电荷异构体分析

仪器信息网电荷异构体分析专题为您整合电荷异构体分析相关的最新文章,在电荷异构体分析专题,您不仅可以免费浏览电荷异构体分析的资讯, 同时您还可以浏览电荷异构体分析的相关资料、解决方案,参与社区电荷异构体分析话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

电荷异构体分析相关的耗材

  • 安捷伦 BioMAb 电荷异构体分析
    单克隆抗体的全面表征,包括酸性和碱性亚型的鉴别和监测。Agilent Bio MAb HPLC 色谱柱填充了专为单克隆抗体基于电荷的高分离度分离而设计的特殊树脂。Bio MAb 色谱柱有 1.7 µm、3 µm、5 µm 和 10 µm 粒径填料可供选择,较小粒径的填料能够提供更高的分离度。Bio MAb 色谱柱具有高度均一、紧密填装的弱阳离子交换层。Bio MAb 色谱柱的这种弱阳离子交换层化学键合到 Bio MAb 色谱柱的亲水聚合物涂层上。 根据您感兴趣的领域,查看我们的全系列 BioHPLC 色谱柱,获取相关资源,享受特价优惠。 填料载体由硬质球形、高度交联的聚苯乙烯二乙烯基苯 (PS/DVB) 非多孔微球组成填料表面结合了亲水聚合物层,避免抗体蛋白的非特异性结合填料的弱阳离子交换固定相层采用了不同工艺,使其比 Agilent Bio WCX 色谱柱填料的密度更高专为单克隆抗体的电荷异构体分离而设计
  • 安捷伦 BioIEX 电荷异构体分析
    Agilent Bio 离子交换 HPLC 柱填充有聚合物型非多孔离子交换颗粒填料。Bio 离子交换柱专为多肽、寡核苷酸和蛋白质的高分离度、高回收率和高效分离而设计。Bio IEX 系列色谱柱提供了强阳离子交换 (SCX)、弱阳离子交换 (WCX)、强阴离子交换 (SAX) 和弱阴离子交换 (WAX) 填料。所有 Bio 离子交换柱的填料均具有 1.7、3、5 和 10 µm 的非多孔颗粒填料粒径可供选择。 根据您感兴趣的领域,查看我们的全系列 BioHPLC 色谱柱,获取相关资源,享受特价优惠。 高度交联的非多孔聚苯乙烯二乙烯基苯 (PS/DVB) 硬质填料表面结合亲水聚合物层,避免了非特异性吸附均匀、致密填装的离子交换官能团化学键合到亲水层上(每个位点连接多个离子交换基团),提高了色谱柱容量填料、涂层和键合能够耐高压,有助于实现更高的分离度和更快速的分离多个离子交换基团固定连接在一个结合位点上,以增加柱容量
  • 安捷伦 PL-SAX 电荷异构体分析
    用于生物分子的 PL-SAX 色谱柱是在变性条件下对蛋白质、多肽和去保护合成寡核苷酸进行阴离子交换 HPLC 分离的理想选择。共价连接的强阴离子交换官能团拓展了 pH 操作范围,使阴离子交换能力不受 pH 值影响。对于合成寡核苷酸,可以使用高温、有机溶剂和高 pH 等变性条件进行分离。用于生物分子的 PL-SAX 色谱柱可改善自我互补序列或富含 G 的序列(这些序列可能会形成聚集体或发夹结构)的色谱分析性能。5 µm 填料能够高效分离相差一个结构单元的序列。 小粒径填料提供卓越的色谱性能各种填料粒径可供选择,以实现灵活的分析及纯化放大出色的稳定性显著延长色谱柱寿命

电荷异构体分析相关的仪器

  • timsTOF Pro 2由平行累积连续碎裂技术( PASEF )驱动,使得 4D-蛋白质组学和 4D-脂质组学为无偏向性细胞和血浆蛋白质组学、液体活检多组生物标志物发现,以及整合基因组学、蛋白质组学和表观蛋白质组学拓宽了道路。4D-组学时代 —— 解锁第四维度的价值4D-组学的重大突破速度:PASEF 技术实现了在不影响分辨率情况下达到超过 120 Hz 扫描速度。深度:额外一维离子淌度提高了数据完整性。高通量:超快数据采集速度使其可以使用短梯度实现生物样本的高通量分析。耐用性:独特的仪器设计使得其可以连续分析数千个样品,仪器保持稳定的性能而无需清洁。4D-Proteomics&trade 的新标准:更快速度实现蛋白质组全覆盖基于质谱( MS )的蛋白质组学一次可实现样本里成千上万蛋白的定性和定量。然而,受到目前质谱仪的扫描速度、灵敏度和分辨率的影响,实现蛋白质组的全覆盖仍然具有挑战性。timsTOF Pro 2 使用平行累积连续碎列( PASEF )的技术可实现极高的扫描速度和灵敏度,只需要少量样本就可以达到蛋白质组学鉴定新深度。双 TIMS 和 CCS 的分析捕集离子淌度谱( TIMS )首先是一项重要的气相分离技术,它是在高效液相色谱( HPLC )和质谱分离的基础上,带来额外一个维度的分离,可大大降低样品分析复杂度,极大提高峰容量和分析物鉴定可靠性。同样重要的是,TIMS 离子淌度管能对离子实现时间和空间上的聚焦,从而独特地提高灵敏度和扫描速度。双 TIMS 技术可以实现近乎 100% 的离子利用率,离子在前一根淌度管内累积,在后一根淌度管内根据离子淌度值分批释放。这种平行累积连续碎裂( PASEF )的过程能够实现碰撞横截面( CCS )的分析。CCS 额外一个维度信息能够提供很多进一步的分析可能性,可以从复杂数据库实现化合物的高可信度库匹配以及更低的错误发现率( FDRs )。4D-Proteomics&trade 的新标准:更快速度实现蛋白质组全覆盖基于质谱( MS )的蛋白质组学一次可实现样本里成千上万蛋白的定性和定量。然而,受到目前质谱仪的扫描速度、灵敏度和分辨率的影响,实现蛋白质组的全覆盖仍然具有挑战性。timsTOF Pro 2 使用平行累积连续碎列( PASEF )的技术可实现极高的扫描速度和灵敏度,只需要少量样本就可以达到蛋白质组学鉴定新深度。双 TIMS 和 CCS 的分析捕集离子淌度谱( TIMS )首先是一项重要的气相分离技术,它是在高效液相色谱( HPLC )和质谱分离的基础上,带来额外一个维度的分离,可大大降低样品分析复杂度,极大提高峰容量和分析物鉴定可靠性。同样重要的是,TIMS 离子淌度管能对离子实现时间和空间上的聚焦,从而独特地提高灵敏度和扫描速度。双 TIMS 技术可以实现近乎 100% 的离子利用率,离子在前一根淌度管内累积,在后一根淌度管内根据离子淌度值分批释放。这种平行累积连续碎裂( PASEF )的过程能够实现碰撞横截面( CCS )的分析。CCS 额外一个维度信息能够提供很多进一步的分析可能性,可以从复杂数据库实现化合物的高可信度库匹配以及更低的错误发现率( FDRs )。极高的稳定性和通量无需清洗许多用于蛋白质组学应用的 MS 仪器需要每月清洁一次,在大样本组中每天 24 小时运行。仪器性能下降即使在较短的时间段内也是显而易见的。timsTOF Pro 2 卓越稳定性意味着仪器可以全天运行很多周,而没有明显的信号和其它性能下降。PaSER Run & Done —— 加快4D-蛋白质组学的鉴定速度PaSER( 实时平行搜索引擎 )是一个结合硬件和软件的解决方案,能够实现基于样本序列管理的实时数据库搜索引擎。PaSER 以很快的速度就能提供结果,包括 PTM 搜索。通过使用基于 GPU 的搜索,PaSER 在实时或离线模式下可以提供相同的结果,而无需使用简化的算法或中间步骤。PaSER 极快的搜索速度使得在数据采集结束后数秒就能同步拿到搜库结果,真正实现运行并完成! PaSER 有效地打破了大队列样本数据分析通量壁垒。此外,实时蛋白组学的非标记定量也可以跨越 PaSER 获得的数据结果集,使其瞬间能过渡到定量蛋白质组学。通过 TIMS Viz 使得淌度偏移质量对齐( MOMA )变得可视化 ,从而用户可以鉴定和识别只有 4D-Omics 才能看到的共洗脱多肽。 dia-PASEF 增加鉴定可信度dia-PASEF比传统的 DIA 方法有更高灵敏度和选择性,是因为它将 PASEF 原理也应用进来,结合了 DIA 的优点和 PASEF 离子利用率高的优势。TIMS 分离提高了选择性,而且可以将单电荷母离子排除掉,从而降低本底噪音干扰。利用分子量和碰撞横截面 CCS 值的相关性,dia-PASEF 能够实现高可信度化合物鉴定。在 LC-MS/MS分析中, dia-PASEF 能够采集包含 m/z,离子淌度值( CCS ),保留时间和离子强度的 4D 数据。前所未有的蛋白质覆盖深度凭借强大的 SRIG( 不锈钢堆叠环形离子向导 )装置和新优化的 dda-PASEF 方法 ,timsTOF Pro 2 单针能够达到前所未有的蛋白组学覆盖深度。使用自制 HEK 酶切样本, 上样 200 ng,使用 Aurora - 25cm 色谱柱,在 60 分钟梯度下能够鉴定 超过 7,000个 蛋白和 60,000 条多肽。因此 timsTOF Pro 2 可以通过数据库搜索和运行之间的匹配,无需任何谱图库,在一些日常细胞系蛋白组定量实验中实现很高的蛋白覆盖深度。超高灵敏度的高通量靶向蛋白质组学和常规的靶向蛋白组学分析技术( SRM 和 PRM )相比,prm-PASEF 在单针中可极大提高监测多肽数目,同时不影响仪器选择性或灵敏度。靶向质谱( MS )技术是蛋白质组学实验中一种强大的技术,用来验证大队列样本中的候选生物标志物。与数据依赖采集( DDA )和数据非依赖采集( DIA )相比,这可以增加检测灵敏度。可是该技术受到在单针中监测离子数目和液相分离出峰时长以及整体灵敏度间的折中限制。只有通过更长的色谱分离时长或降低质谱的灵敏度和选择性,才能获得大量目标肽的完整数据。prm-PASEF 可以极大地提高单针中靶向监测的多肽数目,这得益于布鲁克 timsTOF Pro 2 的第四维分离可以极大提高选择性和灵敏度, PASEF 技术带来的速度可以增加靶向分析离子数量。超高灵敏度应对最困难的分析挑战随着某些特定细胞、少量细胞群或生物穿刺样本的生物研究越来越重要,低样本量蛋白组定量变得至关重要。而如此低的样本量对于质谱灵敏度提出了很高要求。使用高灵敏度的质谱仪对如此低的样本量进行原型定量至关重要。timsTOF Pro 2 上样 200 ng HeLa 样本,使用 Aurora - 25cm 色谱柱,在 30 分钟梯度下使用 PaSER 能够鉴定超过 74,200 个蛋白和接近 30,000 条多肽。dia-PASEF —— 高通量定量蛋白质组学中实现无与伦比的数据完整性和分析深度使用标准 dia-PASEF 方法多针测试结果有着很高重复性。三种不同的 dia-PASEF 窗口设置下使用 Aurora-25cm 柱在 60 分钟梯度下可实现接近 8,000 个蛋白定量和超过 70,000 条多肽,而且有极高的定量准确性。高灵敏度磷酸化蛋白组学分析和同分异构体分离支持 CCS 的近邻位磷酸化位点定量dia-PASEF 在 timsTOF Pro 2 上的高灵敏度、扫描速度和重现性甚至可以实现低样本量的磷酸化蛋白质组学分析。例如可以实现小鼠脑样本起始总蛋白仅为 25 μg 的磷酸化蛋白质组的非标记定量。使用 Evosep 每天 30 个样本的分析方法,三次重复可鉴定出多达 4,473 个 unique 磷酸化多肽。这些结果为针刺活检的应用带来了希望,可以用信号转导的信息补充癌症蛋白质基因组学数据。这些结果为针刺活检的应用带来了希望。此研究结果由 Stefan Tenzer 教授提供。分析样本量有限时的细胞信号传导当肽段在色谱上发生共洗脱时,由于等重性和信号重合,不能测量 CCS 值的传统蛋白质组学是不能实现磷酸化肽异构体的定量的。PASEF 技术使得基于 TiO2 富集时,使用 150 ug 蛋白富集起始量就能够鉴定 27,768 个磷酸化肽,展现了淌度偏离质量对齐( MOMA )的优点。1,946 条鉴定的共洗脱异构体中,20% 的异构体可以被TIMS 完全分离,这可以使得我们可以更好地理解邻位蛋白磷酸化位点信息。
    留言咨询
  • timsTOF fleX 实现 MALDI 引导的空间定位组学高灵敏度:timsTOF fleX 空间定位组学方案,结合特征区域 MALDI 成像和 PASEF 组学分析,能从有限样本中获得高鉴定率。空间分辨率:高空间分辨率的 MALDI 源和平台机械设计获得分子分布图,增加组学空间维度信息。多功能:双离子源设计使您在同一个质谱平台上完成分子空间分布和 ESI 多组学鉴定。microGRID -- 精准、可靠的硬件升级,使高空间分辨成像实验唾手可得实现高空间分辨的成像实验并不是一件容易的工作。布鲁克推出了全新 microGRID 技术 -- 整合了 MALDI 机械平台和 smartbeam 3D 激光器的光束定位系统,进一步提升了质谱成像实验的图像质量,可获得 5 μm 的超高空间分辨率。microGRID 是一款适用于所有 timsTOF fleX 系列质谱仪的选配功能模块,将它整合进布鲁克现有的质谱成像工作流程中,展现出了突破极限的超高空间分辨率。该技术与布鲁克的自动一体化的成像数据采集流程 SCiLS™ autopilot 无缝衔接,使它不仅适用于成像专家,也同样适用于新购入成像仪器的用户及常规的成像数据采集应用。该技术与布鲁克的 SCiLS™ Lab 软件配合使用,可实现对于高分辨成像数据的深度挖掘。从 4D-组学到分子成像的无折中解决方案双离子源设计将无标记分子定位与 PASEF LC-MS/MS 鉴定匹配,解析生物样本的分子变化。 建立在 shotgun 蛋白组学标准上的 timsTOF fleX 将布鲁克一流的 4D-组学分析与尖端的 MALDI 成像技术整合于一个平台,包括高频率的 smartbeam 3D 激光器。配置有双离子源的 timsTOF fleX,把持久稳定的 ESI 分析和组织分子空间分布集成于一体,是进行空间定位组学研究的理想平台。在此之前,没有质谱仪能为组学研究者同时提供这两种能力。 ESI 和 MALDI 的切换操作,只需在软件中开启 smartbeam 3D 激光源,仅需几秒即可完成。简单的切换操作意味着从组学深度鉴定和定量流程到组织高清成像的方便转换,又不影响效率和功能,从而发现真正有用的信息。增加 MALDI 成像新维度,挖掘更多信息由 MALDI 和 ESI 产生的离子,经过同一路径从离子源到达探测器,因此 MALDI 工作流程可以利用 timsTOF HT 的主要优势,包括根据分子碰撞截面 ( CCS ) 来进行捕集离子淌度分离( trapped ion mobility separation,TIMS )。调谐和校准可在 ESI 模式下进行,并用于 MALDI 模式,方便了仪器的优化。TIMS 允许根据离子形状分离分子。离子与气流一起进入双 TIMS 装置,在第一个TIMS 分析器通过电场进行累积。实际分离发生在第二个 TIMS 分离器。通过降低电位以时间和空间的方式释放离子。可变扫描速度和淌度范围适应性可对不同种类分子优化,为用户带来更多灵活性。为组学增加空间维度信息将特征区域 MALDI 成像和深度多组学分析结合现在变得容易可行。MALDI 成像适用于类型广泛的分析物,包括代谢物、脂类或聚糖,并与显微工作流程无缝衔接。针对空间定位组学,MALDI 成像可识别特征区域化合物分布。timsTOF fleX 采用双离子源设计,与可靠的高品质消耗品和用户友好软件一起使用,方便了研究工作,节省了研究人员的时间。使用布鲁克 IntelliSlides™ 预制玻片,使 MALDI 成像和空间定位组学流程在 timsTOF fleX 上完全自动化。分离相近质量或同分异构体离子捕集离子淌度谱( TIMS )有助于复杂样品( 如组织切片 )的分析。通过分离近质量或同分异构的代谢物、脂质、肽段或糖苷,以获得分析物的真实空间定位。高质量分辨率无助于这些问题的解决,timsTOF fleX 提供了唯一的机会来区分同分异构体的分布。碰撞横截面( CCS )是 TIMS 给出的测量结果,提供了从另一角度来验证质谱分析结果。CCS 关联软件智能地将空间 MALDI-TIMS 成像数据与多组学结果相匹配,并使鉴定结果与重要的形态学内容相关联。从色谱分离技术到在像素点的原位分析,一切变得触手可得 … … timsTOF fleX 是一台多功能的质谱仪,用于测量样品的分子情况。timsTOF fleX 建立在布鲁克开创性 timsTOF HT 平台上,功能齐全、速度快、灵敏度高的 ESI 质谱,可用于所有 多组学分析。结合了高空间分辨率的 MALDI 源和平台机械专业设计,用于解析分子分布和带来组学分析的空间维度。将蛋白质组学分析转换为空间蛋白质组学,将脂质组学转换为空间脂质组学,将代谢组学转换为空间代谢组学,并获取数据的组织学背景。与其它学科相结合,从你的分析数据中获取更多信息以达到科研目标。为质谱成像初学者量身打造的自动一体化成像数据采集流程 SCiLS™ autopilot我们提供 “ 购入即用 ” 的成像耗材和软件产品,帮您迅速采集数据,并随后挖掘出组织的分子表型信息。我们推出了基于 IntelliSlides 预制载玻片的自动一体化成像数据采集流程,不仅大大减少了对用户输入的操作要求,还能确保所采集数据的高品质和可重现性。我司还推出了预制的 fleXmatrix 基质,高品质的基质可以保证实验效果并简化基质施加过程。作为质谱成像数据处理的 “ 行业金标准 ”,SCiLS™ Lab 软件可以实现原始数据的可视化以及后续的数据统计分析操作。此外,SCiLS™ Lab 可以与 MetaboScape 软件联用,实现了通过数据库检索信息或 LC/MS 实验结果直接对高分辨的 MALDI 成像热图进行快速分子注释的功能。将这种联用机制应用于空间定位组学工作流程中,可实现生物背景信息与整体组学或单细胞组学信息的有效整合。多组学性能和高灵敏度 MALDI 的结合timsTOF fleX 实现 SpatialOMx无论蛋白组学、脂质组学、糖组学还是代谢组学,timsTOF fleX 都是空间定位组学分析的理想平台。使用专利的smartbeam 3D 技术进行快速、无标记的 MALDI 成像,以绘制样品的分子分布图,并鉴定感兴趣的区域,对它们进一步深入分析。由 PASEF 技术支持的 LC-MS/MS 分析可以进行最高水平的鉴定并得到最可靠的结果。肿瘤远比看到的还复杂癌症的微环境是由健康细胞、肿瘤细胞、结缔组织、血管和炎症在不同时间点以不同的比例组合而成。每一种成分都有其独特的化合物分子标记。研究人员对疾病状态的判断在很大程度上依赖于组织病理学的解释,并在生物分子的背景下创建这些图谱,从而在传统的组学和理解疾病之间架起了桥梁。CCS 关联空间多组学发现差异癌细胞和其它疾病状态具有显著的遗传和表观遗传修饰,影响基因组表达层次。无论你观察的是蛋白质组、脂质组还是代谢组,化合物的空间分布都包含了有价值的解释信息。要了解复杂的样品,除了质量和电荷外,还需要有 timsTOF fleX 的离子淌度功能提供无与伦比的分析深度。近质量干扰可被区分,同分异构体可被分离。这有助于组织中近质量脂质的准确定位。原位 MS/MS 以及 PASEF 技术支持的 4D 多组学研究方案使您能够识别更多感兴趣的分析物。SpatialOMx 的自动分子注释工作流程布鲁克的业界领先的应用软件,现在可以直接对组织中的目标分子注释。只需将数据导入到 SCiLS™ Lab 软件,定义感兴趣的区域,并将峰列表数据导出到 MetaboScape。使用 LC-MS/MS 建立的数据库或成分列表对各个峰进行注释,然后导出注释表并送回到 SCiLS™ Lab 进行可视化。从 SCiLS™ Lab 软件中,可以使用通路和熟悉的命名法而不是分子量可视化实验结果,从而缩短从数据到最终结果的时间。
    留言咨询
  • FlashSENS激光闪光光解光谱仪FlashSENS 激光闪光光谱仪是卓立汉光公司开发的用于研究分子激发态行为,特别是反应历程的分析工具。该系统使用的激光闪光光解技术是基于动力学和瞬态光谱的检测,用来研究光化学、光生物学、光物理学体系中通过激光激发诱导产生的单重态、三重态的激发态分子,价键重排后的自由基和电子(质子)转移产生的正、负离子等瞬态中间体,探讨这些瞬态中间体的产生和衰退时间及各种性质和影响因素。FlashSENS 激光闪光光谱仪应用领域涵盖光化学(photochemistry)、光生物学(photobiology)、光物理学(photophysics)等多学科领域,主要应用包括: 分子内、分子间能量转移、电荷转移 电子能级跃迁、振动弛豫 电荷(空穴)转移(注入)时间 多激子效应(MEG)和俄歇复合 激发态吸收 染料敏化太阳能电池电子转移 半导体材料光催化电子转移 非线性光吸收 半导体载流子动力学 双光子或多光子吸收 单线态-三线态电子交换 单碳纳米管的光物理 量子点的能量转移和电子迁移的竞争 配合物同分异构体分析 CdSe/PbS量子点的非线性吸收 富勒烯衍生物太阳能电池性能 金属配位化合物的光物理 …… 激光闪光光解光谱仪系统特点: ■ 一体化的光学调校,系统性能更稳定■ 时间分辨率:7ns (可选:3ns Ultra Fast) ■ 内置超连续白光作为探测光,相比传统脉冲氙灯光源具有更高的探测效率■ 探测光点:5mm ■ 探测光光谱范围:190-2100nm ■ 适合于固体、液体等多种样品形态的样品架和测量光路■ 全自动测量操作,开机即用,操作简便■ 可升级至瞬态光电流、瞬态光电压测试系统 激光闪光光解光谱仪技术规格: SZ900-KM SZ900-SM 测量模式动力学测量模式光谱测量模式光谱范围300-1100nm 200-850nm 灵敏度* 0.05mOD 0.00024OD 泵浦激光单波长Nd:YAG激光器,1064nm,532nm,355nm,266nm 可调谐OPO激光器UV-NIR,210-2400nm 探测光源类型基于LDLS的超连续白光光源模式连续光谱范围190-2100nm 单色仪/光谱仪型号Omni-λ300i 焦距300mm 狭缝0.01-3mm连续可调,自动控制光谱范围330-2400nm(可扩展) 光谱分辨率优于0.1nm@1200g/mm 优于0.6nm@300g/mm 探测器类型标准硅探测器铟镓砷探测器ICCD 光谱范围300-1100nm 900nm~1600nm 180-850nm 暗电流0.5nA0.1nA 带宽45MHz 10MHz门宽- 7ns (可选3ns Ultra Fast)有效像素- 960*256像面尺寸- 25*6.7mm制冷温度- -25°C激光闪光光解光谱仪系统选型表 型号说明SZ900-KM 动力学测量模式,标准硅探测器,系统不包括激光器SZ900-SM 光谱测量模式,ICCD,系统不包括激光器SZ900-KSM 动力学+光谱双测量模式,标准硅探测器、InGaAs任选一种+ICCD,系统不包括激光器
    留言咨询

电荷异构体分析相关的方案

  • 重组蛋白表征——电荷异构体分析
    在生产和纯化过程中,蛋白质能表现出多种电荷异质性改变。这些变化不仅影响 稳药物的定性,也影响活性,而且还可能导致有害的免疫反应。所以,开发和生产过程中蛋白药物的电荷异构体分析非常关键。电荷变异体的表征通常是用等电聚焦或离子交换色谱进行的。等电聚焦 (IEF) 通过等电点 (PI) 进行蛋白质的分离,常规用于重组蛋白电荷异构体的指纹图分析。与传统的平板凝胶等电聚焦电泳相比,毛细管等电聚焦电泳 (cIEF) 具有更高的分离度、分析速度,定量能力和自动化性能。
  • 利妥昔单抗创新药物和生物仿制药的电荷异构体及聚集体分析
    单克隆抗体是用于治疗各种疾病的一类重要的生物分子。生物仿制药是创新药物分子的复制品,需要详细表征其关键质量属性 (CQA),例如聚集体和电荷异构体。与创新药物相比,这些属性必须处于一定范围内才可获得监管机构批准。本研究采用基于 Agilent 1260 Infinity II 生物惰性液相色谱和 Agilent AdvancedBio 色谱柱的两种分析工作流程,对不同制造商生产的两种利妥昔单抗生物仿制药与创新药物的聚集体和电荷异构体图谱进行了比较。结果显示了创新药物与生物仿制药在聚集体和电荷异构体图谱方面的相似性或差异性。生物仿制药 1 与创新药物在聚集体和电荷异构体方面的相似性高于生物仿制药 2。方法表现出优异的日内和日间重现性。Agilent OpenLab CDS 软件的 Peak Explorer 功能使数据审查一目了然。本研究是一系列利妥昔单抗生物相似性研究的一部分。
  • 使用BioResolve SCX mAb色谱柱开发单克隆抗体电荷异构体分析方法
    盐梯度下阳离子交换色谱的方法开发参数。 由于蛋白质治疗药物(包括单克隆抗体(mAb))的电荷异质性可能会影响生物治疗药物的生物活性、安全性和稳定性,所以需要对这种电荷异质性进行表征和监测1。离子交换色谱(IEX)一直被广泛应用于蛋白质电荷异构体的纯化、表征和常规监测分析。由于mAb的等电点(pI)相对较高,与阴离子交换色谱分离相比,阳离子交换色谱(CEX)更适合用于mAb电荷异构体的表征分析。本应用纪要介绍了开发CEX固定pH盐梯度方法时需要考虑的因素。其它与使用pH梯度有关的信息请参阅单独的沃特世应用纪要2。借助沃特世高分离度强阳离子交换色谱柱(即BioResolve SCX mAb)和 Waters AutoBlend Plus技术,可以高效实现盐梯度方法开发,得到可重现、稳定的分离。

电荷异构体分析相关的论坛

  • 电泳新技术对电荷异构体大规模分离制备并深度表征-论文分享

    蛋白质的翻译后修饰常常会影响蛋白质的结构和功能,反映在生物制药工业上,会对药品的安全性和有效性产生重大影响。翻译后修饰常常表现为电荷变异体,因此电荷异构体的分析成为了质量控制的一个关键项。目前常见的电荷异构体分析方法为IEF/cIEF或iCIEF,可以鉴别生物药,对生物药的纯度进行分析,测定电荷异构体的等电点以及各种异构体的分布。但是,等电聚焦或者毛细管等电聚焦存在很多短板,最明显的就是无法大规模制备异构体。美国基因泰克公司的科学家曾经用一种叫做自由流电泳的工具,高分辨率高通量大规模对单抗的电荷异构体进行分离制备,并结合各种分析手段,对每一个异构体进行了深度表征。现分享论文如下,欢迎大家讨论!

  • 【金秋计划】+电荷异构体的馏分收集(IEX-HPLC法)

    [url=https://zhida.zhihu.com/search?q=%E5%8D%95%E5%85%8B%E9%9A%86%E6%8A%97%E4%BD%93&zhida_source=entity&is_preview=1]单克隆抗体[/url]在生产及存储过程中会由于抗体分子自身性质、环境应力、储存方式等因素,而发生复杂的[url=https://zhida.zhihu.com/search?q=%E7%BF%BB%E8%AF%91%E5%90%8E%E4%BF%AE%E9%A5%B0&zhida_source=entity&is_preview=1]翻译后修饰[/url],如氧化、脱酰胺、糖基化、C末端赖氨酸切除、N末端[url=https://zhida.zhihu.com/search?q=%E7%84%A6%E8%B0%B7%E6%B0%A8%E9%85%B8&zhida_source=entity&is_preview=1]焦谷氨酸[/url]化、降解/聚合等,造成抗体在电荷分布方面高度的异质性。电荷异构体的产生会影响抗体药物的结合能力、生物学活性、免疫原性以及结构稳定性等,进而影响抗体药物的[url=https://zhida.zhihu.com/search?q=%E8%8D%AF%E7%89%A9%E4%BB%A3%E8%B0%A2%E5%8A%A8%E5%8A%9B%E5%AD%A6&zhida_source=entity&is_preview=1]药物代谢动力学[/url]、安全性和有效性。电荷变化的复杂性常常给评估完整的电荷变化概况带来巨大的挑战。 目前,有多种方式(IEX-HPLC、FFE、icIEF等)对电荷异构体进行馏分收集,从而进一步对产品进行表征。奕安济世生物药业[url=https://zhida.zhihu.com/search?q=%E7%90%86%E5%8C%96%E5%88%86%E6%9E%90&zhida_source=entity&is_preview=1]理化分析[/url]平台具有成熟的IEX-HPLC馏分收集技术,可获得较高的目标收集组分含量,馏分收集纯度1(IEX-HPLC)可达85%以上。收集装置如图1所示,主要是由HPLC和馏分[url=https://zhida.zhihu.com/search?q=%E6%94%B6%E9%9B%86%E5%99%A8&zhida_source=entity&is_preview=1]收集器[/url]串联组成。 [img=,564,573]https://pic3.zhimg.com/80/v2-78e01950668b0065dab04fab05ee789c_720w.webp[/img] 图1. IEX-HPLC馏分收集系统 为提高馏分收集效率,前期一般需要在所用原始分析方法(IEX-HPLC)基础上进行优化,在保持主洗脱梯度程序不变的情况下,缩短方法的平衡时间,增加进样质量。其中,在不改变[url=https://zhida.zhihu.com/search?q=%E8%BF%9B%E6%A0%B7%E5%99%A8&zhida_source=entity&is_preview=1]进样器[/url]定量环体积基础上,通过叠加多次进样然后一次洗脱的方式以增加进样质量,可大大提高目标组分的收集效率。图2展示了不同进样质量的CEX-HPLC色谱图,单次进样/洗脱的抗体质量可达9 mg。 [img=,1080,607]https://pic3.zhimg.com/80/v2-46cd62d44d255c528a3f8bcee8f154dc_720w.webp[/img] 图2. 叠加进样及收集区域 为了提高目标组分的收集效率,采用进样9 mg的抗体质量进行馏分收集,收集区域如图2(下)所示。将盲收2得到的馏分样品结合二次精制的方式,再经系列换液、浓缩,最终得到的目标收集组分经CEX-HPLC检测图谱如图3所示,馏分收集纯度见表1。其中第二个碱性峰的(Basic Fraction 2)由于发生N端焦谷氨酸环化,导致其收集纯度降低,其余馏分收集样品纯度可达90%以上。 [img=,1080,514]https://pic3.zhimg.com/80/v2-b788cb0eeea822394cc29c8fa691b362_720w.webp[/img] 图3. 馏分收集样品CEX-HPLC检测结果叠图 表1. 馏分收集纯度 [img=,799,344]https://pica.zhimg.com/80/v2-543c0452a10c60c5842ac68703621d3c_720w.webp[/img] 馏分收集样品的纯度达到后续表征研究要求后,需对其进行储存条件进行稳定性评估。以确保其质量在表征研究过程中,未发生明显改变。馏分收集后的样品将进一步用于表征研究,对CQA评估、工艺变更、产品批次间差异、质量标准制定等具有重要的指导意义。

  • Webinar:CIEF-MS及iCIEF组份收集质谱鉴定蛋白电荷异构体

    Webinar:CIEF-MS及iCIEF组份收集质谱鉴定蛋白电荷异构体

    [b]题目:Using direct CIEF-MS and prep-CIEF for MS-characterization of protein isoforms, [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url] analysis, peptide mapping and other techniques日期:2019年10月10日时间:9:00am(北京时间)注册链接:[/b][url=https://view6.workcast.net/register?cpak=1381226141481492&referrer=SelectScience-promo1][b]https://view6.workcast.net/register?cpak=1381226141481492&referrer=SelectScience-promo1[/b][/url][b]演讲人:Neusüß 教授(阿伦大学):分享有关iCIEF-MS在蛋白质异构体表征中的应用Sö nksen博士(Novo Nordisk):使用iCIEF进行组份收集蛋白药物电荷异构体,随后进行肽图和[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]分析黄博士(AES Lifesciences):在演讲之前解释运行此类实验所需的仪器装置[img=,591,655]https://ng1.17img.cn/bbsfiles/images/2019/09/201909281419303948_2613_4004818_3.jpg!w591x655.jpg[/img][/b]

电荷异构体分析相关的资料

电荷异构体分析相关的资讯

  • 单克隆抗体标准物质电荷异构体研究
    p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp 单克隆抗体药物(mAb)是通过基因工程生产的蛋白质药物,具有特异性高、作用机制明确、效果显著、经济效益大等优势,是近年来生物医药产业的重要增长点。 br/ /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 治疗性单克隆抗体(mAbs)的开发和制造是一个高度管制的过程,ICH的指导原则指出了相关产品质量参数允许的异质性水平。电荷异构体是单克隆抗体(mAb)的关键质量参数(CQA)之一,在药品稳定性研究、申报及放行等环节都必须检测、评估。抗体的电荷异构体是由细胞内的酶促和非酶促过程分泌到培养基后形成,电荷异构体可能具有明显不同的生物活性,影响单抗药物的功能、安全性及稳定性。导致电荷异质性的最常见变异之一是C末端赖氨酸剪切,随着一个或两个带正电荷的赖氨酸残基丢失,可导致碱性变异体的形成;另外,在N-和O-连接的聚糖上脱酰胺、糖化和带负电荷的唾液酸的存在都会导致负电荷增加和酸性变异体的形成。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 电荷异构体的检测方法有很多种,如:聚丙烯酰胺凝胶电泳,虽然仪器设备相对便宜,但其分辨率低、操作繁琐,目前应用较少;毛细管等电点聚焦(cIEF)电泳可进行蛋白的等电点测定,现已开发出毛细管电泳与质谱联用的技术,该方法可从完整蛋白水平进行分析,暂未推广使用;离子交换色谱(IEX)在电荷异构体的分析中使用较多,有盐洗脱与pH梯度洗脱两种方式,后续收集各个成分进行质谱检测分析其分子量及翻译后修饰。现已有在线的LC-MS方法,此方法不使用传统的盐缓冲液,改为质谱可以耐受的有机盐缓冲液来进行电荷异构体的分离,但其质谱图谱质量及普适性还有待考量,且不能实现肽段水平翻译后修饰的解析。中国计量科学研究院研制了人源化IgG1 κ型单克隆抗体标准物质,与军事科学院军事医学研究院钱小红、应万涛课题组合作,建立了cIEF-WCID及SCX-HPLC两种方法分离检测了单克隆抗体标准物质中的电荷异构体。运用蛋白质组学技术,从完整的分子量分布、肽图分析、进一步延伸到糖肽分析,建立了逐步深入的分析方法来研究单克隆抗体电荷异构体形成的影响因素,此方法可推广应用于其他单抗类药物的电荷异质性分析与评价。 /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 600px height: 272px " src=" https://img1.17img.cn/17img/images/202010/uepic/f26eb0c0-ed43-47b2-9965-eb69024d8360.jpg" title=" 图片1.png" alt=" 图片1.png" width=" 600" height=" 272" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 2020年11月10-12日,中国计量科学研究院和国际计量局拟联合举办 span style=" color: rgb(255, 0, 0) " strong 第三届 “药物及诊断试剂研发与质控——测量与标准,质量与安全(TD-MSQS 2020)” /strong /span 国际研讨会,以期进一步促进该领域的学术交流和技术发展,提升企业的研发水平和产品质量。本次会议将在南京市政府的支持下,在江苏省南京市举行。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 本次会议可通过官方网站http://tdmsqs.ncrm.org.cn注册或扫描二维码注册,注册成功后请填写参会回执发送至会议邮箱pptd@nim.ac.cn。 /p p style=" text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/11c12ff4-263b-48c2-aff9-f4640b0a1850.jpg" title=" 图片3.png" alt=" 图片3.png" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center " strong span style=" text-indent: 0em " 欢迎各位专家、同仁报名参会! /span /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 更多信息请关注会议官方网站: a href=" http://tdmsqs.ncrm.org.cn。" _src=" http://tdmsqs.ncrm.org.cn。" http://tdmsqs.ncrm.org.cn。 /a /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: right " 供稿:崔新玲 胡志上 span style=" text-indent: 2em " & nbsp /span /p
  • 清华精仪系团队实现高分辨生物分子异构体分析研究
    研究背景与成果生物分子的结构解析与相关生物学功能的关联研究已成为现今生命科学的前沿。生物分子存在多级结构,而其结构复杂度的一个重要因素为分子异构。不同的异构分子(Isomers and isoforms)具有相同的化学式和分子量,但化学结构不同。例如,单糖存在多种异构体,包括葡萄糖、果糖、半乳糖等;多糖由单糖两两通过糖苷键相互连接组成,导致出现更为复杂的构造异构(分子中原子或原子团互相连接次序不同,Structural or constitutional isomers)和立体异构现象(连 接 次 序 相 同 但 空 间 排 列 不 同,Spatial isomers or stereoisomers)。离子迁移(Ion mobility, IM)与质谱(Mass spectrometry, MS)联用(IM-MS)分析已经发展为生物分子特别是生物大分子结构解析的一种主要手段,并成为质谱仪器发展的主要方向。IM可以区分MS不能区分的异构体或同重素(Isobars),这一独到的特性对生物分子的结构解析研究十分关键,近年来被广泛用于糖结构、脂质结构、蛋白质结构和活性、蛋白质-分子相互作用等研究中。近年来,多种IM 分析方法被纷纷提出,例如迁移时间 DTIMS (Drift time ion mobility spectrometry)、囚禁式 TIMS(Trapped ion mobility spectrometry)、行波 TWIMS(Travelling wave ion mobility spectrometry) 以及非对称场 FAIMS(Field asymmetric ion mobility spectrometry)等。然而,这些技术均基于低E/N场原理(E/N 图2. 二糖异构体分析。(a)四种二糖异构体及其(b)离子云扫描谱图。乳糖和纤维二糖混合物的(c)离子云扫描谱图和(d)串级质谱分析谱图。(e)两种二糖标准品及(f)混合物的定量分析结果。离子云扫描技术对各类生物分子异构体具有普遍适用性。如图3所示,该技术同样可分辨脂质和多肽分子异构体。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。图3. 脂质与多肽异构体分析。(a)脂质异构方式示意图。各种脂质异构体的离子云扫描谱图:(b)sn异构、(c)碳碳双键位置异构和(d)双键顺反异构。(e)多肽的不同翻译后修饰类型及其异构方式示意图。不同翻译后修饰类型的多肽异构体离子云扫描谱图:(f)甲基化、(g)乙酰化和(h)磷酸化。本研究由国家自然科学基金项目和清华大学精准医学科研项目资助。论文第一作者为清华大学精仪系周晓煜副教授,通讯作者为欧阳证教授,其他作者还包括精仪系博士生王卓凡和范菁津,第一完成单位为清华大学精密仪器系精密测试技术与仪器国家重点实验室。这项研究也得到了清华大学化学系瑕瑜教授、精仪系马潇潇副教授与张文鹏助理教授的大力帮助。
  • 欧阳证团队利用超高场离子云扫描技术实现高分辨生物分子异构体分析研究
    生物分子的结构解析与相关生物学功能的关联研究已成为现今生命科学的前沿。生物分子存在多级结构,而其结构复杂度的一个重要因素为分子异构。不同的异构分子(Isomers and isoforms)具有相同的化学式和分子量,但化学结构不同。例如,单糖存在多种异构体,包括葡萄糖、果糖、半乳糖等 多糖由单糖两两通过糖苷键相互连接组成,导致出现更为复杂的构造异构(分子中原子或原子团互相连接次序不同,Structural or constitutional isomers)和立体异构现象(连 接 次 序 相 同 但 空 间 排 列 不 同,Spatial isomers or stereoisomers)。  离子迁移(Ion mobility, IM)与质谱(Mass spectrometry, MS)联用(IM-MS)分析已经发展为生物分子特别是生物大分子结构解析的一种主要手段,并成为质谱仪器发展的主要方向。IM可以区分MS不能区分的异构体或同重素(Isobars),这一独到的特性对生物分子的结构解析研究十分关键,近年来被广泛用于糖结构、脂质结构、蛋白质结构和活性、蛋白质-分子相互作用等研究中。近年来,多种IM分析方法被纷纷提出,例如迁移时间DTIMS(Drift time ion mobility spectrometry)、囚禁式TIMS(Trapped ion mobility spectrometry)、行波TWIMS(Travelling wave ion mobility spectrometry)以及非对称场FAIMS(Field asymmetric ion mobility spectrometry)等。然而,这些技术均基于低E/N场原理(E/N   图2. 二糖异构体分析。(a)四种二糖异构体及其(b)离子云扫描谱图。乳糖和纤维二糖混合物的(c)离子云扫描谱图和(d)串级质谱分析谱图。(e)两种二糖标准品及(f)混合物的定量分析结果  图3.脂质与多肽异构体分析。(a)脂质异构方式示意图。各种脂质异构体的离子云扫描谱图:(b)sn异构、(c)碳碳双键位置异构和(d)双键顺反异构。(e)多肽的不同翻译后修饰类型及其异构方式示意图。不同翻译后修饰类型的多肽异构体离子云扫描谱图:(f)甲基化、(g)乙酰化和(h)磷酸化  离子云扫描技术对各类生物分子异构体具有普遍适用性。如图3所示,该技术同样可分辨脂质和多肽分子异构体。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。  该研究成果近日以“超高场离子云扫描技术实现高分辨生物分子异构体分析研究”(High-Resolution Separation of Bioisomers Using Ion Cloud Profiling)为题发表在《自然通讯》(Nature Communications)上。  论文第一作者为清华大学精仪系周晓煜副教授,通讯作者为欧阳证教授,其他作者还包括精仪系2020级博士生王卓凡和范菁津,第一完成单位为清华大学精密仪器系精密测试技术与仪器国家重点实验室。研究得到了清华大学化学系瑕瑜教授、精仪系马潇潇副教授与张文鹏助理教授的大力帮助。该研究由国家自然科学基金项目和清华大学精准医学科研项目资助。  论文链接:  https://www.nature.com/articles/s41467-023-37281-7
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制