电化学性质

仪器信息网电化学性质专题为您整合电化学性质相关的最新文章,在电化学性质专题,您不仅可以免费浏览电化学性质的资讯, 同时您还可以浏览电化学性质的相关资料、解决方案,参与社区电化学性质话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

电化学性质相关的耗材

  • 电化学基础课程
    课程描述:电化学技术应用在我们生活与学习的方方面面。各种电池的应用,金属的腐蚀,就连部分生物技术例如血糖的监测都应用到了电化学技术。为了让本科生对电化学测试技术有一个更加成熟全貌的认识,我们Gamry公司专门设计了这套课程,课程所需所有的设备和用品(不包括化学试剂)都可从我们公司得到。这个电化学的实验课程设计为20个学生的一个学期的长期班。课程中包含的实验方法:l 循环伏安l 计时电流/计时电量l 脉冲伏安l 溶出伏安l 对乙酰氨基酚的检测l DigiElch数字模拟l 微电极l 葡萄糖测定l 电化学聚合l 交流阻抗l 腐蚀课程中的具体实验设置l 循环伏安法l 电极活性面积测定l 比较脉冲技术l 通过溶出伏安法进行离子的定量测定l 检测对乙酰氨基酚l 循环伏安法数据模拟l 微电极l 碳酸饮料中葡萄糖的检测l 单体的电化学聚合l 电化学阻抗谱l 不同PH下的低碳钢腐蚀课程设备与配件配置:表一基础包(为20个学生准备)——990-00441配件数量产品编号配件数量产品编号电化学工作站Interface 1000T1992-00115DigiElch学生版6个月许可1987-00099低碳钢样品30820-00005学生版手册20988-00049Ag/AgCl参比电极1930-00015教师版手册1988-00050铂工作电极1932-00003Dr. Bob反应池1990-00193铂微电极1932-00009电极打磨工具1990-00195微搅拌棒1935-00065Euro反应池1990-00196碳丝网印刷电极36935-00120EIS模拟电池1990-00419铂丝网印刷电极60935-00122用于丝网印刷电极脱落研究的电路板1990-004204 mm透明容器1972-00065电路板与透明容器的适配器1990-00421 表二继续教学更新包(为20个学生准备)——990-00440配件数量产品编号配件数量产品编号低碳钢样品30820-00005铂丝网印刷电极60935-00122Ag/AgCl参比电极1930-00015DigiElch学生版6个月许可1987-00099碳丝网印刷电极36935-00120学生版手册20988-00049 *更多详细资料请联系我们
  • 用于电化学研究的先进软件 NOVA
    用于电化学研究的先进软件 订货号: NOVANOVA 是设计为通过 USB 接口控制所有 Autolab 仪器的软件包。由电化学家针对电化学而设计,集成了超过二十余年的用户体验和最新的 .NET 软件技术,NOVA 使您的 Autolab 恒电位仪/恒电流仪拥有更强性能和灵活性。NOVA 提供了以下的独特功能:功能强大且灵活的程序编辑器重要实时数据一目了然强大的数据分析和绘图工具集成化控制外围仪器,诸如万通 LQH 液体处理设备
  • 日本ALS SEC-3F 光谱电化学流动池
    SEC-3F 光谱电化学流动池 的特点是可以直接安装在SEC2020光谱仪测量系统上,无需另购其它配件。 光谱电化学流动池的光路长度可以通过改变垫片的厚度来设定。我们提供厚度为500 μm (微米) 的硅胶垫片和厚度为100, 250, 500 μm (微米) 的特氟隆垫片作为可选购品项。

电化学性质相关的仪器

  • 电化学由于其在电池、燃料电池、腐蚀、合成和催化等各个领域的广泛应用而受到越来越多的关注。在电化学系统中,会发生各种复杂的过程,包括物质的吸附、解吸和扩散,表面重建,电荷转移,表面和物种之间化学键的形成或断裂以及发生在电化学界面化学反应等。因此,电化学界面的结构决定了整个电化学系统的电化学响应以及材料的性质和性能电化学的研究主要涉及电化学界面的结构、性质和性能之间的内在关系,以促进电化学设备的合理设计。电化学表征技术主要基于电信号的测量,包括电流和电势,这些方法可以根据电化学理论分析电信号来获得丰富的信息,包括界面性质的热力学和动力学信息、表面上反应物的数量以及电极的反应性。然而,由于反应物的化学指纹信息缺乏,很难在没有经验的情况下确定化学结构。另外,从整个电极表面的响应测量得到的电信号,是针对整个电极的,对于非均匀电极的结构和性能无法进行研究。因此,需要开发具有丰富化学信息和高空间分辨率(低至几个纳米)的原位表征方法,以全面了解电化学界面和过程。 电化学-针尖增强拉曼光谱( EC-TERS)是一种具有纳米尺度空间分辨率分子指纹信息的技术,可以用于实现上述目标。 EC-TERS联用优势● 分子水平的一致性:拉曼光谱可以提供分子水平的信息,可以检测到电化学界面上的单个分子。这使得我们能够研究电化学反应的瞬间变化。● 高空间分辨率:通过使用针尖增强拉曼光谱(TERS)技术,可以在纳米探针上实现高空间分辨率。这使得我们能够研究界面的局部结构。● 可以在液体环境下工作:拉曼光谱可以在液体环境下进行测量,这对于研究电化学修饰过程非常重要。传统的电化学表征技术通常需要在干燥的条件下进行测量,而拉曼光谱可以在多孔溶液中直接进行测量。● 化学指纹信息:拉曼光谱可以提供化学指纹信息,通过分析拉曼光谱的峰位和强度,可以研究反应的中间体、吸附物和反应产物。● 非破坏性测量:拉曼光谱是一种非破坏性测量技术,不需要对样品进行特殊处理或标记。这使得我们能够对电化学界面进行实时监测。EC-TERS方案电化学-针尖增强拉曼光谱测试系统系统采用倒置显微镜结构,底部激发,底部拉曼信号收集。兼容常规拉曼测试、常规电化学拉曼测试,针尖增强拉曼测试。电化学池位于XY压电位移台上,可以进行纳米级的步进移动; 探针链接XYZ压电位移台,可进行三维精细调节;从而实现探针-激光-样品三位一体。 电化学-针尖增强拉曼光谱测试系统技术参数 光谱分辨率2cm-1激发光源532nm激光器,100mW633nm激光器,15mW光谱仪焦距320mm,配置3块光栅探测器≥2000*256像素,300-1000nm响应,峰值效率高于90%,芯片深度制冷到-60℃常规拉曼空间分辨率1um@XY方向
    留言咨询
  • 光电化学电池测量系统功能 测试种类:光电化学类太阳能电池 光谱范围:300-1100nm 白光光源:模拟太阳光光源ABA级 光功率:400uW/cm2 可测量参数:电池的光谱响应度、量子效率、短路电流、I/V曲线、I/T曲线、V/T曲线测试、光功率测试、支持多种通用的电化学测量方法,如CV等 可测样品尺寸:50mmX50mm 可测样品模式:直流测试法、直流偏置光测试法 光电化学电池测量系统特点 使用模拟太阳光光源 光电化学太阳能电池专用配置方案 双光源任选,波长连续可调单色光源+全光谱太阳光模拟 三电极测试方法 一体式架构,操作更简单方便 一键式测量方法 U盘式电化学工作站: 电位范围:±5V 电位分辨率:10uV 电位零误差:100uV 全电位范围控制误差: 1mV 电流测量精度:0.1% 电流分辨率:100pA 电流范围:±50uA~±5mA 电化学工作站可扩展微电流功能,分辨率:1pA 大电流功能:1A/12V
    留言咨询
  • EC Raman光谱仪系统搭载高稳定激光器、恒温制冷检测器,为高质量光谱采集提供保证。利用此系统可捕获到催化过程中痕量中间产物的拉曼信号。随主机还附有高性能拉曼光纤探头,方便客户进行采样。用户还可以根据自己的需求搭配各种特殊采样支架,便利地开展科学研究。 实现电化学测量与拉曼光谱采集同步获得原位反应物与产物信息,利用表面增强拉曼散射效应可以检测不同电化学反应的中间产物,比如氧还原反应等,是用于解释电化学反应过程反应机理的完美解决方案。 常规电化学研究方法是以电信号为激励和检测手段,电信号能提供电化学体系的各种微观信息的总和,难以准确地鉴别复杂体系的各反应物、中间物和产物,并解释电化学反应机理。近年来,由光谱学方法与常规电化学方法相结合产生的光谱学电化学技术成为在分子水平上现场表征和研究电化学体系的不可缺少的手段。 原位谱学电化学方法中,电化学原位拉曼光谱技术能够较方便地提供电极表(界)面分子的微观结构信息。在电催化领域,原位光谱表征可以提供关于催化剂结构和表面状态的详细信息以及反应时催化剂表面吸附的中间体的化学性质和结合构型,还可以原位观测电池电极反应过程。 产品优势: 宽光谱范围:光谱范围最高可覆盖至3350 cm-1 785 nm制冷型拉曼光谱,可拥有更加优异的信噪比 配合独创壳层隔绝表面增强技术,信号放大至百万倍级别 便携式科研级别拉曼。尺寸小,方便携带。可随时随地提供科研级拉曼研究。 稳定性强,搭载高稳定激光器、恒温制冷检测器,为高质量光谱采集提供保证。 完美实现催化过程实时监控,搭载性能优异的电化学工作站,可捕获到催化过程中痕量产物的拉曼信号。规格参数项目名称基本参数激发波长532 nm785 nm1064 nm激发功率Multi mode:100 mWSingle mode:100mWMulti mode:500 mWSingle mode:100mWMulti mode:500 mWSingle mode:100mW线宽<0.1 nm<0.1 nm<0.1 nm范围Typical:150~3200 cm(-1 )Low wavenumber model available(532:90 cm(-1);785: 100 cm(-1))Typical: 150~2500 cm(-1)分辨率8 cm(-1)8 cm(-1)10 cm(-1)探测器Back-thinned area CCDBack-thinned area CCDTE-Cooled InGaSn CCD光斑大小1 um@100x1 um@100x2 um@100x物镜10x/20x/50x/100xMapping size50*50 mm步进分辨率200 nm相机12.0MP color CMOS camera其他633 nm/830 nm 也支持定制
    留言咨询

电化学性质相关的方案

  • 北京佳仪:Sm金属富勒烯的高效提取和电化学性质研究
    在金属富勒烯的形成过程中,存在从金属到碳笼的电子转移。La系金属富勒烯中,金属原子转移2或3个电子给碳笼形成+2或+3价的金属离子和带有大量负电荷的碳笼。尽管如此,金属富勒烯仍具有良好的接受电子的能力。大多数的La系金属富勒烯(Y,La,Ce,Pr,Nd,Gd,Tb,Dy,Ho,Er,Lu)的电化学方法研究表明,它们可以接受5到6个电子,但是,Sm的金属富勒烯的氧化还原性质尚未见报道,其主要原因是Sm金属富勒烯的合成产率低,仅是La金属富勒烯的7%,从而使得其分离非常困难,需要通过多步HPLC循环才能得到,高产率地合成与分离是这一金属包合物研究的关键。本文在高产率合成金属富勒烯的基础上,采用更为有效的方法提取了Sm金属富勒烯,首次利用一步HPLC技术分离出Sm@C82(III)纯品,并对其电化学性质进行了研究。
  • 天津兰力科:聚2 ,2′2 二氨基二缩三乙二醇苯酚醚的电化学合成及其电化学性质
    用循环伏安法研究了2 ,2′2 二氨基二缩三乙二醇苯酚醚(DATGPE) 在ITO 电极上的聚合,讨论了实验条件对聚合过程的影响,初步探讨了聚2 ,2′2 二氨基二缩三乙二醇苯酚醚( PDATGPE) 的电化学性质。结果表明,在乙腈/ 水溶液中,DATGPE 与HCl 的浓度比为1/ 3 ,电位扫描20. 2~1. 0 V 时,能发生快速的电聚合反应。形成的导电膜具有良好的电化学稳定性,且对H+ 呈现很好的能斯特响应。
  • 天津兰力科:杂多酸盐溶液电化学性质研究及其修饰电极的制备
    本文主要参照文献合成了杂多酸盐K6[P2W18O62]14H2O(简称POM-1),研究了它的电化学性质及其对H2O2、NaNO2、KBrO3和KIO电催化性质,并基于静电之间的相互作用在玻碳电极的表面进行了杂多离子P2W18O626-和PDDA(聚二烯丙基二甲基铵)包裹的Fe3O4(以下简Fe3O4纳米粒子)的(layer-by-layer)组装,具体内容主要包括以下几方面1.依据文献报道,合成了Dawson结构杂多酸盐:K6[P2W18O62]14H2O并对它进行了红外和紫外光谱表征。2.研究了K6[P2W18O62]14H2O的电化学性质,并考察了它对H2O2、NaNKBrO3和KIO3的电催化性质。3.依据文献报道,合成了PDDA包裹的Fe3O4纳米粒子,并用扫描电镜对进行了形貌研究。4.依据文献报道的方法,在石英玻璃的表面进行了P2W18O626-杂多阴离和Fe3O4纳米粒子的层层(layer-by-layer)自组装,并用紫外光谱监控多层膜的生长过程和膜的均一性。同时用X光电能谱考察了石英基底面多层膜的主要元素成分。5.利用杂多阴离子P2W18O626-和Fe3O4纳米粒子在玻碳电极的表面进行了层自组装,并对它在溶液中的电化学性质进行了一定的研究。

电化学性质相关的论坛

电化学性质相关的资料

电化学性质相关的资讯

  • 前沿电化学研究的热点--微区扫描电化学新技术讲座
    美国AMETEK集团旗下两大著名电化学仪器品牌:PAR(普林斯顿应用研究)及Solartron(输力强分析),一直以来作为电化学工作站设备领域内的技术领导者,为广大从事电化学研究的科研工作者提供高品质的技术解决方案。此次,阿美特克科学仪器部将于2014年5月22日(SINO?CORR 2014 NACE 中国国际腐蚀控制与涂料涂装展览期间)举办微区扫描电化学新技术讲座,现场提供全套微区扫描电化学设备供实际操作及样品测试,热忱欢迎各位的光临! 近年来,微区扫描电化学技术发展迅猛,在腐蚀和电沉积科学中的表面反映过程基础研究,酶稳定性研究,生物大分子的电化学反应特性,化学传感器,点蚀孔蚀,涂层完整性和均匀性,涂层下或逾金属界面间的局部腐蚀,缓蚀剂性能等相关领域得到广泛应用,倍受科技工作者的关注。 本次新技术讲座特邀请了阿美特克公司科学仪器部产品经理Dr.John Harper和中国海洋大学王佳教授主讲。 Dr. John Harper (AMETEK GROUP 科学仪器部)Dr. John Harper师从英国莱斯特大学Andrew Abbott教授,并获得博士学位。他的研究关注于超临界二氧化碳中的电化学性质。在英国短暂博士后工作后,他进入工业界,参与了新型双极板的氢燃料电池的研发工作。他在燃料电池领域的成就使得他被英国剑桥的一个利用燃料电池催化剂的微传感器研发公司聘用。2003,John加入输力强分析担任应用专家并在公司发挥了巨大的作用,目前,John担任科学仪器部系统产品经理,主要负责的产品有Versascan / SECM, Modulab XM DSSC染料敏化太阳能电池测试系统等。 主讲内容:从腐蚀,基础电化学,能源领域探讨微区扫描电化学包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用 王佳教授 (中国海洋大学)中国海洋大学化学化工学院王佳教授,博士生导师,曾担任中国科学院海洋研究所责任研究员,现任中国腐蚀与防护学会腐蚀电化学及测试方法专业委员会副主任,中国防腐蚀标准化技术委员会委员,中国造船工程学会高级会员,山东省腐蚀与防护学会副理事长,“中国腐蚀与防护学报”和“腐蚀科学与防护技术”编委。王佳教授在腐蚀电化学研究领域,专注于多种环境条件下的腐蚀机理,腐蚀控制与监测,腐蚀电化学电子仪器及传感器,腐蚀防护评价等,并在这些领域获得大量成绩,已发表研究论文225篇(SCI 50篇);已发表专利46项。 主讲内容:腐蚀研究中的微区电化学方法腐蚀研究中的电化学阻抗谱等效电路模型解析方法 新技术讲座定于2014年5月22日(星期四), 在阿美特克商贸(上海)有限公司北京分公司培训室举办。具体安排如下:9:00-11:00 / Dr. John Harper 从腐蚀,基础电化学,能源领域探讨微区扫描 电化学 包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用11:15-12:30 / 王佳教授 微区扫描电化学测试技术及应用实例 交流阻抗谱数据分析及解析12:30-13:30 午餐13:30-16:30 分组进行仪器上机动手实践及自由讨论 联系方式:美国阿美特克科学仪器部(普林斯顿及输力强)联系人:乌鑫 女士电话: 010-85262111-15 北京市朝阳区酒仙桥路10号京东方大厦(B10)二层西侧邮编:100015 Email: michelle.wu@ametek.com.cn 回执姓名 单位及通讯地址电话 email参加人数 是否需要住宿
  • 我国研发成功新型电化学发光纳米生物传感器
    随着科技的进步,传感器和光学元件都将趋于小型化和集成化。有机低维纳米材料由于其独特的结构和新颖的物理、化学性质,在生物传感、纳米光子学领域中展现出广阔的应用前景。近日,据国际知名期刊《Advanced Materials》报道,中国科学院化学研究所光化学院重点实验室利用高比表面积的一维纳米材料,制备出一种更加灵敏的电化学发光纳米生物传感器。该项研究也为低维纳米材料制备生物传感器提供了重要的理论和实验依据。   从细菌到人,所有生物都在使用&ldquo 生物分子开关&rdquo 来监测环境。此类&ldquo 开关&rdquo ,即由RNA或蛋白制成、可改变形状的分子。这些&ldquo 分子开关&rdquo 的诱人之处在于:它们很小,足以在细胞内&ldquo 办公&rdquo ,而且非常有针对性,足以应付非常复杂的环境。受到这些天然&ldquo 开关&rdquo 的启发,纳米生物传感器应运而生。   据中科院相关人员介绍,生物传感器是用固定化的生物体成分,如酶、抗原、抗体、激素等,或者是生物体本身的细胞、细胞器、组织等作为传感元件制成的传感器。按所用分子识别元件的不同,生物传感器可分为酶传感器、微生物传感器、组织传感器、细胞器传感器、免疫传感器等 按信号转换元件的不同可分为电化学生物传感器、半导体生物传感器、测热型生物传感器、测光型生物传感器、测声型生物传感器等。其中,电化学生物传感器由于具有体积小、分辨率高、响应时间短、所需样品少、对活细胞损伤小等特点,广泛应用于医药工业、食品检测和环境保护等领域。   如今,纳米技术的介入更是为电化学生物传感器的发展提供了新的活力。纳米材料具有小尺寸效应、表面效应、量子尺寸效应及宏观量子隧道效应等,使得其表现出奇异的化学、物理性质。例如常见的碳纳米材料,特别是碳纳米管、石墨烯等,就表现出优良的力学性能、导电性能、表面性能及独特的电化学性质。此前,研究人员就曾用琼脂糖将葡萄糖氧化酶和连接了二茂铁的单壁碳纳米管固定在玻碳电极表面,实现了对葡萄糖的快速灵敏检测。碳纳米管的引入还能够显著提高电化学敏感膜中电活性物质的氧化还原可逆性,同时消除了溶解氧对测定的干扰。纳米材料应用于电化学生物传感器领域后,不仅提高了传感器的检测性能,而且提升了传感器的化学和物理性质以及它对生物分子或细胞的检测灵敏度,检测时间也得以缩短,与此同时还实现了高通量的实时分析检测。   随着纳米技术和生物传感器交叉融合的发展,越来越多的新型纳米生物传感器涌现出来,如量子点、DNA、寡核苷配体等纳米生物传感器。未来纳米生物传感器的发展方向应该是集成多功能、便携式、一次性的快速检测分析机器,它可以广泛用于食品、环境、战场、人体疾病等领域的快速检测。例如,食品和饮料中病原体或者农药残留成分的快速灵敏检测 环境中污染气体或者污染金属离子等远程检测和控制 人体血液成分和病原体的快速实时检测,以及战场生化武器和爆炸物的快速检测。   但是与此同时,新一代纳米生物传感器同样面临诸多挑战,如更高灵敏度、特异性、生物相容性、集成多种技术、检测方法简化、制备工艺、批量化生产、成本效益等。对此,这一生物传感器的研发课题组专家表示,分子自组装加工工艺简单可控,可以实现快速复制,而且成本较低,对生物传感器的发展有很重要的促进作用,有利于高灵敏度、低成本、一次性纳米生物传感器的发展。而生物分子自组装技术更值得关注,它具有天然的生物兼容性、优异的结合性能,或将成为生物传感器发展的另一个全新领域。
  • 布鲁克公司发布完整的扫描电化学显微镜解决方案
    完整的SECM电化学显微镜解决方案 布鲁克独有的PeakForce SECM™ 模块是全球首创的完备商用解决方案,在基于原子力显微镜的扫描电化学显微镜上实现了小于100纳米的空间分辨率。通过创新性探针设计,可实现纳米级分辨率的基于原子力显微镜的扫描电化学显微镜目前已广泛应用于新兴研究领域,如化学动力学,生物化学信号传导和环境化学等。此外,此技术可以纳米级横向分辨同时获取形貌、电化学、电学和机械性能等图谱。PeakForce SECM™ 充分利用峰值力模式的优势从根本上重新定义了在液下能实现哪些电学和化学过程的纳米尺度的观察。 PeakForce SECM首次实现了:(1)以往无法获得的(2)同时实现液相下电化学、电学和机械性能等图谱(3)专为SECM设计的可靠而简单易用的商用原子力探针(4)在Dimension Icon® 原子力显微镜上实现最高分辨的SECM和原子力显微成像Au上的一个甜甜圈型图案,使用PeakForce SECM在微压印SAM(自组装)样品上成像。(A) 形貌图中高度差仅几个纳米;(B) 黏附力图清晰地显示出两种化学性质不同的区域; (C) 电流图显示出SAM因其绝缘特性降低了针尖的法拉第电流。 Image courtesy of A. Mark and S. G?drich, University of Bayreuth.了解更多详情请进入布鲁克公司官网。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制