冬凌草

仪器信息网冬凌草专题为您整合冬凌草相关的最新文章,在冬凌草专题,您不仅可以免费浏览冬凌草的资讯, 同时您还可以浏览冬凌草的相关资料、解决方案,参与社区冬凌草话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

冬凌草相关的耗材

  • 赛默飞 敌草快百草枯柱
    敌草快百草枯柱 Acclaim Trinity Q1• 用于敌草快和百草枯的痕量分离• 对敌草快和百草枯具有很高的分离度• 峰形良好• 快速分析• LC/MS 兼容性• 不需要离子对试剂Acclaim Trinity Q1 色谱柱是独特、高效的硅胶基质色谱柱,专为敌草快和百草枯的分离而设计。这两种农药是剧毒化合物,在饮用水、废水和农产品中,都需要监测其含量。Acclaim Trinity Q1 色谱柱是三模式 (WCX, WAX, RP) 色谱柱,基于 CSH 技术。可以使用 LC-MS/MS 和 LC-UV 方法对敌草快和百草枯实现高通量的痕量分析。
  • 哈氏槽(赫尔槽)
    材质:亚克力267ml:单槽267ml:带加热267ml:打气搅拌267ml:带加热,打气搅拌孔 哈氏槽:黄铜片,阳块,镍阳,波纹吸盘,哈氏槽,磷铜阳,纯锡阳,整流器,哈氏片在程度上近似的模仿实际电镀的状况,便于我们定性的了解电镀槽的状况,从而更好的控制生产品质。规格:60*70*3mm适用于267ml 及1000ml 哈氏槽使用。阳片规格:60*70*3mm专用阳-磷铜专用阳-电解镍专用阳-纯锡专用阳-铅锡40:60专用阳-铅锡10:90专用阳-纯铅专用阳-高纯锌专用阳-电解铜专用阳-仿金铜专用阳-镀铬专用阳-石墨
  • 流通槽|恒流槽
    GREENPRIMA在线余氯恒流槽|流通槽BAF615余氯恒流槽的作用是保持通过恒电压余氯电极的被测水样的流速稳定。被测水样的流量大小可通过恒流槽水样出口处的调节阀进行调节。BAF615余氯恒流槽包含以下组件:1.恒流槽一个(BAF615) 2.4X6透明软管一根3.6X8透明软管一根4.恒流槽挂壁国定螺栓一对 BAF615余氯恒流槽技术参数:材料:透明有机玻璃 进水接头:1/4"软管接头水样流量:10-30 L/h外形尺寸:150X90X40mmBAF615-GREENPRIMA余氯恒流槽是专门设计为PM8200CL余氯/二氧化氯测量仪用的恒电压法电极配套使用的。

冬凌草相关的仪器

  • 城池牌QT淬火清洗槽,淬火槽,小型淬火槽,清洁槽,清洗池,漂洗槽,浸洗槽  淬火清洗槽又称为清洁槽,清洗池,漂洗槽,浸洗槽,可以用于淬火后、回火前工件的清洗,在洁净状态下转移到回火炉。也可以用于其他热处理工艺前清洗之用。城池牌QT淬火清洗槽,淬火槽,小型淬火槽,清洁槽,清洗池,漂洗槽,浸洗槽  城池牌QT淬火清洗槽,淬火槽,小型淬火槽,清洁槽,清洗池,漂洗槽,浸洗槽由型钢做支架、不锈钢板折弯焊接而成。清洗槽根据用户现场可以灵活选配摆动系统/震动系统、加热系统、烘干系统、控制系统等。当清洗工件较多时还可以增加喷淋清洗系统。城池牌QT淬火清洗槽,淬火槽,小型淬火槽,清洁槽,清洗池,漂洗槽,浸洗槽准备发货  城池牌QT淬火清洗槽,淬火槽,小型淬火槽,清洁槽,清洗池,漂洗槽,浸洗槽用于分别在淬火油或水中淬火及清洗和去油污的油池和水池有单池或双池两种规格供选用。油池用于均匀地冷却工件,它配有顶盖,以便能迅速扑灭油火。水池用于回火前的工件清洗。为获得佳的效果,池内应放入一定量的除油剂。可以选购加热元件作为附加装备,用它可以加热到70 ℃左右。所有的池子均配备料托及进排液口。城池牌QT淬火清洗槽,淬火槽,小型淬火槽,清洁槽,清洗池,漂洗槽,浸洗槽发货现场现场
    留言咨询
  • 城池牌SQT淬火盐水槽,淬火盐槽,盐水淬火槽,淬火碱槽,实验淬火槽,淬火油槽,淬火水槽,淬火槽   城池牌SQT淬火盐水槽,淬火盐槽,盐水淬火槽,淬火碱槽,实验淬火槽,淬火油槽,淬火水槽,淬火槽简称淬火盐槽,有称为盐水淬火槽。是城池工业炉根据盐水淬火特点和需求,专注定制的针对性淬火冷却设备。  淬火盐槽主要供机械工件以各种盐液、混合盐水溶液为淬火媒介在淬火盐槽中进行淬火。盐水淬火容易得到高的硬度和光洁的表面,不容易产生淬不硬的软点。  城池牌SQT淬火盐水槽,淬火盐槽,盐水淬火槽,淬火碱槽,实验淬火槽,淬火油槽,淬火水槽,淬火槽采用耐腐蚀不锈钢板折弯焊接制成方形、圆形槽体,由电加热管加热淬火盐液,通过搅拌系统使淬火介质不断上下左右连续翻滚,淬火介质温度均匀,呈流态状,工件变形小,淬火硬度均匀。选配循环冷却系统,通过热换热器将盐水液通过风冷或水冷方式降温,通过自动控温系统,以冷却配合自动恒温控制系统使淬火盐温恒温在工艺淬火温度内。对于较重工件可以增加液压升降系统,降低劳动强度,提高淬火效率。  城池工业炉生产的城池牌SQT淬火盐水槽,淬火盐槽,盐水淬火槽,淬火碱槽,实验淬火槽,淬火油槽,淬火水槽,淬火槽全自动化程度高,防腐耐用,使用方便,结构简单,性能可靠,用途多样,深受广大用户信赖爱。欢迎您来电来函咨询。表:淬火槽规格尺寸表型号槽体尺寸(mm)长×宽×高 料框尺寸(mm)长×宽×高装容量(L)加热功率(kW)搅拌电源(w)MQT/MC-36300×400×500200×150×80361300MQT/MC-72400×500×600250×150×100802300SQT/SC-12500×600×600300×200×1001203550SQT/SC-20800×600×600350×200×1002005550SQT/SC-321000×800×600400×250×1003208750SQT/SC-481500×800×600450×250×15048012750SQT/SC-721800×1000×600500×300×150720181500SQT/SC-1002000×1000×700500×300×2001000271500
    留言咨询
  • 城池牌淬火集液槽,储液槽,加液槽,移液槽,安全槽,溢流槽,冷却槽,恒温槽  城池牌淬火集液槽,储液槽,加液槽,移液槽,安全槽,溢流槽,冷却槽,恒温槽是指在冶金工业的热处理过程中,用来存储热介质使其进行自然冷却并沉淀除去部分夹带的辅助设备。一般是用钢板、型钢焊成长方形或圆筒形槽体,也有的采用钢筋混凝土结构。常分为两或三部分,中间用钢板隔开分别作存液、沉淀和备用。集液槽的容积应大于所服务的全部淬火槽及冷却系统中淬火介质容积的总和。对集油槽一般加大30%~400%,对集水及水溶液槽,要加大20%~30%。槽内隔板的高度约为槽高的3/4。集油槽一般设入油孔和放油孔,以便维修。进油管应插到液面以下。吸油管应插到淬火油槽底部,其末端应加过滤网。要有液面标尺和紧急放油阀门。集油槽还应考虑设保温和加热装置。  我国许多老式油冷却循环系统,不设冷却器,把集油槽做得很大,依靠自然冷却。这种结构带来油储量大,油易老化、更换困难,火灾危险性大、占地大和地坑深等间题。  淬火介质的循环冷却系统用于冷却淬火槽中被排出的热淬火介质,然后重新送回淬火槽中继续使用。按工作方式,淬火介质冷却系统可分为单独冷却和集中冷却两种。集中冷却系统应用较广,可按淬火槽实际使用需要起动部分装置,循环冷却系统包括过滤器、泵、冷却器、集液槽和淬火槽五部分。  城池牌淬火集液槽,储液槽,加液槽,移液槽,安全槽,溢流槽,冷却槽,恒温槽一般安在车间外地平面以下,其上口高度应低于淬火槽底部安装高度,以便在检修清理设备或车间发生火灾等紧急事故时能够将全部冷却油排放人其中。在直接利用集液槽冷却淬火介质而不采用油冷却器的场合,集液槽体积还要进一步加大。
    留言咨询

冬凌草相关的试剂

冬凌草相关的方案

冬凌草相关的论坛

  • 59.6 高效液相色谱法测定冬凌草糖浆中冬凌草甲素含量

    59.6 高效液相色谱法测定冬凌草糖浆中冬凌草甲素含量

    【作者】 蔡俊安(河南百年康鑫药业有限公司)【摘要】 目的建立测定冬凌草糖浆的冬凌草甲素含量的高效液相色谱法。方法采用Diamonsil C18色谱柱(250 mm×4.6 mm,5μm),以甲醇-水(50∶50)为流动相,流速为1.0 mL/min,检测波长为239 nm。结果冬凌草甲素进样量在0.093~0.746μg范围内与峰面积积分值线性关系良好,回归方程为Y=413 933.35-63 428.66 X,r=0.999 7(n=5);平均加样回收率为99.0%,RSD为1.06%(n=5)。结论该法简便、准确、专属性和重复性好,为冬凌草糖浆中冬凌草甲素的定量分析提供了科学有效的方法。谱图:http://ng1.17img.cn/bbsfiles/images/2012/08/201208211753_385117_1609970_3.jpg

  • 冬凌草乙素靶向Keap1介导PGAM5泛素化促进肝癌细胞线粒体凋亡

    [size=15px][font=宋体][color=black]冬凌草乙素[i][/i]([/color][/font][font=&][color=black]Ponicidin[/color][/font][font=宋体][color=black])是从中药冬凌草([/color][/font][i][font=&][color=black]Rabdosia rubescens[/color][/font][/i][font=宋体][color=black])中提取的二萜类化合物,具有免疫调节、抗炎、抗病毒和抗癌等多种活性。尽管冬凌草乙素对多种恶性肿瘤有疗效,但其与肝细胞癌([/color][/font][font=&][color=black]HCC[/color][/font][font=宋体][color=black])相关的确切功能和作用机制仍然未知。[/color][/font][font=&][color=black][/color][/font][/size] [size=15px][font=宋体][color=black]冬凌草乙素体外显著抑制肝癌细胞增殖和迁移,体内抑制肿瘤生长并促进肿瘤细胞凋亡。[/color][/font][font=宋体][color=red]机制上,冬凌草乙素靶向[/color][/font][font=&][color=red]Keap1[/color][/font][font=宋体][color=red]([/color][/font][font=&][color=red]E3[/color][/font][font=宋体][color=red]泛素连接酶)并促进[/color][/font][font=&][color=red]Keap1-PGAM5[/color][/font][font=宋体][color=red]复合物形成,介导[/color][/font][font=&][color=red]PGAM5[/color][/font][font=宋体][color=red]的泛素化降解。此外,冬凌草乙素通过[/color][/font][font=&][color=red]PGAM5[/color][/font][font=宋体][color=red]激活半胱氨酸依赖性线粒体通路,导致线粒体损伤和[/color][/font][font=&][color=red]ROS[/color][/font][font=宋体][color=red]产生,从而促进肝癌细胞线粒体凋亡。[/color][/font][font=&][color=black][/color][/font][/size] [align=center] [/align] [size=15px][b][font=&][color=#0070c0]1[/color][/font][font=宋体][color=#0070c0]、冬凌草乙素抑制[/color][/font][font=&][color=#0070c0]HCC[/color][/font][font=宋体][color=#0070c0]细胞的增殖和迁移[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [align=center] [/align] [size=15px][font=宋体][color=black]作者首先通过体外实验发现能以剂量依赖性方式有效抑制[/color][/font][font=&][color=black]HepG2[/color][/font][font=宋体][color=black]细胞[i][/i]的增殖和迁移。为了确定冬凌草乙素的靶标,作者合成生物素标记的冬凌草乙素([/color][/font][font=&][color=black]Bio-Ponicidin[/color][/font][/size][font=宋体])开展[/font][font=宋体]Pulldown[/font][font=宋体]实验,通过质谱鉴定[/font][font=宋体]Keap1[/font][font=宋体]蛋白([/font][font=宋体]Kelch-like ECH-associated protein 1[/font][font=宋体],[/font][font=宋体]Keap1[/font][font=宋体],[/font][font=宋体]E3[/font][font=宋体]泛素连接酶的底物识别亚单位)为冬凌草乙素的可能靶标。[/font] [align=center] [/align] [size=15px][b][font=&][color=#0070c0]2[/color][/font][font=宋体][color=#0070c0]、[/color][/font][font=&][color=#0070c0]PGAM5[/color][/font][font=宋体][color=#0070c0]在[/color][/font][font=&][color=#0070c0]HCC[/color][/font][font=宋体][color=#0070c0]组织样本中上调[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=宋体][color=black]接着,作者利用[/color][/font][font=&][color=black]TCGA[/color][/font][font=宋体][color=black]数据库发现[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]高表达与[/color][/font][font=&][color=black]HCC[/color][/font][font=宋体][color=black]患者较低的生存率有关,并利用[/color][/font][font=&][color=black]HCC[/color][/font][font=宋体][color=black]组织芯片发现肝癌组织中[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]的表达高于癌旁组织,结果表明[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]在[/color][/font][font=&][color=black]HCC[/color][/font][font=宋体][color=black]发病机制中具有潜在作用。[/color][/font][font=&][color=black][/color][/font][/size] [size=15px][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]蛋白是一种重要的调节蛋白,可以通过与其他蛋白质相互作用来调节细胞内信号通路,于是作者通过文献检索发现[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]是一种与[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]互作的重要蛋白质,且前面的[/color][/font][font=&][color=black]Pulldown[/color][/font][font=宋体][color=black]实验也显示[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]被拉下。[/color][/font][font=&][color=black][/color][/font][/size] [size=15px][font=&][color=black]TCGA[/color][/font][font=宋体][color=black]数据库分析显示[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]高表达与[/color][/font][font=&][color=black]HCC[/color][/font][font=宋体][color=black]存活率较低相关,组织芯片显示[/color][/font][font=&][color=black]HCC[/color][/font][font=宋体][color=black]组织中的[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]表达高于癌旁组织,且与较高的病理分级相关,结果表明[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]同样在[/color][/font][font=&][color=black]HCC[/color][/font][font=宋体][color=black]发病机制中具有潜在作用。[/color][/font][font=&][color=black][/color][/font][/size] [size=15px][font=宋体][color=black]进一步作者通过人类蛋白质组微阵列[i][/i]检测冬凌草乙素的直接靶蛋白,发现冬凌草乙素与[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]直接结合而不与[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]蛋白结合,结果表明冬凌草乙素可能直接与[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]结合并影响[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black],从而在[/color][/font][font=&][color=black]HCC[/color][/font][font=宋体][color=black]中发挥药理作用。[/color][/font][font=&][color=black][/color][/font][/size] [align=center] [/align] [size=15px][b][font=&][color=#0070c0]3[/color][/font][font=宋体][color=#0070c0]、[/color][/font][font=&][color=#0070c0]Keap1[/color][/font][font=宋体][color=#0070c0]和[/color][/font][font=&][color=#0070c0]PGAM5[/color][/font][font=宋体][color=#0070c0]相互作用的结构基础[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]可以与[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]结合,然而,它们结合的结构基础尚不清楚。为了观察[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]与[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]结合过程的动态变化,作者通过分子动力学模拟发现[/color][/font][font=&][color=black]Keap1-PGAM5[/color][/font][font=宋体][color=black]复合物的结构总体上保持稳定,且[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]上的[/color][/font][font=&][color=black]Val78[/color][/font][font=宋体][color=black]、[/color][/font][font=&][color=black]Glu79[/color][/font][font=宋体][color=black]、[/color][/font][font=&][color=black]Ser80[/color][/font][font=宋体][color=black]和[/color][/font][font=&][color=black]Glu83[/color][/font][font=宋体][color=black]氨基酸与[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]的[/color][/font][font=&][color=black]Kelch[/color][/font][font=宋体][color=black]结构域相互作用。采用[/color][/font][font=&][color=black]AlphaFold3[/color][/font][font=宋体][color=black]算法来预测[/color][/font][font=&][color=black] Keap1-PGAM5 [/color][/font][font=宋体][color=black]的相互作用,发现复合物的总体预测折叠与真实结构相似。[/color][/font][font=&][color=black][/color][/font][/size] [align=center] [/align] [size=15px][b][font=&][color=#0070c0]4[/color][/font][font=宋体][color=#0070c0]、[/color][/font][font=&][color=#0070c0]Keap1-PGAM5[/color][/font][font=宋体][color=#0070c0]配合物中晶体整体结构及相互作用的洞察分析[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=宋体][color=black]为了更好地理解[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]和[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]相互作用的分子机制,作者进行了结构生物学实验。通过晶体学实验获得了[/color][/font][font=&][color=black]Keap1-PGAM5[/color][/font][font=宋体][color=black]配合物的结构,分析得到两者的结合模式和结合位点,并通过蛋白点突变后的[/color][/font][font=&][color=black]ITC[/color][/font][font=宋体][color=black]实验发现[/color][/font][font=&][color=black]Glu79[/color][/font][font=宋体][color=black]是[/color][/font][font=&][color=black]Kelch[/color][/font][font=宋体][color=black]与[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]结合的关键残基。[/color][/font][font=&][color=black][/color][/font][/size] [size=15px][font=宋体][color=black]进一步作者通过[/color][/font][font=&][color=black]SPR[/color][/font][font=宋体][color=black]、[/color][/font][font=&][color=black]CETSA[/color][/font][font=宋体][color=black]、[/color][/font][font=&][color=black]Co-IP[/color][/font][font=宋体][color=black]、[/color][/font][font=&][color=black]EMSA[i][/i][/color][/font][font=宋体][color=black]等实验验证冬凌草乙素和[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]的[/color][/font][font=&][color=black]Kelch[/color][/font][font=宋体][color=black]结构域结合,而不能和[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]的[/color][/font][font=&][color=black]?54-PGAM5[/color][/font][font=宋体][color=black]([/color][/font][font=&][color=black]54-289[/color][/font][font=宋体][color=black]号氨基酸)突变蛋白结合。[/color][/font][font=&][color=black][/color][/font][/size] [size=15px][font=宋体][color=black]考虑到[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]是一种[/color][/font][font=&][color=black]E3[/color][/font][font=宋体][color=black]连接酶,促进蛋白质的泛素化和降解。作者发现冬凌草乙素可以增加[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]的泛素化,增加[/color][/font][font=&][color=black]Keap1-PGAM5[/color][/font][font=宋体][color=black]蛋白共定位,表明冬凌草乙素可以与[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]结合,从而促进[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]与[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]的互作,促进[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]的泛素化。 [/color][/font][/size] [size=15px][b][font=&][color=#0070c0]5[/color][/font][font=宋体][color=#0070c0]、[/color][/font][font=宋体][color=#0070c0]冬凌草乙素影响[/color][/font][font=&][color=#0070c0]Keap1[/color][/font][font=宋体][color=#0070c0]的[/color][/font][font=&][color=#0070c0]Kelch[/color][/font][font=宋体][color=#0070c0]结构域的变构来稳定[/color][/font][font=&][color=#0070c0]Keap1[/color][/font][font=宋体][color=#0070c0]与[/color][/font][font=&][color=#0070c0]PGAM5[/color][/font][font=宋体][color=#0070c0]结合[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=宋体][color=black]进一步通过分子对接模拟发现冬凌草乙素可以与[/color][/font][font=&][color=black]Keap1[/color][/font]

  • 【中药药理扫盲资料之系列1】常见中药药理作用归类

    常见中药药理作用归类由于中药药理工作的开展,推动了临床工作的深入,也促进了植化工作分离与提取的研究,以及制剂的改革;同时临床疗效的验证,也增加了药理研究的信心。由于植化分离提取和药理研究密切配合。特别是中药研究和中医理论密切结合,能更快地出成果。   近年来,已用药理手段和方法,开展了对中医治则的研究工作。如活血祛瘀、扶正培本、清热解毒、通里攻下等,把有关中药及按中医理论组合的复方,比较系统地进行了研究。近年来召开了一系列全国性的学术报告会,中药研究论文数量日益增多,内容质量亦逐步提高。但中药药理研究同中药发展的历史相比,时间还很短,成就还是初步的,中药药理学还是一门年轻的科学。距离全面阐明中药药效作用原理及其体内过程,还存在很大差距。尚有待今后的研究和发展。 现将已经研究过的中药按药理作用分类如下,供大家参考: (1)主要用于抗感染的药物:    单味药:黄连、黄柏、黄芩、大青叶、板蓝根、鱼腥草、金银花、连翘等;    复方:银翘解毒丸、黄连解毒汤等。 (2)抗寄生虫病药:    驱肠虫药:槟榔、苦楝皮、使君子、南瓜子、石榴皮、鹤草芽;    抗阿米巴药:白头翁、鸦胆子等;    抗疟药:常山、甜茶、青篙等;    抗滴虫药:苦参、蛇床子等。 (3)抗肿瘤药:    主要有莪术、薏苡仁、山豆根、斑蝥、野百合、冬凌草等。[

冬凌草相关的资料

冬凌草相关的资讯

  • 博纳艾杰尔开设2015版《中国药典》分析案例专题
    《中华人民共和国药典》,简称《中国药典》。是由国家药典委员会负责组织编纂,国家食品药品监督管理部门批准颁布实施。2015年6月,国家食品药品监督管理总局正式颁布了《中华人民共和国药典》2015版,并于12月1日起实施。《中国药典》2015年版加强了药物中的杂质分析,对色谱柱提出了更高的要求。博纳艾杰尔科技紧密贴合药典要求,及时推出一系列分析案例,并在不断更新中。以下应用均可在博纳艾杰尔科技官方网站(www.agela.com.cn)首页——医药分析分类中的“2015版药典”专题内浏览下载:1) 曲克芦丁分析 —— Venusil MP C182)《中国药典》2015 年版盐酸水苏碱采用的亲水色谱柱—— Venusil HILIC3) 阿奇霉素有关物质分析专用柱 —— Durashell C18-AM Plus4) 磷酸肌酸钠含量测定项的分析——Durashell C18-AM5) 头孢羟氨苄及其颗粒剂分析 —— Innoval AQ C186) 头孢泊污酯有关物质检测的分析 —— Venusil MP C187) 复方丹参片(胶囊、颗粒)中三七检测项的分析 —— Venusil XBP C18(L)&Venusil MP C18(2)8) 头孢羟氨苄分析 —— Innoval AQ C189) 头孢米诺钠分析 —— Innoval AQ C1810) 头孢他啶分析 —— Innoval AQ C1811) 注射用头孢拉定分析 —— Durashell C18-AM12) 头孢尼西钠分析 —— Durashell C18-AM13) 头孢美唑钠分析 —— Venusil XBP C18(L)14) 头孢噻肟钠分析 —— Venusil XBP C18(L)15) 甲钴胺分析 —— Durashell C18-AM16) 盐酸布桂嗪分析 —— Venusil XBP C18(L)17) 法莫替丁分析 —— Durashell C1818) 醋酸地塞米松分析 —— Innoval AQ C1819) 尼莫地平片分析 —— Venusil XBP C18(2)20) 冬凌草分析 —— Venusil XBP C18(2)21) 藿香正气水分析 —— Promosil C18
  • “合成生物学技术及应用进展”嘉宾报告大放送
    合成生物学的快速发展正在改变生物技术行业的产业布局。目前,合成生物技术已经广泛应用于食品、农业、医疗等多个领域。伴随我国《“十四五”生物经济发展规划》的颁布,被誉为“第三次生物科技革命”的合成生物学研究热度高涨,但当前构建合成生物系统的内在逻辑尚处于摸索阶段,整个合成生物学领域正处于发展初期,需要先进的使能技术及解决方案推动合成生物学产业快速发展。为帮助广大科研工作者及时了解合成生物技术的最新研究及应用进展,仪器信息网将于2023年10月10 日-11日举办第一届“合成生物学技术及应用进展”网络会议。届时将邀请业内专家做精彩报告,为广大用户搭建一个即时、高效的交流和学习的平台。~~~~~报告嘉宾~~~~~报告题目:《高效细胞工厂构建及产业应用》【摘要】 化学品绿色生物制造是实现人类社会可持续发展的重要路径,人工高效细胞工厂构建是实现绿色生物制造的核心。本报告介绍了现阶段细胞工厂构建存在的科学、技术问题及挑战,从新生化反应发现、非天然途径设计构建、稳定自调控共培养系统建立及群体感应调控原理及应用等角度阐述了高效细胞工厂构建的新技术及策略,为化学品的绿色生物制造提供了参考。报告题目:《HMOs的生物“智”造以及产业化》【摘要】 人乳寡糖(HMO)对婴幼儿消化系统、肠道健康及免疫系统完善具有不可替代的作用。因此,生物合成HMOs,形成规模化生产被市场所期待。 本项目中,我们通过“HLBrain”的计算云平台,形成了自主技术路线,实现了产业化,产品纯度达到了98%以上,实现了我国在HMOs领域的突破。报告题目:《赛默飞合成生物学中的高分辨质谱策略》【摘要】 合成生物学是近年来迅速发展的一门综合性交叉学科,涉及了生物工程、制药工程、食品工程、生物学、化学等多领域多学科内容。在合成生物学中核心内容即构建DBTL循环,赛默飞Orbitrap高分辨质谱仪是将扫描速度,高分辨率,高灵敏度,谱图质量,质量精度完美融合,将高性能定性和定量能力有机的统一,助力合成生物学难题攻克!报告题目:《利用合成生物学方法增加小分子结构多样性》【摘要】 天然产物长期以来一直是小分子药物的宝贵来源,但它们在自然来源中的含量通常很低,且其化学结构复杂,这使得它们的提取或化学合成变得十分困难和成本高昂。异源生物合成复杂天然产物已成为一种有吸引力的方法,因为它们成本低且供应稳定。我们已经建立了几种不同的方法,用于在细菌和酵母中异源生物合成各种天然产物,包括抗生素和抗癌药物。更重要的是,我们通过理性设计或定向进化及高通量筛选,成功的改造了途径中的酶,以实现天然产物类似物的生产,这显著扩展了当前天然产物的化学空间。我们还开发了自动化系统来辅助酶进化和菌株构建,这将有助于发现具有多种结构、靶向选择性和药代动力学特性的天然产物或其类似物。报告题目:《优化“启动子-RNA聚合酶”以实现目标产物的高产》【摘要】 启动子及RNA聚合酶是转录水平的两个关键调控元件,控制细胞内代谢流量的分配。目标产物的合成与宿主细胞的生长竞争利用有限的RNA聚合酶。启动子招募过多或过少RNA聚合酶都不利于高产目标产物。研究发现,适度串联的启动子能明显提高3-羟基丙酸和吡咯喹啉醌的产量,而过度消耗RNA聚合酶导致宿主细胞生长变慢,从而阻碍目标产物3-羟基丙酸的生成。此外,受诱导的CRISPRi可协调和切换细胞生长和产物合成,从而高产目标产物。报告题目:《岛津最新色谱质谱技术在合成生物学中的应用》【摘要】 主要介绍岛津分析方法包及LCMSMS、LCMS-QTOF、MALDI-TOF等仪器在合成生物学质量控制中的应用。报告题目:《人工智能驱动的合成生物制造创新模式》【摘要】 当前合成生物制造产业发展瓶颈是如何从无到有构建生物合成途径,我们开发了全球最大的生物合成反应/途径数据库,进而构建了全球领先的合成生物设计技术体系,创建了人工智能驱动的合成生物制造研发链条,正在打造人工智能驱动的合成生物制造创新模式。报告题目:《基于DNA纳米框架结构的仿病毒分子工具》【摘要】 利用DNA折纸技术构建框架核酸纳米结构,可以指导各类分子在纳米尺度的精确空间排布和组装,构建纳米器件并实现功能化,为合成生物学提供了全新的研究工具和应用平台。受到病毒启发设计的三维框架核酸被用于组装具有明确尺寸形状的磷脂膜囊泡;组装仿病毒被动侵染颗粒和抑制侵染颗粒等。报告题目:《基于液滴微流控技术氧化还原酶分子改造及其合成生物学应用研究》【摘要】 液滴微流控超高通量筛选技术,基于互不相溶的两液相产生分散的油包水微液滴,可以在短时间内生成大量的液滴,大小均匀、互不干扰、性能稳定且一致,每个液滴可作为独立的单位进行培养,筛选通量高达10^7个/天,广泛应用于酶定向进化研究。本项目基于酿酒酵母表面展示技术液滴液滴微流控超高通量筛选技术,基于互不相溶的两液相产生分散的油包水微液滴,可以在短时间内生成大量的液滴,大小均匀、互不干扰、性能稳定且一致,每个液滴可作为独立的单位进行培养,筛选通量高达10^7个/天,广泛应用于酶定向进化研究。本项目基于酿酒酵母表面展示技术液滴微流控高通量筛选氧化还原酶,获取高性能突变体,为生物医药酶定向进化及合成生物学代谢途径关键酶性能优化提供了技术平台。报告题目:《安捷伦高通量自动化流程在合成生物学领域的创新应用》【摘要】 安捷伦高通量自动化流程在合成生物学领域的创新应用。报告题目:《Hamilton自动化移液工作站在合成生物学领域的应用和卓越技术》【摘要】 合成生物学领域需要严谨准确无交叉污染的DNA基因合成、基因克隆、微生物或细胞的克隆挑选与培养、发酵培养以及产物纯化鉴定等步骤,且往往需要较高的通量。Hamilton以其卓越的自动化移液技术及先进的台面内设备,为合成生物学领域的各个步骤均提供了优秀的硬件和自动化解决方案,其中多种设备和技术是业内独有,且对合成生物学关键步骤的长时间稳定准确运行至关重要。本报告将通过合成生物学的各种实验需求介绍Hamilton公司的解决方案和技术优势,为科学家和企业研发人员的相关研发工作提供助力。报告题目:《创建可视化高通量策略定向筛选酚羟基化合物合成途径中关键羟化酶》【摘要】 酶作为生物合成中的催化剂,其活性高低决定了目标产物能否高产。蛋白质工程介导的酶改造需快速简易的筛选方法。由此,以高值化合物没食子酸合成途径中羟化酶PobA为例,基于催化产物的独有特性,建立了一种肉眼可视化筛选方法,并从突变库中筛选到高活性突变体。高活性突变体的引入实现了没食子酸从葡萄糖起始的高效生物合成。报告题目:《植物二萜的合成生物学研究》【摘要】 二萜类化合物广泛存在于自然界,因其化学结构的多样性和良好的生物活性,在工业、医疗等领域具有广阔的应用前景。二萜合酶以及糖基化酶、羟基化酶等后修饰酶是二萜化合物生物合成过程中影响其化学结构多样性的主要因素。在过去几年,本课题组针对三尖杉烷二萜、贝壳杉烷二萜为代表的二萜化合物的合成过程进行了深入的研究。如通过对柱冠粗榧(Cephalotaxus harringtonia)转录组基因的挖掘,报道了三尖杉属植物二萜生物合成途径的关键萜类环化酶,揭示了三尖杉烷型二萜前体骨架三尖杉-12-烯的生物合成过程,为裸子植物二萜代谢多样性的起源和演化提供了深入见解;通过对冬凌草(Isodon rubescens (Hemsl.)Hara)基因组学的研究,揭示了贝壳杉烷二萜冬凌草甲素的氧化修饰机制;通过对甜叶菊等转录组学的挖掘,揭示了贝壳杉烷二萜糖基化修饰过程中底物识别专一性和产物生成特异性的分子机制。基于这些研究,本课题组以大肠杆菌为底盘高效地实现了11种不同氧化形式的对映-贝壳杉烷类二萜化合物的从头生物合成,实现了多种稀有二萜糖苷的高效合成,并实现了产业化推广。报告题目:《技术瓶颈的突破—BioLector高通量微型生物反应器助力合成生物学科研与产业化》【摘要】 1.合成生物学科研与产业化流程与技术痛点 2.技术瓶颈的突破性新技术 3.应用案例介绍。报告题目:《过程数据驱动下的精准高通量筛选技术》【摘要】 合成生物学的DBTL研究循环中,T环节急需要开发高通量、自动化和在线多参数测控技术的新型生物反应器,规避过去基于三角瓶培养方式测试菌种和工艺的结果误判和漏选现象。建立基于过程多尺度参数相关分析方法的高通量菌种筛选和工艺开发平台,形成过程数据驱动的理性决策方法。报告题目:《翻译机制启发的氨基酸高产菌株筛选策略》【摘要】 氨基酸是构成蛋白质的基本单元,也是动物生长和生产所需的大量营养素之一,全球市场总量已接近300亿美元。商业化的氨基酸主要由微生物发酵法制成,然而,除了谷氨酸、赖氨酸等少数大宗氨基酸品类,大多数氨基酸的发酵产量仍处于较低水平,部分氨基酸生产菌株与国外存在代差,因此,选育优良的生产菌株已成为填补氨基酸产能与需求差距的关键。基于自然界普遍存在的“密码子偏好性”规律及氨酰化反应的动力学特征,报告人开发了基于稀有密码子和人造tRNACUA的氨基酸高产菌株筛选策略,实现了对20种标准氨基酸乃至非蛋白质类氨基酸的快速指征,解决了长期困扰氨基酸生物制造的菌株选育难题,促进了氨基酸高产新机制的发现。扫码报名~~~~~赞助单位~~~~也欢迎各位对合成生物学感兴趣的小伙伴进群交流~扫码进群
  • 泽泉科技应邀参加第九届国际牧草与草坪草分子育种学术研讨会
    2016年8月15-19日,由中国工程院、中国草学会、兰州大学、草地农业生态系统国家重点实验室主办,中国草学会草业生物技术专业委员会和兰州大学草地农业科技学院承办的第九届国际牧草与草坪草分子育种学术研讨会(The 9th International Symposium on Molecular Breeding of Forage and Turf, MBFT)和第三届全国草业生物技术大会在甘肃兰州隆重召开。国际牧草与草坪草分子育种学术研讨会是草类植物分子育种学术界规格最高、规模最大的世界性学术与技术盛会,会议每2-3年举办一次,迄今已举办过8届。这是该学术研讨会首次在中国和发展中国家举办,彰显了我国牧草与草坪草分子育种方面的科技实力已被国际学术界认可。 会议现场 本届研讨会会期4天,来自澳大利亚、美国、英国、荷兰、墨西哥、日本、韩国、巴基斯坦、中国等国草业科学研究领域的相关专家250余人参会。与会专家围绕&ldquo 种质资源多样性及其对育种的影响&rdquo 、&ldquo 非生物和生物胁迫&rdquo 、&ldquo 生物质能源&rdquo 、&ldquo 牧草和草坪草研究的新技术、新工具和新方法&rdquo 、&ldquo 功能基因组学和遗传图谱构建&rdquo 、&ldquo 植物微生物互作&rdquo 等议题探讨牧草与草坪草分子育种的国际前沿问题,分享最新研究成果,寻求未来分子育种发展方向。澳大利亚German Spangenberg教授和王增裕教授分别作大会开幕式和闭幕式主旨报告。 泽泉展台 上海泽泉科技股份有限公司应邀出席本次研讨会,并在会议期间向广大用户展示了德国WALZ公司光合作用测量仪器、美国CID公司便携式测量仪器、种子质量评价与检测方案(种子成熟度和活力检测新方法)、植物CT三维成像系统等,吸引了来自中国农业大学、河南农业大学、山东省农科院等单位的专家们前来展台交流。泽泉科技工程师与现场参会的老用户交流了仪器的使用技巧,如CI-600根系成像输出等,专业耐心的解答得到了用户的认可与好评。部分用户对泽泉科技在上海浦东建立的AgriPheno&trade 高通量植物基因型-表型-育种服务平台产生了极大的兴趣,表达了亲自前往平台参观考察的意愿。 展台交流 本次参会得到了会议承办方中国草学会草业生物技术专业委员会、兰州大学草地农业科技学院和与会专家们的大力支持,泽泉科技在此表示衷心的感谢!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制