二次电子

仪器信息网二次电子专题为您整合二次电子相关的最新文章,在二次电子专题,您不仅可以免费浏览二次电子的资讯, 同时您还可以浏览二次电子的相关资料、解决方案,参与社区二次电子话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

二次电子相关的耗材

  • 电子显微镜二次电子探头ETD闪烁体10KV高压板
    PM Combined DSGS/HTETD闪烁体10KV高压板,用于原厂电子显微镜,为二次电子探头的闪烁体提供高压。大束科技是一家以自主技术驱动的电子显微镜系列核心配件研发制造的供应商和技术服务商。目前公司主要生产电子显微镜的核心配件离子源、电子源以及配套耗材抑制极、拔出极、光阑等销往国内外市场,此外,还为用户提供定制化电子显微镜以及电子枪系统等的维修服务,以及其他技术服务和产品升级等一站式、全方位的支持。在场发射电子源(电子显微镜灯丝)、离子源以及电镜上的高低压电源、电镜控制系统研发制造等领域等均具有优势。
  • 电子显微镜钨灯丝电子源10颗
    钨灯丝9210016适用于所有原厂的钨灯丝扫描电镜,使用寿命大于50小时。钨灯丝扫描电镜是一种用于物理学领域的分析仪器,扫描电镜分辨率:高真空二次电子像3.0nm(30KV) 扫描电镜放大倍数:5×~1000000×,连续可调 能谱仪分辨率:MnKα峰的半高宽优于127eV; 能谱仪元素测试范围:Be4— Pu94。大束科技是一家以自主技术驱动的电子显微镜系列核心配件研发制造的供应商和技术服务商。目前公司主要生产电子显微镜的核心配件离子源、电子源以及配套耗材抑制极、拔出极、光阑等销往国内外市场,此外,还为用户提供定制化电子显微镜以及电子枪系统等的维修服务,以及其他技术服务和产品升级等一站式、全方位的支持。在场发射电子源(电子显微镜灯丝)、离子源以及电镜上的高低压电源、电镜控制系统研发制造等领域等均具有优势。
  • 电子显微镜ETD放大器高压板
    Det. MULTIP. TUBE,DPMTETD放大器高压板,用于原厂电子显微镜,为二次电子探头的放大器提供高压大束科技是一家以自主技术驱动的电子显微镜系列核心配件研发制造的供应商和技术服务商。目前公司主要生产电子显微镜的核心配件离子源、电子源以及配套耗材抑制极、拔出极、光阑等销往国内外市场,此外,还为用户提供定制化电子显微镜以及电子枪系统等的维修服务,以及其他技术服务和产品升级等一站式、全方位的支持。在场发射电子源(电子显微镜灯丝)、离子源以及电镜上的高低压电源、电镜控制系统研发制造等领域等均具有优势。

二次电子相关的仪器

  • ■技术参数 - 放大倍率:30x ~ 30,000x- 加速电压:10 ~ 30kV (10/15/20/30kV )■规格 - 样品移动距离: X: 20mm, Y: 20mm,Rotation : 360° - 最大样品尺寸: 直径75mm-最大样品厚度: 15mm■系统结构 - 电子枪: 预对准钨灯丝 - 检测系统: 二次电子探测器- 真空泵:旋转式分子泵■设备主要构成 - 笔记本电脑1台- 电子扫描显微镜主体一台- 灯丝5个- 载物台15mmdia (10pcs/set)25mmdia (5pcs/set)15mm45° tilt(5pcs/set)15mm90° tilt(5pcs/set)
    留言咨询
  • ■ 技术参数 - 放大倍率 : 30x ~ 100,000x 分辨率5nm- 加速电压 : 5 ~ 30kV (5/10/15/20/30kV - 5 step)■ 规格 - 样品移动距离: X: 20 mm, Y: 20 mm,Rotation : 360° Tilt : 0~45° , Z : 0~30 mm - 最大样品尺寸 : 直径80mm- 最大样品厚度 : 35mm■ 系统结构 - 电子枪: 预对准钨灯丝 - 检测系统 : 二次电子探测器- 真空泵:旋转式真空泵100L/min涡轮分子泵80L/S■ 设备主要构成 - 笔记本电脑 1台- 电子扫描显微镜主体一台- 灯丝5个- 载物台 15mm dia (10pcs/set)25mm dia (5pcs/set)15mm 45° tilt(5pcs/set)15mm 90° tilt(5pcs/set)
    留言咨询
  • ■技术参数 - 放大倍率:100x ~ 60,000x- 加速电压:5 ~ 30kV (5/10/15/20/30kV - 5 step)■图像二次电子图像(SEI)背散射电子图像(BSEI)■规格 - 样品移动距离: X: 20mm, Y: 20mm,Rotation : 360° - 最大样品尺寸: 直径50mm-最大样品厚度: 20mm■系统结构 - 电子枪: 预对准钨灯丝 - 检测系统: 二次电子探测器- 真空泵:旋转式真空泵100L/min涡轮分子泵80L/S■设备主要构成 - 笔记本电脑1台- 电子扫描显微镜主体一台- 灯丝5个- 载物台15mmdia (10pcs/set)25mmdia (5pcs/set)15mm45° tilt(5pcs/set)15mm90° tilt(5pcs/set)
    留言咨询

二次电子相关的方案

二次电子相关的论坛

  • 有关二次电子像的问题

    我有两个问题想麻烦各位解答一下,1,为什么二次电子显微图像具有很好的立体感?2,为什么气孔边缘的二次电子产额比较大?谢谢大家!!

  • 二次电子检测器

    Leo 1530VP场发射扫描电镜,2001年安装投入使用,现二次电子检测器SE1不能使用了,据说是闪烁体时间长了,现在只能使用In Lens检测器,有时候感觉会不大方便,大家有碰到这种问题吗?能否修复二次电子检测器呀。

  • 关于SEM二次电子的问题

    各位大大,新人求教:1、SEM中形成图像的话电子枪是一次击打完毕还是多次击打?比如我要调整分倍率或者移动的时候电子枪还需不需要再发射电子一次呢?2、二次电子是否是有限的?是不是SEM照片只能拍有限次呢?3、拍SEM的话不导电物质可以拍么?不导电物质也应该存在二次电子吧、谢谢!

二次电子相关的资料

二次电子相关的资讯

  • 细谈二次电子和背散射电子(一)
    二次电子(SE)和背散射电子(BSE)是扫描电镜(SEM)中最基本、最常用的两种信号,对于很多扫描电镜使用者而言,二次电子可以用来表征形貌,背散射电子可以进行原子序数表征已经是基本的常识。然而,二次电子、背散射电子与衬度的关系并非如此简单。今天,我们就来深入的了解一下SE、BSE的细分类型,各自的特点,以及它们和衬度之间的关系。二次电子 二次电子是入射电子与试样中弱束缚价电子产生非弹性散射而发射的电子,一般能量小于50eV,产生深度在试样表面10nm以内。二次电子的产额在很大程度上取决于试样的表面形貌,因此这也是为什么在很多情况下大家把SE图像等同于形貌像。然而,这种说法并不严谨。二次电子(SE)和其它衬度的关系 二次电子的产额其实和成分也有很大的关系,尤其是在低原子序数(Z图2 碳银混合材料的SE、BSE图像以及碳、银电子产额 所以,如果对于低原子序数试样,或者原子序数差异非常大时,若要反映成分衬度,并不一定非要用BSE像,SE像有时也可获得上佳的效果。 除了成分衬度外,SE还具有较好的电位衬度,在正电位区域SE因为收到吸引而使得产额降低,图像偏暗,反之负电位区域SE像就会偏亮。而BSE因为本身能量高,所以产额受电位影响小,因此BSE像的电位衬度要比SE小的多。图3 另外,如果遇上试样的导电性不好,出现荷电效应或者是局部荷电,这也可以看成是一种电位衬度。这也是当出现荷电现象的情况下,相对SE图像受到的影响大,BSE图像受影响则比较小。这也是为什么在发生荷电现象的情况下,有时可以用BSE像代替SE像来进行观察。 至于通道衬度,一般来说因为需要将样品进行抛光,表面非常平整,这类样品基本上没有太多的形貌衬度。SE虽然也能看出不同的取向,但是相比BSE来说则要弱很多,所以一般我们都是用BSE图像来进行通道衬度的观察。图4 SE和衬度的关系,总结来说就是SE的产额以形貌为主,成分为辅,容易受到电位的影响,取向带来的差异远不及BSE。在考虑具体使用哪种信号观察样品的时候,可以参考表1,SE和BSE特点刚好互补,并没有孰优孰劣之分,需要根据实际关注点来选择正确的信号进行成像。 表1SEBSE能量低高空间分辨率高低表面灵敏度高低形貌衬度为主兼有成分衬度稍有为主阴影衬度弱强电位衬度强弱抗荷电弱强 二次电子的分类 刚才简单介绍了SE和衬度的一些基本关系,接下来我们细谈一下SE的分类。因为不同类型的二次电子在衬度、作用深度上的表现完全不同,使得不同SE探测器采集的SE像会有非常大的差异。因此,为了能在电镜拍摄中获得最佳的效果,我们有必要对SE的类别进行详细的了解。 如果按照国家标准来进行分类的话,SE主要分为四类,分别是:SE1:由入射电子在试样中激发的二次电子;SE2:由试样中背散射电子激发的二次电子;SE3:由试样的背散射电子在远离电子束入射点产生的二次电子;SE4:由入射束的电子在电子光学镜筒内激发的二次电子。 国标这样定义完全正确,然而这样的分类对于在实际电镜操作中并没有太多指导意义。为什么呢?因为不管是什么类别的SE都是属于低能电子,探测器在采集的时候往往也不能对其加以区分。那么,我们现在可以换个思路来理解一下这几种二次电子。由于SE4对成像不起作用,我们在此不进行讨论。A. SE1: 由原始电子束激发,因此其作用深度最浅,对表面最为敏感,我们知道SE本身也有成分衬度,所以SE1也非常能体现出极表层的成分差异。 其次,正因为SE1信号来自于样品的极表面,作用体积小,所以其出射角度应该相对比较高。因此,SE1的分辨率应该是所有类型中最好的。 再者,正是因为SE1的出射高度都是高角,所以其产额不易受到试样表面凹凸不平的影响,因而其分辨率虽好,但是立体感则相对比较弱。B. SE2和SE3: 由BSE激发产生的SE。因为BSE本身作用区域较大,所以在回到试样表面再次产生的SE的作用范围要比SE1大的多,正因如此, SE2和SE3的分辨率也弱于SE1。 其次,SE2和SE3是被位于试样深处的BSE激发,它们的产额在很大程度上取决于试样深处的BSE,而且它们作用区域较深,也更能体现出试样深处的成分信息。 再者,SE2和SE3由不同方向的BSE产生,因此其出射角度相对也较为广泛,从高角到低角均有分布。C. 另外,我们需要再考虑到荷电因素,荷电本身的负电位会将产生的SE尽量推向高出射角方向出射,所以受到荷电影响的电子也一般分布于较高的出射角。 SE1分布在高角、SE2和SE3分布在各个角度,荷电SE分布在高角。这样一来,我们把SE1、SE2、SE3原来按产生的类型分类转化为更加实用的按照出射角度进行分类。即:高角电子以“SE1+荷电SE”为主,低角电子以“SE2+SE3”为主。不同出射角度的SE有着截然不同的特点,我们分别来看一下。A. 轴向SE: 轴向SE是以接近90° 出射的二次电子,其中以SE1所占比例最高。由于作用体积最小,分辨率相应也是最高,且具有最高的表面敏感度,因此可以分辨极表面的成分差异,但是同时对一些并不希望看见的表面沉积污染或者氧化等,也会一览无遗。同时,因为轴向SE中所含的荷电SE也相应最多,所以,一方面对电位衬度最为敏感,另一方面受到荷电的影响也最为严重。B. 高角SE 高角SE是以较高角度出射的二次电子,也是以SE1为主,不过相对轴向SE中所含SE1而言数量稍低。高角SE的分辨率、表面灵敏度、电位衬度相对轴向SE而言也有所降低,不过由于荷电SE占比减少,所以和轴向SE相比,高角SE受到的荷电现象影响较小。高角SE和轴向SE都是向上出射,所以图像的立体感都比较差。C. 低角SE 低角SE是以较低角度出射的二次电子,其中SE2、SE3占有较高比例。所以低角SE反映的是试样较为深层的信息,表面灵敏度低,作用体积大,分辨率也不及高角SE和轴向SE。不过低角SE的图像立体感很好,抗荷电能力也比前两者强。 不同类型二次电子的特点 这样,我们就将原来只能从定义的角度进行区分的SE1、SE2、SE3,转变成出射角度不同的轴向SE、高角SE和低角SE。而按照角度进行分类之后,在实际探测信号时是完全可以对其进行区分的,我们会在之后的篇幅中对其进行详细的介绍。这样,我们现在可以总结一下几种类型SE的特点,如表2。表2轴向高角低角出射角度接近90°大角度小角度凹坑处的观察有信号有信号信号弱分辨率最好很好一般表面灵敏度最好很好较弱立体感差差很好成分衬度极表面成分表面成分较为深处电位衬度强强弱抗荷电能力弱较弱强 很多人都用过场发射扫描电镜,对样品室内SE探测器得到的低角SE2信号,与镜筒内SE探测器得到的高位SE1信号的图像对比会深有感触,很明显两者的立体感相差很大,见图5。图5 低角SE图像(左)和高角SE图像(右) 但是对镜筒内的SE信号再次拆解为高角SE和轴向SE可能会觉得很陌生,虽然前面我们已经对二者进行了介绍,但是毕竟不够直观。我们不妨看看图6,两张图都是使用镜筒内探测器获得,分辨率和立体感都很类似,总体效果非常接近,但是轴向SE(左图)受到小窗口聚焦碳沉积的影响,而同时获得的高角SE(右图)的碳沉积影响则轻微很多。 图6 轴向SE图像(左)和高角SE图像(右) 图7的样品为硅片上的二维材料,左图为高角SE图像,右图为轴向SE图像,轴向SE的灵敏度明显高于高角SE。图7 硅片上的二维材料,高角SE图像(左)和轴向SE图像(右)图8的样品为绝缘基底上的二维材料,左图为高角SE图像,右图为轴向SE图像,可以看到轴向SE受到荷电的影响也要高于高角SE。图8 绝缘基底上的二维材料,高角SE图像(左)和轴向SE图像(右) 总结一下,我们将二次电子拆解成轴向、高角和低角三个不同的类型,它们没有优劣之分,均有自己的特点,有优点也有缺点。我们只有在实际操作时发挥出每种信号的优势,才能获得最适合的图像。 好了,关于SE的分类相对比较简单,相信您已经完全理解,我们将在下一篇中详细说一下BSE。 为了更好的理解这篇的内容,让我们通过几张SE图像来实际感受一下不同类型SE之间的差异吧! 您能分得清以下图片分别是哪一类型的SE信号,并且在什么衬度特点上产生的差异吗?我们将会在下一期文章中公布答案哦!0102030405
  • 细谈二次电子和背散射电子(二)
    上一章(电镜学堂 |细谈二次电子和背散射电子(一))中我们详细的介绍了不同类型的二次电子的特点以及它们与衬度的关系,今天让我们来认识一下扫描电镜中另一个极其重要的信号----背散射电子(BSE)。背散射电子 背散射电子是入射电子在试样中受到原子核的卢瑟福散射而形成的大角度散射后,重新逸出试样表面的高能电子。由于背散射电子的能量相对较高,其在试样中的作用深度也远深于二次电子,通常而言是在0.1-1μm左右。在很多情况下,大家把BSE像简单的认为是试样的成分衬度,但是这种说法并不完全正确。背散射电子(BSE)和衬度之间有些什么关系?A. BSE的成分衬度 背散射电子的产额和成分之间的确存在非常紧密的关系,在整个原子序数范围内,BSE的产额都是随原子序数的增大而提高,而且差异性高于SE(见图1)。所以,这也是大家都用BSE图像来进行成分观察的最主要原因。图1 铜包铝导线截面的SE、BSE像和铝、铜电子产额 不过,这并不意味着BSE的产额仅仅就取决于原子序数,它和试样的表面形貌、晶体取向等都有很大的关系,甚至在部分情况下,BSE在形貌立体感的表现上还要更优于二次电子。B. BSE的形貌衬度 试样表面形貌的起伏同样会影响BSE的产额,只不过BSE产生的深度相对SE更深,所以对表面的细节表现程度不如二次电子。不过,如果对表面形貌不是特别关注的情况下,可以尝试使用BSE图像来进行形貌表征。特别是在存在荷电现象的时候,由于BSE不易受到荷电的干扰,较SE像会有更好的效果(见图2)。在前一章的SE章节中,我们已经介绍过这部分内容,这里不再赘述。图2(左图)5kV, SE图像 (右图)15kV,BSE图像C. BSE的阴影衬度 在进行形貌观察的时候,有时候需要的是图像的立体感。立体感主要来源于在一个凹坑或者凸起处,对其阴阳面的进行判断。在这方面,大角度的SE和BSE因为对称性的关系,在阴阳面的产额及实际探测到的信号量完全一样,所以体现立体感的能力相对较弱。低角SE2信号反而可以较好的体现图像的立体感,处于样品室侧方的ETD探测器在采集低角SE信号时,朝向探测器的阳面信号不受阻碍,背向探测器的阴面的上部分的SE可以绕行后被探测器接收,而下部分则由于无法绕行从而产额降低,此时阴阳面原本产额相同的低角SE信号,在实际采集的过程中发生了接收数量的不一致,从而在图像上表现出阴阳面的亮度不同,我们把这种现象称之为阴影效应。图3 ETD的阴影效应当凸起区域比较高时,阴影效应会显得比较明显,而随着凸起区域高度的逐步降低,当处于阴面的低角SE能够完全绕行时,此时阴影效应就会变得非常微弱。而基于BSE不能绕行的特点,在这种情况下则可以增强阴影效应。BSE产生后基本沿着出射方向传播,不易受到其它探测器的影响。阴阳面的实际BSE产额是相同的,但是如果探测器不采集所有方向的BSE,而是只采集一侧的BSE,阴阳面收集到信号的差异就会变得非常大,而且由于BSE不能像SE那样会产生绕行,所以这种差异要远高于SE。换句话说,利用非对称的BSE得到的阴影效应要强于ETD的低角SE。图4 不同方向接收到的BSE强度及叠加算法除了形貌衬度之外,我们已经在上一章节已经介绍过。对于电位衬度,SE要强于BSE;对于通道衬度,BSE则要优于SE。我们现在再回到SE和BSE的关系上,简单总结一下,BSE以成分为主,兼有一定的形貌衬度,电位衬度较弱,不过通道衬度较强,抗荷电以及阴影衬度也都强于SE,详见表1。表1BSESE能量高低空间分辨率低高表面灵敏度低高形貌衬度兼有为主成分衬度强弱阴影衬度非对称很强低角有电位衬度弱强抗荷电强弱图5 断口材料的SE和BSE图像及衬度对比背散射电子如何分类?在明确了BSE和衬度之间的关系以及与SE的对比之后,接下来介绍一下BSE的分类。不同类型的背散射电子在衬度、作用深度上的表现完全不同,为了能在以后电镜观察中获得最适合的条件,我们也要对BSE细致的分类,并对其各自的特点进行详细的了解。 BSE有弹性散射和非弹性散射之分,弹性散射的BSE能量接近入射电子的能量,非弹性散射的BSE能量要稍低一些,从200eV到接近入射电子能量均有分布。从发射角度来说,从很低的角度到很高的角度也都有分布。无论是能量分布上,还是空间分布上,BSE都表现出不同的特点,在此进行逐一说明。A. 高角BSE: 高角BSE是以接近90° 出射的背散射电子。此类BSE属于卢瑟福散射中直接被反射的情况,经过样品原子散射碰撞的次数也少,且和原子序数衬度也存在最密切的关系。高角BSE相对所包含的原子序数衬度最高,相对作用深度也较小,且和形貌关系较小。因此,高角BSE可以体现最纯的成分衬度。另外,当试样表面有不同取向时,不同取向的原子密度不同,也会影响直接弹性散射的概率。所以,高角BSE也能够很好的体现通道衬度。 因而,在多相的情况下,高角BSE可以表现出最强烈的没有其它衬度干扰的成分衬度;在试样抛光平整的情况下,高角BSE也可表现出对表面很敏感的通道衬度。 不过由于高角BSE的出射角的角度要求很高,因此其立体角很小,所以在所有BSE中相对来说占比也较少,信号相对偏弱。B. 中角BSE: 中角BSE是指那些能进入到镜筒内但达不到高角角度的BSE,角度一般不低于60°。中角BSE由于出射角度降低,因此在其中混有的非弹性散射BSE相对高角BSE而言有所提高,在试样表面的作用深度有所增加,其产额随形貌不同开始受到较大的影响。 中角BSE已经开始兼具成分和形貌衬度,不过由于出射角度依然比较大,作用深度也并不深,分辨率也没有受到太大的影响,依然可以维持在较高水平。而且,由于BSE的抗荷电能力要明显强于高角SE和轴向SE,因此,中角BSE可以作为它们的一个很好的补充。不过中角BSE和高角SE、轴向SE存在一个共同的问题,就是立体感同样不如低角信号。C. 低角BSE 低角BSE是以较低角度出射的背散射电子,通常在20°~60°之间。低角BSE的出射角度进一步降低,因此非弹性散射的电子所占比例也进一步提高,作用深度有了较为明显的加深。相应的,低角BSE的成分衬度较之前二者有了一定的弱化,而对形貌衬度的体现则会进一步的加强。 因此,低角BSE是属于兼具成分和形貌衬度,但是相对能够体现的表面细节不多,且图像分辨率有所降低。不过其抗荷电能力却有了进一步的提高,因此在荷电效应很强时,也可以作为形貌像的重要补充。 以上是按照BSE的出射角度来进行分类,我们把这三种BSE先简单的总结一下,如表2。表2低角中角高角形貌衬度降低成分衬度提高表面灵敏度提高立体感降低抗荷电降低分辨率提高信号强度降低图6 不同角度BSE的衬度对比 前面我们都是按出射角度来进行区分BSE,接下来,我们再看两种比较特别的类型。D. Topo-BSE Topo-BSE是指非对称的低角BSE,具有较为强烈的阴影衬度。由于低角BSE在所有角度BSE中对形貌最为敏感,再根据前面提到的BSE的阴影衬度,将两者结合起来,便可产生强烈的阴影衬度。 例如,对于试样上的一个凸起来说,各个方向产生的BSE信号是对称的,但是低角BSE产额和其形貌有关。如果只采集特定方向的低角BSE,那么朝向这个特定方向的信号量接收就要偏多,而背向这个方向的信号就明显偏少,反映在图像上就会出现明显的阴阳面,从而提高了图像的立体感。(右图)立体感稍弱,且有一定的荷电 试样本身并不会产生这种不对称性,这种不对称性主要是人为故意造成,常用的方法有双晶体或五分割等不对称的BSE探测器的算法、对称BSE探测器的Topo模式采集、试样台的倾斜、以及其它的一些特殊技术。这部分内容将在以后的章节中再为大家详细介绍。 图12 二维材料,Low-Loss BSETopoBSELow-LossBSE形貌衬度弱中强
  • 细谈二次电子和背散射电子(三)
    前两个章节我们详细分析了二次电子SE和背散射电子BSE,并对这两者进行了更细致的分类,对它们产生的原因和衬度及其它特点也做了详细的说明。相信读者对这些不同的信号已经有了全新的认识。这一章节我们就要把这些不同类别的电子信号再进行一个回顾和总结。我们将常规定义的SE信号分成了低角SE、高角SE和轴向SE三个类别;又将BSE信号划分为低角BSE、中角BSE、高角BSE、Topo-BSE和Low-Loss BSE等五个类别。在这里我们再介绍一种信号,就是样品台减速模式下的电子信号。前两个章节请参看:细谈二次电子和背散射电子(一)细谈二次电子和背散射电子(二)减速模式下的信号现在很多扫描电镜都追求低电压下的分辨率,而样品台减速技术则是一个行之有效的手段。电子束依然保持高电压,在试样台上加载一个负电位,电子在出极靴后受到负电位的作用而不断减速,最终以低能状态着落在样品表面。这样既保持了高电压的分辨率,又因为低着落电压而有很高的表面灵敏度。图1 样品台的负电位对原始电子束起减速作用样品台减速技术各个厂家叫法不一样,有的叫电子束减速技术,有的称为柔光技术。这里我们统一称为BDM (Beam Decelerate Mode)技术。在BDM技术下,产生的电子信号和正常模式会变得有所不同。图2 样品台的负电位对产生的 SE 和 BSE 起加速作用样品台的负电位对于原始电子来说起减速作用,但是对于产生的 SE 和 BSE 来说,却是起到加速作用。SE 和 BSE 受到电场加速后,都会变成高能量电子,而且出射角度都有增大的趋势。二次电子因为能量小,所以受到电场的作用较大,各个方向的 SE 都会被电场推到相对较高的角度;而背散射电子虽然也会被电场往上方推,不过因为能量相对较高,所以出射角增大的衬度不如 SE 明显,低角 BSE 变成中角 BSE、中角 BSE 变成高角 BSE。 受到样品台减速电场作用的结果就是 SE 趋向于集中在高角附近,而 BSE 的分布范围相对 SE 要广泛一些,不过相对不使用减速模式时角度要有所偏高。图3 减速模式下 SE 和 BSE 的出射角度示意图减速模式下的衬度此时,虽然 SE 和 BSE 虽然产生的原因以及携带的衬度不同,但因为样品台的负电位的作用,能量、出射角度都比较接近,因此从探测的角度来说难以完全区分。因此在 BDM模式下,接收到的电子信号基本都是 SE 和 BSE 的混合信号,兼有形貌和成分衬度。如图4,在减速模式下,无论是硫酸盐上的细胞,还是贝壳内壁,一个探测器获得的图像都可以表现出明显的形貌和成分衬度。 图4 硫酸盐上的细胞(左图) 贝壳(右图)不过虽然都是SE和BSE的混合信号,不同角度探测器的实际效果也有一定的差异。越处于高角的探测器接收到的信号中相对SE所占比例较多,有着更多SE信号的特点,如形貌衬度比重更高;反之越是低位探测器接收到的BSE信号相对较多,表现在衬度上有着更多BSE信号的特点,如图5。 图5 减速模式下较高位探测器(左)和较低位探测器(右)的衬度对比 以往为了同时对比形貌和成分衬度,往往需要 SE 和 BSE 同时进行拍摄,通过SE 和 BSE 图像进行对比,以判断试样中的形貌和成分的对应信息;或者利用探测器信号混合,将 SE 和 BSE 的形貌衬度和成分衬度叠加在一张图像上,如图6。图6. 常规模式下的SE(左)、BSE(中)图像,以及将两者混合的图像SE+BSE(右) 而减速模式下获得的图像衬度比常规模式更加复杂,也正因为如此,减速模式的图像往往蕴含了更为丰富的信息。所以,减速模式除了可以提升低电压下的分辨率外,衬度的多样性也是一个重要特点。如图5和图6的对比,在相同的着落电压下,减速模式下仅需要一个探测器就可获得常规模式SE+BSE混合的效果。另外,对于减速模式来说,并不一定非要在低着落电压下才能使用。有时候为了同时获得SE和BSE的混合信号,同时在一张图像上获取形貌和成分衬度,在其它电压下也均可使用减速模式。如下图金相试样,在10kV的BSE下只有成分衬度;而在13kV- 3kV的减速模式下,则增加了很多形貌信息。图7 金相试样在10kV下的BSE图像(左),和13-3kV减速模式下的混合衬度(右) 不过有一点要特别注意,那就是减速模式下虽然也有成分衬度,但是并不意味着图像越亮的地方平均原子序数越高,这一点和常规模式下的BSE图像不同。越亮的地方只能说是SE+BSE混合后的产额越多,受到多种衬度的影响,而不仅仅是成分的作用。如图8,从左边BSE图像上看,金字塔状的晶体材料是原子序数低于基底的,而在最右边的减速模式下,金字塔状晶体和基底虽然也表现出成分差异,但是晶体却显得更亮。图8 晶体材料在常规模式下的BSE像(左)、SE像(中),以及减速模式下的图像(右)减速模式的总结根据我们前两章介绍的SE和BSE的衬度和特点,我们也很容易总结出在BDM模式下不同位置探测器接收到的信号以及衬度特点,如下表。高位低位SE占比较多较少高角BSE占比较多较少低角BSE占比较少较多分辨率高低表面敏感度高低立体感低高抗荷电弱强成分衬度弱强形貌衬度强更强电位衬度强弱 在减速模式下各个探测器获得的都是 SE 和 BSE 混合的信号,所以都表现出综合衬度的特点。不过相对来说较高位探测器的高角BSE和SE占比较高,因此对表面的敏感度更高、分辨率也更好,不过相对立体感较差,也更容易受到荷电的影响;而较低位探测器的SE占比较少,中低角BSE占比较多,表面敏感度和分辨率都有所下降,不过立体感和抗荷电能力则更好。 因此减速模式下究竟使用哪个探测器,需要根据样品的实际情况以及关心的问题来进行选择,而不要始终用仪器默认的探测器。减速模式对操作者有较高的要求,除了要学会掌握操作技巧外,也需要对图像的综合衬度进行解读和分离。按照惯例,今天还有一个小问题,答案将在下一期公布噢!文末小问题:这是电池隔膜试样的图片,你知道不同角度(左为低角、右为高角)表现出的衬度差异是如何造成的吗?上一期答案问题:以下是不同类型背散射电子图片,你能说出分别是由哪种BSE成像吗? 01 答案: 中角、低角、高角02 答案:低角、高角、中角03 答案:低角、高角、中角
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制