 mm0.25 μm40 to 230 °C13112
  • 中型快速温度变化试验箱;工业快速温度变化试验箱
    中型快速温度变化试验箱;工业快速温度变化试验箱规格型号及技术参数:AP-KS-80L   w40XH50XD40cmAP-KS-120L   w50XH60XD40cmAP-KS-150L   w50XH60XD50cmAP-KS-225L   w60XH75XD50cmAP-KS-408L   w60XH85XD80cmAP-KS-800L   w100XH100XD80cmAP-KS-1000L   w100XH100XD100cm1.温度范围 : -85 ~+150℃/-60~+150℃/-50~+150℃/-40~+150℃/-20~+150℃。 2.快速温变范围:-85℃机型:-75+85℃ -70℃机型: -65~+85℃ -60℃机型:-55~+85℃ -50℃机型:-45~+85℃ -40℃机型:-35~+85℃ -20℃机型:-15~+85℃3.升降温速率:2℃/分钟,3℃/分钟,5℃/分钟,8℃/分钟,10℃/分钟,15℃/分钟线性平均或非线性平均 4.控制稳定度 : ±0.5℃ 5.分布均匀度:±1.5℃ 6.温度偏差:≤±2℃ 7.正常升温时间:+20℃~+150℃小于45分钟。8.正常降温时间:+20~-85℃小于100分钟,+20~-60℃小于70分钟,+20~-50℃小于65分钟 +20~-40℃小于60分钟,+20~-50℃小于45分钟10.内箱材质:SUS 304# 镜面不锈钢板 11.外箱材质:SUS 304#不锈钢板/冷轧板烤漆(电脑白)12.保温层材质:PU硬质发泡+玻璃棉. 13.底座材质:国标角铁+槽钢. 冷冻系统:风冷或水冷式欧美原装进口半封闭或全封闭压缩机组,散热片式自动负载容量调整蒸发器加热系统:加热器不锈纲鳍片散热管型加热管加热空气循环方式。 安全保护装置:无熔丝过载探保护,压缩机过热,过流, 超压,加热干烧,箱内超温警报系统。标准配置: 观视窗(45×30cm),测试孔(¢50×1只),试料架(2组) 超温保护器, 视窗灯等。 电源 :AC3¢5W380V50HZ .中型快速温度变化试验箱;工业快速温度变化试验箱执行标准:1. GB2423.1-89 试验 A 低温试验方法2. GB2423.2-89 试验 B 高温试验方法3. IEC68-2-1 试验 A4. IEC68-2-1 试验 B5. GJB1032-90 环境应力筛选方法中型快速温度变化试验箱;工业快速温度变化试验箱满足标准:1. GB10589-89 低温试验箱技术条件2. GB11158-89 高温试验箱技术条件3. GB10592-89 高低温试验箱技术条件4. GB2423.1 低温试验、试验A5. GB2423.2 高温试验、试验B6. GB2423.22 温度变化试验、试验N7. IEC68-2-1 试验A8. IEC68-2-2 试验B9. IEC68-2-14 试验N中型快速温度变化试验箱;工业快速温度变化试验箱适用于国防工业,航空工业、自动化零组件、汽车部件、电子电器仪表零组件、电工产品、塑 胶、化工业、食品业、制药工业及相关产品等设备在周围大气温度急剧变化条件下的适应性试验(冲击),适应于仪器、仪表、电工、电子产品整机及零部件等作温度快速变化或渐变条件下的适应性试验及应力筛选试验以便对试品在拟定条件下的性能、行为作出分析及评价(快速变化)。中型快速温度变化试验箱;工业快速温度变化试验箱特性1)全新完美的圆弧造型设计,外观质感高水准,美观大方,并采用平面无反作用把手,操作容易。2)进口型多功能, 扩展性强之专用温度控制器,操作简单,学习容易, 控制稳定可靠.可供低温及超低温双重 试验。3)可靠优良的均匀送风循环系统 长轴马达顶部垂直安装,防止因长期连续运转而导致的马达主轴偏心。4)进口离心风机结合水平及垂直角度可调双层百叶强制送风循环设计,可避免箱内的气流死角,保证箱内 每个角落温湿度 均匀度更加一致。5)宽敞明亮之大型电热观察视窗:由三层超大型真空镀膜(加热膜)视窗及高亮度荧光灯组合而成,可 清楚观察箱内试验样品,并有效防止因内外温差而引起的水雾形成,让使用者可随时观测试验箱内的 状况。6)全方位的安全保护,确保机器本身被测产品及使用者安全,独立于主控制器之电子式超温保护装置可 设定受测对象之温度上限保护。7)先进的安全,保护装置-漏电断路器、干烧保护器、缺相保护器、制冷机组超压、过载、油压等保护 装置8)先进可靠的冷冻系统原装进口欧美全密闭压缩机. 具有世界最知名品牌的冷冻器件及高效率冷热交换系 统. 采用全毛细管,自动负载容量调整系统技术,较以往膨胀伐系统更稳定可靠.温湿度控制更精确,升 降温速度快速、平稳、均匀,为使用者节约宝贵时间9)采用进口型对臭氧系数为零的绿色环保(HFC)美国联兴制冷剂R404A/R23.10)采用优质零部件及优化设计方案,使机器运行噪音较低,燥音值≤65Db. 11)纹路处理不锈钢表面,可使机器长时间保持崭新的外观 。中型快速温度变化试验箱;工业快速温度变化试验箱控制器: 韩国“TEMI"880彩色型或日本“OYO"7756彩色型5.7寸或10.4寸原装进口微电脑液晶显示触控式屏幕直接按键型,中英文表示及320×40点的图形之广视角,高对比附可调背光功能之温湿度同时可程控器,具100组程序1000段次记忆,每段99Hour59Min,每段可循环999次,可任意分割设定,并附多组PID控制功能。
  • DF果实变化传感器
    优点:此仪器可定位精确观测植物果实的变化, 数据可以直读, 也可用数采自动记录;专用配套小数采自带的电源可连续测量2年;优点:精度高, 廉价, 安装方便, 性能稳定, 测量时传感器不需要电源,几乎无需维护措施,特殊尺寸可以定制。 技术参数: 参数DF型测量范围测量果实直径变化,适于直径在3~11cm 的果实,大于11 cm需特制;不伤害果实。扩张范围11 mm,测量对象变化超过11mm后需要重新调节标准配置传感器,固定框架,2 m电缆。安装工具万用表,两个小扳手,电缆固定带。尺寸及重量18×15×1.5 cm,65 g读取数据需要读数表或数据采集器测量精度<5mm (植物半径日变化0~300mm)温度系数<0.1 mm/℃ (温度变化1℃, 变化小于0.1mm)适用环境温度-30~40°C, 湿度0~100%输出方式模拟输出 0~50 kΩ,不耗电。外壳材料表面强化铝,不锈钢电缆长度2 m,电缆可以延长到20m 产地:德国

风味物质变化相关的仪器

  • 谱育科技自主研发的TRACE 8000 化学电离飞行时间质谱仪,将高灵敏度化学电离源和高分辨飞行时间质量分析器进行结合,具有灵敏度高、分析速度快、分辨率高、测量组分种类多等突出优点;仪器具有创新的辉光放电源、高压离子漏斗和静电透镜传输技术,保证样品的电离效率和离子的传输效率,适用于走航监测、食品科学、材料分析、爆炸物和药物检测等方面的应用。产品概述性能优势分析速度快微秒级的扫描速度,可捕捉目标物质的瞬时变化,为科学研究、应急监测、生产过程的高通量监测提供有效手段。分辨率高可实现复杂混合物样品中分子量相近物质的分析识别,解决传统低分辨直接进样质谱分析定性难的问题,将“看不见”变成“看得见”,追溯物质本源。多试剂离子可选配合试剂离子快速切换系统,根据目标物质的化学特性,可选择H3O+、O2+、NO+等多种不同电离能的试剂离子进行靶向电离,适测物质涵盖醛、酮、有机硫、有机胺、卤代烃、苯系物、长短链烃类等,是优选的快速检测技术。 应用领域TRACE 8000 化学电离飞行时间质谱仪适用于走航监测和园区VOCs在线监测,可实现VOCs精准溯源及扩散预警。可对半导体生产过程中的AMC、食品生产的风味物质进行实时监控;石油化工生产过程中移动测量、定点在线监测;材料中有害成分的快速鉴定分析;人呼出气体的宽动态范围内的追踪分析。
    留言咨询
  • 经过两年的潜心研究,聚光科技(杭州)股份有限公司于2010年6月推出了国内第一台具有自主知识产权的TOX-2000水质综合毒性在线监测仪(Water Total Toxicity On-line Monitor),该仪器以发光细菌(费氏弧菌)为受试生物,连续在线监测水质变化,实时获取水质综合毒性数据,弥补了理化法监测仪器的不足,可单独使用或与理化在线监测仪器联合使用,对水质污染事件和人为投毒等恐怖事件进行早期预警,为环境安全和饮用水安全保驾护航。 TOX-2000 的测量原理为:当样品中的有毒物质与发光细菌接触时,发光细菌的发光度会迅速变化,通过与空白对照液的发光度进行对比,即可获得样品对发光细菌的发光抑制率,而发光抑制率与毒性大小成正比,毒性越大,抑制率也越大,因此可以通过发光抑制率间接评价样品的毒性大小。 TOX-2000 具有如下特点:◆ 响应谱广,可响应5000种以上的有毒物质,包括重金属、杀虫剂、除草剂、灭菌剂及多种工业化学品等;◆ 灵敏度高,氯化汞的EC50小于0.15mg/L,七水合硫酸锌的EC50小于4mg/L;◆ 受试细菌持续稳定供给技术使仪器具有长期稳定的高灵敏度,细菌更换周期达30d;◆ 时辨分析技术使仪器可初步判断水质污染类型,有助于快速决策;◆ 流动分析技术的应用使该仪器可连续测量水质变化;◆ 配套软件可对仪器进行远程控制,便于操作维护;支持双向联网和信息化管理;RS232、485、以太网、GPRS等多种通讯方式可满足不同客户的多种数据传输和集成需求;◆ 仪器在设计中充分考虑我国国情和各地水质特点,与配套的预处理联用可满足多数工况需求,如地表水、水源水、饮用水(自来水厂出厂水、管网输送水)等;◆ 设备、备件、耗材(含细菌冻干粉)完全实现国内供应,并提供全方位本地化服务。 技术指标: 技术指标型号TOX-2000受试生物发光细菌(费氏弧菌)(符合ISO标准)仪器体积0.60 m× 0.55 m× 1.00 m(长× 宽× 高)仪器重量60 Kg外接电源220(1± 10%)V,50(1± 1%)Hz通讯配有以太网、GPRS、RS232、RS485等多种通讯接口模拟输出4~20 mA运行环境环境温度:10&mdash 30℃水 温:0&mdash 40℃(不能结冰)最短响应时间﹤5min能响应的毒性物质﹥5000种灵敏度EC50(七水和硫酸锌)﹤6mg/L;EC50(氯化汞)﹤0.2mg/L;重复性RSD﹤5%维护周期30天数据存储频率最快可1秒组数据,也可根据用户需求自行设置毒性等级五个,分别为低毒、中毒、高毒、重毒、剧毒,等级可设
    留言咨询
  • 二手吹扫捕集食用油风味物质检测 吹扫捕集技术适合分析痕量化合物,对低挥发性化合物及极性化合物回收率高。被广泛应用于食品,饮料,烟酒的风味分析与成分研究,环境样品中VOC分析,日用消费品安全检测等,其中在食品饮料烟酒这块的应用占总应用的63%。在食品领域,有水果,蔬菜,食用油,海鲜,奶酪,大蒜,面包,蜂蜜蜂胶,大米,豆制品,松露等样品。饮料有咖啡 (包括咖啡豆,咖啡粉),茶(包括茶叶),果汁等样品。酒类有葡萄酒,威士忌,米酒,啤酒等。还有烟草及调味品如醋,酱油。二手吹扫捕集食用油风味物质检测推荐仪器。 吹扫捕集是用惰性气体如氮气等对密闭容器中样品表面进行吹扫,不断带出样品顶空中的挥发性化合物,并使用吸附剂加以捕集,通过解析吸附剂,将化合物进样到气相色谱中的一种样品前处理技术。 由于吹扫的顶空体积可以无限大,并且有吸附剂对分析物进行富集浓缩,所以吹扫捕集的检测下限较静态顶空更低,故更灵敏,适合痕量化合物。不断重新吹入样品表面的载气,可以不断地打断气相和液相中分析物的分配平衡,从而带出样品中挥发性较低以及极性的化合物,而不需要对样品过度加热,故可以更全面的分析样品,歧视小。对于含水量高的样品(如液体样品),可以通过使用不亲水的吸附剂来达到去水和甲醇等等有机溶剂的作用,保护气相色谱。 京科瑞达科技为您推荐二手吹扫捕集食用油风味物质检测适配的仪器型号如下: 泰克玛水土一体吹扫捕集装置 Velocity XPT 使用Velocity XPT,您可以将样品通量提高到。 这几乎是样品通量的两倍,可以提高VOC实验室的盈 利能力,而无需额外的GC系统。 加速吹扫和捕集技术可让您在所有模式下独立控制流速, 大大减少干吹扫和烘烤时间。 在烘烤模式后,Velocity XPT还可将冷却器冷却时间缩短25%。
    留言咨询

风味物质变化相关的方案

  • 基于气相离子迁移谱检测的轮南白杏气调包装果实采后风味物质变化
    采用气相色谱-离子迁移谱(Gas Chromatography-Ion Mobility Spectroscopy,GC-IMS)联用技术,分析CO2 积累型气调包装与PET 盒透气包装轮南白杏果实在冷藏(1± 1) ℃ 36 d 内的采后风味物质种类和含量的变化,以鉴定轮南白杏果实特征风味物质和构建指纹图谱,为鲜杏果实采后风味品质损耗与调控的机理研究提供基础。根据指纹图谱显示,从轮南白杏冷藏果实中共检出54种风味物质,包括酮类、醇类、醛类、萜烯类、酯类、酸类、烃类和杂环类,以酮类、醇类和醛类物质为主,2,3-戊二酮、(Z)-3-己烯醇、3-甲基丁醛和丙酸的含量较高。气调包装果实提高了青香、果香、草香、甘草、甜橙5 种香型14 种物质的含量;增加了甜香和松脂味的乙酸异戊酯和α -蒎烯合成,减少了2-己酮合成。2-己酮可作为普通包装冷藏果实的风味标记物质,丙酮、异丁酸、3-甲基-3-丁烯-1-醇可分别作为高透气、中透气、低透气包装果实的风味标记物质。以中透气材料(16.30%~16.60% O2+2.50%~3.00% CO2)的气调包装调控轮南白杏果实的采后风味品质效果最好。
  • 不同温度对货架期樱桃挥发性物质变化的影响
    以“沙蜜豆”樱桃为试材,利用德国AIRSENSE电子鼻检测系统和顶空固相微萃取-气相色谱质谱联用仪2种检测技术,对冷藏20d后不同货架温度(13、20℃)不同时间(1、4、6d)樱桃芳香性物质变化进行分析。
  • 气调贮藏对腐败菌引起的鲜切黄瓜品质、滋味和挥发性物质变化的影响
    ?本实验通过电子舌、电子鼻和GC-MS技术并结合生理品质指标,分析贮藏期间由变形假单胞菌引起的鲜切黄瓜滋味、香味物质和品质的变化,以及3%(体积分数,下同) O 2 +7% CO 2 气调贮藏对变形假单胞菌导致的鲜切黄瓜滋味、挥发性物质和品质的影响,旨在为了解鲜切黄瓜贮藏期间由微生物腐败引起的品质和风味变化提供依据,并为变形假单胞菌导致的鲜切果蔬腐败变质的快速检测提供参考。

风味物质变化相关的论坛

  • LED光照货架期间椪柑汁感官风味品质变化分析

    【序号】:1【作者】:【题名】:LED光照货架期间椪柑汁感官风味品质变化分析【DOI】:【年、卷、期、起止页码】:【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=SPFX20221011005&uniplatform=NZKPT&v=eigAfyk-6vSETLScrwYXlvEDu3606GIprES8zaB9lvbmjKZyptb_JyfYteLfGggG

风味物质变化相关的资料

风味物质变化相关的资讯

  • PTR-TOF动态分析鼻腔中白酒风味变化
    白酒被称为中国的国酒,一般由高粱和其他谷物经过固态发酵、蒸馏和陈化生产而来。白酒的香味多样,包括浓香、酱香、谷香、花香等,这些香型被总结为白酒风味轮(图1)。其中,浓香型(strong aroma-type)最受欢迎,具有独特的窖香和强烈的果香和菠萝香,窖香有类似烧烤和发酵过程的泥土气味,被视为高质量浓香型白酒的特点。据文献报道,白酒中有超过2000种风味物质,是蒸馏酒中香味物质最丰富的。此前的原位风味分析主要通过分析唾液成分来实现,而唾液成分并不能完全代表口腔环境。直接进样PTR-TOF质谱仪可以通过呼气模块直接取样口腔或鼻腔中气体,实时分析和监测口腔环境,更真实反映白酒在食用过程中影响观感的组分动态变化。实时进样也最大程度避免了传统采样和存储过程中可能出现的活性物种损失或者副反应。同时,相对于传统GC方法,PTR-TOF对含氧,含氮及含硫等风味物种有更好更广更敏感的覆盖能力。图1 白酒酿造过程和风味轮PTR-TOF实验方法鼻后嗅觉香气实验借鉴了前人实验,采用TOFWERK Vocus PTR-TOF检测呼吸气中的白酒味道和回味。8位品评员饮用4mL白酒后,戴上专用面罩来采集鼻腔中的呼吸气(120秒),空白呼吸气为饮酒前30秒,每个样品重复测量三次,每次测量期间,品评员至少休息1小时,并摄入足量饮用水。Vocus PTR-TOF总采样气流为2L/min,呼吸气样品气流约10mL/min,整个实验期间飞行时间质谱仪的分辨率约10,000。PTR-TOF鼻腔白酒香气的定性分析实验过程中,Vocus PTR-TOF共监测到超过500个离子(m/z 20-300),扣除空白呼吸气背景后,研究员用相对标准偏差(RSD)和Mann-Kendall趋势性检验评估了所有离子,保留RSD>50的离子从而确保白酒香气分子在整个实验中有足够的信号强度变化,并确保离子的M-K检验z<0且p<0.01,即离子在余味中呈显著性递减趋势。总共有69个离子被用作表征白酒香气的目标离子。基于GCxGC-MS的结果,82种香味物质对应的24个PTR-TOF离子峰为白酒主要的挥发性物质。PTR-TOF白酒主要香气物质聚类分析一般将饮酒过程分为“风味爆发阶段(burst-stage)”和“余味阶段(after-taste)”,两个阶段之间有离子峰的转折点。本研究使用了分层聚类分析(HCA)来评估白酒香气的主要挥发性香味物质,这些物质被分为7组,图2显示了它们的强度变化。图2 七组挥发性香味物质强度变化的HCA分析图组A:主要由小分子醇、醛、酚、呋喃和含硫化合物组成,它们极性强,log P值小(即亲水性强),能够在口腔内快速释放。它们的甜味和酒味在白酒的“风味爆发阶段”占主导,由于气味迅速消逝,几乎不参与白酒的余味。而在白酒陈化过程中,小分子间的共价键不断形成,组A物质会越来越少,白酒的“爆发”强度也会越来越低。组B:组B又进一步分为组B-1和B-2。组B-1中主要是C3-6的醇、酸、酯、含硫化合物和乙酸乙酯。其中,乙酸乙酯是白酒的主要风味物质;3-甲硫基丙醇嗅觉阈值很低,是芝麻香型白酒的重要风味。该组化合物在“爆发阶段”信号迅速升高,并在余味阶段迅速降低,它们主要贡献了白酒入口阶段的花香味和甜味。组B-2中主要是C6-8的醇、酯、酸和酮。该组的化合物释放晚于B-1组,但对余味的贡献很大。这主要是因为碳链长度主导了化合物的极性和log P值,从而导致了B-1组和B-2组不同的风味释放特性。组C:组C包括乳酸乙酯和硫代丁酸甲酯。在饮酒时,乳酸乙酯迅速在鼻腔中挥发,由于白酒中乳酸乙酯含量很高,它在余味阶段仍有很高强度,口腔黏膜对酯类也有一定滞留效果,延长了香气的释放。组D:组D为苯乙醛、对甲苯醛、3,3-二乙氧基-1-丙醇。其中,苯乙醛有甜味和可可香气,香气活性值(OAV)=4,即对白酒香气有较大贡献。在爆发阶段,这些物质呈波动性变化,而在余味阶段,它们和组B-2消逝速度类似。组E:组E主要是C8-10的酯、醇和酸。关键香气物质是己酸乙酯和庚酸乙酯,它们具有强烈的甜味、果香味和菠萝香味。在作者此前研究中,具有脂肪和蜡质香气的辛酸和1-壬醛也具有很高的OAV。这些物质在爆发阶段信号上升,并在余味阶段缓慢下降。由于它们的log P值较大,所以很难释放到口腔气中,而是保留在口腔黏膜表面的蛋白上。组F:这组主要是苯乙酸乙酯和2-乙酸苯乙酯,它们的log P值很高,因此很难释放到口腔中,主要在白酒余味中。苯乙酸乙酯(OAV=6)具有蜂蜜和玫瑰香气,是白酒余味的重要组分。组G:组G主要是C10的酯,由于它们疏水性较强,很少参与香气组成。白酒品酒过程中的挥发性香气物质释放与具体的物质种类、极性,尤其是,疏水性相关。白酒物质释放到鼻腔的过程是挥发性物质在乙醇-水溶液和周围空气中挥发的动态平衡。比如,白酒中酯的释放就与碳链长度有关,碳链越短,酯的亲水性越强,在爆发阶段信号上升和余味阶段信号下降得越快,而碳链越长,酯就越倾向于留在口腔中,形成余味。其他课题组有类似的发现。化合物浓度同样重要,高浓度的乳酸乙酯在整个品酒过程中都是香气的主要贡献者。PTR-TOF主要香气物质与感官评价关系课题组使用偏最小二乘回归(PLSR)研究香气物质与白酒的9种感官评价的关系。如图3中显示,数值越高表示香气物质对该感官评价的贡献度越大,负值表示该组物质能够屏蔽相应感官。分析结果显示,对酯类物质,E组(C8-10化合物)对白酒关键风味贡献最大,提供了果香、甜味和花香,B-2组(C6-8化合物)次之,B-1组(C3-6化合物)较少,G组的长链酯(C10)对感官评价贡献最小。图3 香气物质与感官评价关系乳酸乙酯是最重要的白酒香气物质,与曲香(Qu-aroma)和蒸馏谷物香气(Distilled grain aroma)关联性较强。D组的苯乙醛、对甲苯醛有草项、肉桂和椰子香,连同3,3-二乙氧基-1-丙醇,它们丰富了白酒的动态感官轮廓。A组小分子具有甜味、奶油味、酒香和焦糖香,与白酒的甜味有强烈关联。F组的苯乙酸乙酯与谷物香(Grain aroma)和甜味强烈关联。值得注意的是,白酒的动态风味轮廓与课题组之前研究的静态风味轮廓有明显区别,动态风味轮廓中引起感官评价变化的主要香气物质是1-丁醇、乳酸乙酯、苯乙醛、辛酸、己酸乙酯和庚酸乙酯。PTR-TOF对含氧风味物种的高灵敏度检测能力以及完整动态捕捉能力更有效地帮助区分白酒的“风味爆发阶段”和“余味阶段”的风味轮廓,以及不同物质对两个阶段的动态风味贡献。参考文献[1] doi.org/10.1016/j.lwt.2023.114430
  • 利用水质在线预警技术监测水质变化
    仪器信息网讯 2014年11月25-26日,由中国仪器仪表学会分析仪器分会、中国仪器仪表行业协会分析仪器分会联合主办的&ldquo 第七届中国在线分析仪器应用及发展国际论坛暨展览会(简称 CIOAE 2014)&rdquo 在国家会议中心召开。北京城市排水集团有限责任公司水质检测中心翟家骥在会上做题为&ldquo 利用水质在线预警技术监测水质变化&rdquo 的报告。 北京城市排水集团有限责任公司水质检测中心 翟家骥   环境污染对人民群众的生活带来很大的威胁,及时有效的发现污染物的泄漏或排放有着十分重要的意义。尤其,对于污水处理厂,及时有效的发现进水的异常状态,对于构筑物和活性污泥都能起到很好的保护作用,同时也能够更好的确保出水水质稳定,这其中水质在线监测预警技术将会起到非常重要的作用。   水质在线预警系统一般包括样品采集设备、水质在线监测仪器、数据采集设备、数据传输设备、通讯设备和终端接收设备等。其中,对采集的各种监测数据传输至环保系统,目前有多种传输方式,如:电话线方式、GPRS方式、GSM短消息方式、局域网方式、无线电台方式等。 水质在线监测预警系统示意图   在线预警常用指标有:化学需氧量(COD)、生化需氧量(BOD)、总有机碳(TOC)、氨氮(NH3-N)、总氮(TN)、总磷(TP)。   COD是水质监测分析中最常测定的项目,评价水体污染的重要指标之一   实验室测定COD的方法主要有:GB11914-89《水质 化学需氧量的测定 重铬酸钾法》,ISO 15705《水质&mdash &mdash 化学需氧量的测定(ST-COD)&mdash &mdash 小型密封试管法》,HJ/T399-2007《水质 化学需氧量的测定 快速消解分光光度法》。   GB11914-89是测定CODCr经典的方法,适用于各种天然水体、工业废水、生活污水和污水处理厂进出水的测定。测定的精密度和准确度都很好,可信度高,广泛用于各方面的检测和仲裁等。但存在水电等能耗高,氧化性、腐蚀性药品用量大,检测人员工作强度大,分析时间长等缺陷。   ISO 15705是国际化标准组织水质技术委员会颁布的一种测定水中CODCr的便捷的方法。与HJT 399-2007不同之处有两方面:一是消解温度为150℃,二是消解时间为120min。这一方法在国外的一些CODCr测定仪生产公司中被采用,如HACH公司。但这种方法测定较低浓度的CODCr时,结果往往偏高,更适合测定200mg/L以上的样品。   2007年,HJ/T399-2007颁布,这种方法在各方面的检测中得到了越来越广泛的应用。该方法的消解时间仅为15分钟,可谓非常快捷,很适合用于大批量样品的检测和应急监测中。但由于其采用的温度较高,对于污水处理厂二级处理出水和再生水的检测会因原污水的性质不同而受到影响。有些样品中会因为含有一定量的高沸点有机物,采用HJ/T399-2007法测定,结果会偏高。   在线监测COD的方法主要有:化学法(重铬酸盐法)、光谱法(UV254 双波长法)、相关系数法(通过TOC间接求出COD)、连续流动分析法(重铬酸钾法演化)、分光光度法(重铬酸钾法演化)等。   在线监测COD技术的干扰因素主要有:氯化物(加硫酸汞)、加药管路堵塞和污染(清理管路)、催化剂投加(加硫酸银)、本底校正(空白实验)等。 COD自动在线监测仪流程图   TOC在线监测技术比较 方法性能 燃烧氧化法 湿式氧化法 氧化能力 氧化能力强 氧化能力弱,难氧化颗粒物、烷基苯磺酸、腐植酸、咖啡因等。 检测限 常用情况为几毫克每升,特殊用途可达约10&mu g/L。 常用情况为几毫克每升,特殊用途可达约几微克每升。 前处理 不需前处理,直接由TC-IC求出TOC,无挥发性有机物损失 必须前处理,挥发性有机物有损失 可操作性 容易、快速、使用高温炉和催化剂 较复杂,使用氧化剂、UV灯   &ldquo 十二五&rdquo 期间&ldquo 氨氮&rdquo 成为硬性指标   氨氮在水中会以铵盐离子形态和游离态溶解氨存在,铵盐离子一般认为没有毒性,游离态溶解氨毒性大小与氢离子浓度有关   氨氮的实验室测定方法:HJ 535-2009《水质 氨氮的测定 纳氏试剂分光光度法》,HJ 535-2009是以游离态的氨或铵离子等形式存在的氨氮与纳氏试剂反应生成淡红棕色络合物,该络合物的吸光度与氨氮含量成正比,于波长420nm处测量吸光度。   HJ 536-2009《水质 氨氮的测定 水杨酸分光光度法》,HJ 536-2009在碱性介质(pH=11.7)和亚硝基铁氰化钠存在下,水中氨、铵离子与水杨酸盐和次氯酸离子反应生成蓝色氯化物,在697nm处用分光光度计测量吸光度。   在线监测主要方法是氨气敏电极法。氨气敏电极法氨氮在线监测仪的测量原理是将水样中的NH4+转为气态的NH3(NH4++OH-D NH3+H2O),氨气通过渗透膜进入到电极内,使得电极内部的平衡反应NH4+D NH3+H+发生变化,引起电极内部[H+]变化,由pH玻璃电极测得其变化,并产生与样品中铵离子浓度有关的输出电压,得出相应的氨氮浓度。   在线监测正在从单一参数的检测向对水体安全进行全面评估的生物毒性预警发展   目前对水质的考核指标多为对某几类污染物的限值要求,但是,即使考核的污染物含量都达到要求,对水质的实际安全性依然存疑。目前尤为关注的包括水中残留的难降解有机物,以及消毒副产物等存在较大生物毒性的物质,这些物质无法简单用COD、BOD或TOC来表征,存在于水体中对环境和生态都有一定的威胁。所以,对生物毒性进行综合的评价,能够有效的对水体的安全进行全面的评估。   生物毒性实验室测定方法主要有SOS/umu生物检测生物遗传毒性、发光细菌急性毒性(发光菌)、大型蚤暴露生物急性毒性(大型蚤)、斑马鱼活体暴露风险评价慢性毒性(斑马鱼)、胚胎暴露生物早期发育影响(斑马鱼卵)等。   而在线监测生物毒性方法主要有发光菌监测系统、双壳软体动物监测系统、鱼类监测系统、水溞监测系统等。   其中,发光细菌法是利用灵敏的光电测量系统测定毒物对发光细菌发光强度的影响,判断毒物毒性的大小。发光细菌含有荧光素、荧光酶、ATP等发光要素,在有氧条件下通过细胞内生化反应会产生微弱荧光。当细胞活性升高,处于积极分裂状态时,其ATP含量高,发光强度增强。发光细菌在毒物作用下,细胞活性下降,ATP含量水平下降,导致发光细菌发光强度降低。基于鱼类毒性的在线测定技术,鱼活对水环境的变化十分敏感,当水体中有毒物质达到一定浓度时,就会引起一系列中毒反应。
  • 特色应用(二) | SPME-GC-MS/MS研究不同储藏年份玉米风味物质差异
    风味物质是粮食作物食用品质和营养价值的重要衡量指标。小麦、玉米等谷类作物在储藏过程中的品质劣变与其风味物质含量密切相关。岛津中国创新中心与国家粮食和物资储备局科学研究院杨永坛研究员团队合作,基于固相微萃取-气相色谱-三重四极杆质谱联用技术(SPME-GC-MS/MS)对玉米中挥发性风味物质的种类和含量进行分析,多元统计分析结果显示,玉米的挥发性风味物质与储藏年限存在一定的相关性。由此可构建玉米储藏年份的分类模型,为玉米储藏品质的动态监测提供技术手段。研究成果以“SPME-GC-MS/MS结合多元统计分析不同储藏年份玉米风味物质差异”为题,已发表在《粮油食品科技》期刊。背景介绍粮食在贮藏期间会受到温度、湿度、微生物等环境因素影响,其食用品质和营养价值也会随着储藏时间延长而发生改变。玉米是我国主要粮食作物之一,也是我国储备粮的重要组成。由于玉米原始水分含量相对较高,同时内部富含脂肪,其相较于其他粮食品种储藏稳定性较差,易发生品质劣变,进而影响其种用、食用和加工品质。因此在玉米收购入仓和轮换出库前对其储藏品质进行评估十分必要,引起了研究人员的广泛关注。挥发性风味物质是影响玉米食用和加工的主要因素之一,风味物质的类型、含量以及它们之间的相互作用共同决定着玉米的风味。玉米储藏过程中风味物质含量变化间接反映其品质改变,因此越来越多的研究人员通过测定玉米中典型挥发性风味物质对其进行品质鉴别。已有多项研究发现玉米挥发性风味物质的种类和含量受不同储藏条件的影响,但尚未阐明不同储藏时间玉米的特征差异物质。固相微萃取技术能对含量较低的挥发性物质进行富集,在挥发性物质检测中具有方便、灵敏、高效的优点,在食品风味物质检测领域应用广泛。本研究以吉林地区2019—2022年收获玉米为研究对象,采用固相微萃取-气相色谱-三重四极杆质谱联用技术(SPME-GC-MS/MS)对玉米储藏过程中的风味物质进行检测,并结合主成分分析(PCA)和偏最小二乘法判别分析(PLS-DA)进行数据分析,阐明不同储藏年份玉米的特征差异物,建立玉米储藏年份判别模型。以期为玉米储藏品质的动态监测提供技术手段,更好地指导储备玉米科学储存与适时更新轮换。研究内容本研究采用固相微萃取-气相色谱三重四极杆质谱(GCMS-TQ系列),搭配专属型风味物质多反应监测(MRM)数据库,对玉米样品中的挥发性风味物质进行分析。图1为某采收自2019年的玉米样品的总离子流图,共检出挥发性风味物质共129种,包括醛类、醇类、酯类、酮类、苯系物、杂环类、酸类、醚类、烃类和酚类化合物共10类。检出化合物中醛类物质种类最为丰富,共检出26种,其次为醇类物质和酯类物质,分别检出23种和17种。对不同储藏年份玉米中各类风味物质的相对含量进行分析,结果显示酸类物质在玉米中相对含量最高,是玉米中的主要挥发性风味物质。并发现不同储藏年份玉米中风味物质相对含量发生了变化,需进一步探究二者之间的相关性。图1. 2019年玉米样品总离子流色谱图为明确风味物质含量与玉米储藏年份之间的关系,对不同储藏年份玉米中的挥发性风味物质进行PCA分析。从图2(A)可以看出,不同储藏年份玉米呈一定的聚类趋势。其中2019年和2022年储藏玉米区分度较为显著,表明该模型对储藏年份相差较大的样品区分能力较强。对不同储藏年份的样品组进行皮尔逊相关分析,结果如图2(B)所示,表明每个年份的样品组与其相应年份的样品组之间有很强的正相关性。图2. 2019—2022年玉米风味物质的统计分析结果: (A) 主成分分析得分图 (B) 皮尔逊相关分析为进一步直观体现不同储藏年份玉米的风味物质特征,对检测数据进行了PLS-DA分析。如图3(A)所示,4个储藏年份的样品分别聚为一类,表明不同年份间玉米的挥发性化合物差异显著。利用5倍交叉验证对PLS-DA模型的预测精确度和拟合度进行验证,结果如图3(B)所示,使用3个组分时,模型的R2=0.98,Q2=0.96,预测精确度为1.0,表明模型具有较好的预测能力。按照变量投影重要性(VIP)值大于1的标准,共筛选出47种关键差异化合物。图3 2019—2022年玉米风味物质的偏最小二乘判别分析结果: (A) 三维PLS-DA得分图 (B) 不同组分数下PLS-DA分类性能 (C) VIP值图进一步比较不同年份间玉米中挥发性风味物质的差异,可以看出有6种挥发性化合物出现规律性变化。其中,1-辛烯-3-醇、丁酸橙花酯和2-正戊基呋喃3种化合物含量随储藏时间的延长而减少(如图4(A)~(C));此外,DL-泛酰内酯、辛酸甲酯和2-乙酰基呋喃化合物的含量随储藏时间的延长而增加(如图4(D)~(F))。图4. 不同储藏年份玉米特征风味物质箱线图结论基于岛津固相微萃取-气相色谱三重四极杆质谱仪建立玉米中挥发性风味物质的分析方法,对2019至2022年收获东北地区玉米样品中挥发性风味物质进行检测,采用PCA和PLS-DA方法对不同储藏年份玉米的风味物质数据进行分析,筛选出在不同年份的玉米间具有显著性差异的化合物,根据检出的差异化合物在不同储藏年份玉米中的含量分布构建分类模型,将为不同年份玉米的储藏品质动态监测提供参考,以更好指导储备玉米的科学储存与适时更新轮换,对保障国家粮食安全和节粮减损具有重要意义。岛津多功能自动进样器-气相色谱三重四极杆质谱仪参考文献:[1] WANG S, CHEN H, SUN B. Recent progress in food flavor analysis using gas chromatography–ion mobility spectrometry (GC–IMS) [J]. Food Chemistry, 2020, 15(315): 126158.[2] 徐瑞, 李洪军, 贺稚非. 玉米冻藏过程中挥发性成分变化及主成分分析[J]. 食品与发酵工业, 2019, 45(1): 210-218. XUN R, LI H J, HE Z F. Changes and principal component analysis of volatile compounds in corn ears during frozen storage[J]. Food and Fermentation Industries, 2019, 45(1): 210-218.[3] 李云峰, 范競升, 陈冰琳,等. 3个甜玉米品种在不同储藏条件下可溶性固形物含量及挥发性风味成分变化[J]. 华南农业大学学报, 2021, 42(03): 33-44. LI Y F, FAN J S, CHEN B L, et al. Changes of soluble solid contents and volatile flavor components of three sweet corn cultivars under different storage conditions[J]. Journal of South China Agricultural University, 2021, 42(03): 33-44.[4] 郭瑞, 李盼盼, 张晓莉, 等. SPME-GC-MS/MS 结合多元统计分析研究不同储藏年份玉米风味物质差异[J]. 粮油食品科技, 2024, 32(3): 179-186. GUO R, LI P P, ZHANG X L, et al. Diversity analysis of volatile flavor compounds of corn with various storage years based on SPME-GCMS/MS and multivariate statistical analysis[J]. Science and Technology of Cereals, Oils and Foods, 2024, 32(3): 179-186.本文内容非商业广告,仅供专业人士参考。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制