低加速电压

仪器信息网低加速电压专题为您整合低加速电压相关的最新文章,在低加速电压专题,您不仅可以免费浏览低加速电压的资讯, 同时您还可以浏览低加速电压的相关资料、解决方案,参与社区低加速电压话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

低加速电压相关的耗材

  • 金颗粒标样30 - 300nm,低加速电压分辨率测定标样
    【产品详情】标准的金球或锡球分辨率测定标样不适用于低加速电压下或者老旧仪器中的测试,可能导致此问题的原因是低加速电压下采用高计数率和小束斑直径测样时得到的分辨率较差、信噪比过低。较大的标样粒径(30 - 300nm)在分辨率测试时可以在保留图像细节的同时确保较高的对比度,此特性使得此标样可以在非理想条件下使用。可镶嵌于Zeiss,FEI,TESCAN,JEOL和Hitachi扫描电镜各自的样品台上。 此分辨率测试标样粒径分布为30-300nm,与标样AGS168相比,更大的金粒尺寸允许此标样用于低加速电压下的分辨率校准。生长于石墨衬底上的金颗粒之间有间隙,尺寸不一,可以实现非理想操作条件下的分辨率测试,基于此特性,此标样也可以用于高分辨率测试条件下的灰度校准。理想条件下,高分辨率扫描电镜可以给出高质量的间隙分辨率测试和灰度校准结果。搭配中等分辨率的电镜使用此标样可获得尚可使用的间隙分辨率,但灰度区分不明显,只能呈现4-5级。因为标样颗粒的几何形状不规则,二次电子模式下的差分信号采集会导致灰度对比出现。大颗粒之的细小颗粒和间隙,可以用于更准确地评估电镜的成像质量。评估二次电子成像质量时,将标样倾斜,与二次电子收集装置成30°角时可得到质量最好的像。采集背散射电子时样品台的倾角则由探测器的位置决定。但若样品与探测器之间的倾角大于35°,标样上大块的金粒会产生较大的投影,会遮蔽标样上较小的金粒,因此不推荐。此外,测量金粒之间的间隙尺寸时须注意样品的倾角会影响图像的放大倍数。当放大倍数在2,000倍以上时金粒可见,最佳工作距离是7-8mm。使用钨灯丝电镜时,先用20kV的加速电压观察样品,再逐步降低加速电压和束斑直径聚焦调节至合适的聚焦状态和明度。工作时需确保电子枪、灯丝、光阑孔准直,电子束须汇聚、明度适当、束流稳定。当线扫描分辨率调至最高、测试时间较长时(在部分仪器中此时间可达10min)可得到较高的信噪比。 【技术详情】标样粒径分布金颗粒标样30-300nm产品详细价格及资料,请登录电镜耗材在线商城网站查看。

低加速电压相关的仪器

  • 粒子加速器 400-860-5168转2623
    AMS通过进行直接分析测定同位素比值,从毫克和次毫克样品中提供高精度同位素信息。 依据放射性衰变和从样品中射出的&beta 粒子的测量值,传统闪烁计数方法提供了放射性同位素浓度的信息,在它们通过质荷无线电分离以后,AMS直接计数出独立的同位素。 AMS要优于闪烁计数,因为AMS需要更少的样品材料并且由于高的计数率它能提供更高的样品处理量。由于没有足够的样品材料或者仅仅因为对样品数量要求太高,使得通过其他的计数手段的测量变得不太可能,而AMS却将这种测量转化为可能。最初应用于考古学的C14 记年的加速质谱仪,如今被用于测量例如铍,铝,氯,钙等众多元素的同位素比值。它被应用于地质物理学,海洋学,环境和古气候探究,生物医学,生化动力学,材料研究,监控,原子核,原子物理学和微量元素的分析等诸多领域。敏感度用AMS可实现的极度敏感性,用传统分析的同位素比值质谱仪是达不到的。AMS解决了当研究同位素时分子峰和离子峰有几乎相同的质荷比的干扰问题。在典型的最小浓度比10-15范围之内,仍然能通过AMS测量确定。精确度和可重复性HVE质谱仪概念的核心特征是&ldquo 国家的艺术&rdquo ,tandetron加速器特点是可靠性高,噪音极低水平,高的端电压的稳定性和低的端电压纹波。HVE tandetrons配备了一个纯粹的电子的高压电源,其优点在于,它没有可移动的部分.它没有振动,因此可能会导致端子电压波动也是不存在的。此外,纹波和稳定的价值和动态行为在多年的操作中一直很稳定,压力箱内的部件维修少有发生,不过如果需要的,维护也是必要的。由于精度和可重复性是AMS的关键问题,稳定性对于AMS来说是极为重要的。在实验核物理环境可以容忍的终端电压瞬变,在AMS是绝对不能接受的,因为它可以破坏从样品中获得的数据,而那些数据可能是不可替代的。同样,端子电压的轻微的波动也会导致通过加速器光束传输的变化,降低了结果的再现性。单个或多元素系统根据HVE tandetrons粒子加速质谱仪应用,可以划分为两个方面:单个元素的专属系统和多元素的多元素系统。其它离子束技术如离子注入,RBS-C,PIXE和ERD等的系统拓展应用也是有效的。固体以及气态样品HVE tandetron AMS系统都配备了50(可选200)样品的混合溅射源,接受固体样品以及气体样品(CO2),之后凭借可以允许的接地电位,进行气象色谱或碳氮氢元素分析仪的上游整合。HVE混合AMS溅射源的一个独特的功能特征,是在接地电位上的休止。它简化了源代码访问,可以避免一个大的高电压保护罩的必要性,确保安全和几乎无辐射的操作运行。待分析的样品是从传送带传送到离子源的内部,以避免样品在溅射过程中造成的交叉污染,真空泵直接坐落在距离离子发生器非常近的源体附近,确保了存在CO2样品的情况下,最佳真空泵抽速和低记忆效应。在溅射源和传动带之间存在一个气动闸阀使得离子发生器始终保持在一个合适的温度,延长了它的使用寿命,避免了传送带交换过程中真空环境的破坏。溅射源顶端有一个侧向插入点,这个精确和具备可重复性的方法就使得溅射源的维护更加的简单、快捷。同时性和连续性注入存在两种不同概念的注入方式:同时注入和连续注入。随着同时注入,不同的同位素被分离,分析,重组最终被同时注入到加速器中。HVE的同时注入是基于一个曾获得过专利的四磁体的结构,这个结构设计的固有特性,确保了它重组时轨迹的一致性和参数设置的独立性。对于连续注入,不同的同位素一次一个的被分析和注入加速器里。HVE连续注入配备了一个光速屏蔽单元,匹配了同位素经由加速器运转的纳秒精度和持续时间。它消除了对于交流电压需要相对较长的设置时间所引起的不确定性。它允许了一个更高的交流电压频率,这样就可以反过来降低由溅射源的小故障所引起的不利因素,从而优化了其精度。然而 同时注入是一个完全的直流操作连续注射周期,通过强度差异好几个数量级的同位素,通常是介于用于AMS的长寿命的放射性同位素之间。这就导致了加速器不同的束流负载,造成小端电压波动的影响,可能会影响精度。因此同时注入是高精密度加速质谱仪测量的首选方法,然而,同时注入的设备对于相对原子质量更大的元素测量变得不切实际的大和昂贵,但是连续注射可以很容易地覆盖整个周期表。最佳的端电压最佳的端电压依赖于被分析的元素种类和所需的精度要求,背景和检测效率是由应用程序确定的。HVE tandetron AMS 系统适用于不同的终端电压,最高可达6.0MV.磁力和静电抑制HVEtandetrons都配备了大口径高导加速管,沿加速管保持较低的压力。加速管本身配置有一种特有的磁性和静电抑制的装置,用以移除二次电子和在加速段有电荷交换的微电子的背景。高能量的质量分析加速后的剩余的背景在由静电能量分析仪组成的高能质谱仪中进一步减少之后,根据被分析的同位素和不同同位素所需要的背景,决定一个或两个磁铁。稀有同位素测量在两个阳极电离室能够同时测量每个粒子的DE /DX和Efinal,而稳定同位素只能在电子抑制下测量电量。 高能量质谱仪是适用于单一的元素或多个元素。在第一磁极后可以插入一个箔片来引入一个额外的能量差异在同位素和等压背景之间。这就允许移除之后的静电分析仪。10Be元素会需要类似箔片,也可以通过一个光谱仪的真空锁取代。这箔是双金属箔安排专利的一部分,优化了36Cl的一部分检测。
    留言咨询
  • HVE 加速器质谱 400-860-5168转3461
    介绍 AMS加速器质谱提供了高精度同位素组成,从克级样品到半克级样品, 通过直接的测量同位素比值。 传统的闪烁计数法 基于放射性衰变和从样品中发射的β粒子的测量, 来提供同位素比例的浓度信息, 而AMS可以在同位素离子分离之后直接各个计数。 AMS超越闪烁计数法,在于AMS需要远少的样品量,并且提供了更高的样品信号由于更高的计数速率。 精度和重复性HVE加速器质谱最重要的特点是“艺术设计”的加速器阵列,其特点就是高度可靠性,突出的低噪音水文,高电压稳定性,低端子电压纹波。 HVE阵列配备一个电子的高压电源,无运动部件。其结果是没有振动,而振动可能会导致终端电压波动。此外,纹波和稳定值和动态行为可提供多年的稳定操作,维护的压力罐中的组件很少,如果需要的话。 AMS使得很多测量成为可能:当样品不能够被通过其他计数技术进行测量时,比如因为没有足够的样品材料或样品数量太高。 对在考古学中最初的应用是在考古学中测量14C , 现在测量众多元素包括Al、Cl、Ca 和U同位素比。AMS技术被广泛应用在应用地球物理,海洋环境和古气候研究、水文、生物医药、生化反应动力学、材料研究、核不扩散的维护和监测,核和原子物理、核天体物理学和微量元素分析等领域。 灵敏度AMS的绝对灵敏度不是常规质谱能够得到的。AMS解决了干扰问题:源自于分子和分子离子同样的质荷比,当同位素被检测时。典型的最小浓度比,可以被AMS检测到的在10-15 由于精确和重复性是AMS的关键问题,所以稳定性对于加速器质谱而言是非常重要的因素。在实验核物理环境中可以容忍的终端电压瞬变在AMS中是绝对不可接受的,因为它可以破坏从可能不可替代的样品中获得的数据。 同样,终端电压的微小波动也会引起光束通过加速器的变化,从而降低结果的再现性。 单或多元素系统这取决于HVE串列加速器质谱在应用上的两个不同版本: 对应单一元素的专用系统, 或者对应多元素的多元素系统。对应离子束技术的系统扩展性包括离子注入, RBS-C,PIXE,ERD 和 NRA都是一样可以的。 固态以及气态样品HVE串列AMS系统可以配置50(200可选)样品溅射源,可以接受固体或者气体(CO2)进样,这里CO2可以通过地电压导入,使得可以与GC或元素分析仪联用。 HVE的混合AMS离子源的独特特征是离子源本体接地电位。这样非常有利于离子进入,避免了大型高压保护笼的必要性,保证安全无辐射运行。 待分析的样品通过样品盘进入离子源内部,避免了样品与样品在溅射工艺会发生的交叉污染。真空泵直接坐落在附近的离子源体确保最佳的抽速,和在CO2样本的低记忆效应。 离子源和样品盘的气动阀允许离子保持在延长寿命的温度,避免样品盘交换破坏真空。以精确和可重复的方式横向插入源头,使得源维护容易且快速。 精确同位素通过加速器传送的时间。 它消除了从相对稳定时间长的保镖电压产生的不确定性和允许更高的弹跳频率,从而减少源故障从而优化精度的不利影响。 而同时注射是一种直流操作,顺序注射循环通过其中几个数量级之间的同位素强度差异通常与长期使用的放射性同位素的元素的同位素在AMS。这将导致加速器不同的束流加载,从而导致可能影响精度的小端电压波动。 因此,同步注射是高精度AMS测量的首选方法。然而,而同时注射hevier元素的仪器是不切实际的大型和昂贵的,顺序注射可覆盖整个元素周期表。 同时和顺序进样 两个不同的进样概念都可以进行: 同时进样和顺序进样。同时注入不同同位素,分离、分析、重组,同时注入加速器。HVE同时进样器是基于专利的四磁结构,固有的设计,确保重组相同的轨迹和参数设置的独立性。顺序注射不同的同位素分析在HVE时间序列连续注射器注入加速器一个装有光束消隐单元定义纳秒。-------------------更为详细的资料可下载仪器样本。
    留言咨询
  • 石英加速度计 400-860-5168转1973
    INNALABS的INN-202导航级加速度计用于商业场合,例如捷联惯导系统,可用于机载,海事,陆地和其他场合。本加速度计的优良性能归功于成熟的石英挠性技术,和集成偏置和比例因子温度模型。另外,除了加速度,INN-202加速度计也可测量速度,距离和倾角。 随着技术和经济规模的*新提高,我们可以设定较低的价格,在与其他模拟量加速度计厂家相比时。另一个实际的优势是,INNALABS的采购流程很简便。这些因素使得INN-202成为导航和控制市场上加速度计品牌的No.1。 特 征■导航性能-﹤350μg偏置稳定性■高输入范围-可达50g■ 温度变化下的高稳定性■模拟输出■紧凑的设计 应 用■ 惯性导航系统,用于直升机,载人和无人飞行机■ 导航/定位/陀螺系统,用于军舰,船舰,潜艇,遥控潜水器,水下机器人■ 定位系统,用于石油钻井行业技术参数 加速度计尺寸图(mm)参数单位值输入量程g±50偏置mg﹤4年稳定性μg﹤350温度灵敏性μg/degC﹤50比例因子mA/g1.0… 1.4年稳定性ppm﹤390温度灵敏性ppm /degC﹤180轴偏差μrad﹤2000年稳定性μrad﹤100非线性μg/g2﹤50工作温度degC-55… +85振动g₂ Hz8g@20~2000Hz冲击g70₂11ms分辨率μg1带宽Hz800电流供电mA﹤16功耗@±15ⅤmW﹤480输入电压VDC±15±10%偏温模型YESSF温度模型YES尺寸mmΦ38.1×26重量g﹤80壳体材料不锈钢连接器PIN描述PIN信号PIN信号1信号输出6温度传感器输出2电流转矩7电压自检3-15V±10%8信号和电源返回线4+15V±10%9-9VDC 5NC10+9VDC
    留言咨询

低加速电压相关的方案

  • 扫描电镜低加速电压成像
    通常来说,操作人员更愿意使用更高的加速电压去成像,当加速电压较大时,信噪比更好,分辨率更高,更容易得到“清晰”的图像。但低加速电压却是当今扫描电镜的发展趋势,这是什么原因呢?今天,这篇文章将围绕“低加速电压成像”展开讨论。电子束与样品相互作用将会激发出多种电子信号,包括背散射电子(BSE)、二次电子(SE)等。二次电子(SE)主要表征样品的表面形貌信息,激发深度一般低于 10nm,主要表征样品的表面形貌信息。
  • 日立新型台式电镜TM3030 在低加速电压成像中的优异表现
    低加速电压成像在扫描电镜成像中有着重要的作用。采用低加速电压成像,低能电子束受到散射的扩散区域小,相互作用区接近表面,有利于表面精细形貌成像。对于某些热敏或导电性能差的样品,如半导体和器件、合成纤维、溅射或氧化薄膜、纸张、动植物组织、高分子材料等,有时不允许进行导电处理,而要求直接观察,采用低加速电压成像可以减小或消除此类样品的荷电效应同时减小电子束辐照损伤。下图为氧化锌样品在5KV 和15KV 下的图像对比,由图像可知,在5KV 低加速电压下,样品表面细节特征清晰,有利于表面精细形貌的观察。
  • 加速电压在扫描电镜中的作用
    在进行扫描电镜(SEM)分析时,为了获得感兴趣区域最佳的图像效果,必须考虑一些重要的参数。其中一个很重要的参数就是加速电压,它是加在电子枪的阴极和阳极之间,用来加速电子产生电子束的。加速电压的选择与样品的导电性、放大倍数及图片质量等因素有关。一般来说,加速电压越高,图像的分辨率越高。

低加速电压相关的论坛

  • 低加速电压SEM

    请问苏州及周边哪家对外开放的实验室有可以低加速电压(1000v以下)观测的SEM?样品为不锈钢片,谢谢!

  • 低加速电压下的能谱分析

    低加速电压下的能谱分析

    低加速电压下的能谱分析----X射线扩散区域随加速电压的变化常规的能谱分析通常在20kV加速电压下进行,这也是大多数用户固定的能谱工作条件。但是20kV并不能适合所有的样品。因为对于同样的样品,加速电压越高,X射线的扩展区域就越大,反之则越小。所以能谱分析时要根据样品的不同来选择不同的加速电压。下图是利用蒙特卡洛模拟程序,对Ni在不同加速电压下X射线扩展区域的模拟。http://ng1.17img.cn/bbsfiles/images/2012/04/201204121219_360844_1820053_3.jpgNi,20kV下X射线你扩展区域为1um,10kV时缩小为400nm,5kV时则不到100nm了。可见如果要对非均相样品中微小的相或颗粒进行更准确的分析,要优先选择低加速电压。

  • 【原创】钨灯丝SEM的低加速电压图像

    【原创】钨灯丝SEM的低加速电压图像

    众所周知,SEM低加速电压条件下由于出射信号深度浅,可获得更多表面细节信息的图像。但钨灯丝扫描电镜随着加速电压值的减小,其分辨率明显降低,同时也可能由于探针束流的减小引起图像信噪比变差。因此,低加速电压图像质量的好坏更贴现了HI-SEM的性能优劣以及操作人水平的高低。下面发一些日立钨灯丝SEM低加速电压条件下的图像,抛砖引玉,欢迎讨论。1、电池粉末样品:[img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008302143_239955_1804341_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008302144_239957_1804341_3.jpg[/img]

低加速电压相关的资料

低加速电压相关的资讯

  • 电镜学堂丨电镜操作之如何巧妙选择加速电压?
    “TESCAN电镜学堂”又跟大家见面了,利用扫描电镜观察样品时会关注分辨率、衬度、景深、形貌的真实性、其他分析的需要等等,不同的关注点之间需要不同的拍摄条件,有时甚至相互矛盾。 今天主要谈一谈如何根据样品类型以及所关注的问题选择合适的加速电压? 这里是TESCAN电镜学堂第9期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能! 第三节 常规拍摄需要注意的问题 平时电镜使用者都进行常规样品的观察,常规样品不像分辨率标准样品那么理想,样品比较复杂,而且有时候关注点并不相同。因此我们要根据样品类型以及所关注的问题选择合适的电镜条件。 关注分辨率、衬度、景深、形貌的真实性、其它分析的需要等等,不同的关注点之间需要不同的电镜条件,有时甚至相互矛盾。因此我们必须明确拍摄目的,寻找最适合的电镜条件,而不是贸然的追求大倍数。 电镜的工作条件包括很多,加速电压、束流束斑、工作距离、光阑大小、明暗对比度、探测器的选择等。这一期将为大家介绍加速电压的选择。 §1. 加速电压的选择 任何电镜都是加速电压越高分辨率越高,但并不意味着任何试样都是电压越大越好。电压的选择是电镜中各个工作条件中最重要的一个。有各种因素需要考虑,而各个因素之间也有矛盾相悖的,这个时候还需要适当进行综合考虑或者采取其它办法。 ① 样品损伤和荷电因素 选择的加速电压不能对试样产生明显的辐照损伤或者荷电,否则观察到的图像不是试样的真实形貌。如果有荷电的产生,需要将电压降至到V2以下,这点在前面电荷效应中已经详细阐述,这里不再重复。 对于金属等导电导热均良好的试样,可以用较高的电压进行观察,如10kV及以上;对于一些导电性不是很好但是比较稳定的试样,可以中等加速电压,如5kV左右;对一些容易损伤的样品,比如高分子材料、生物材料等,可能需要较低的电压,如2kV或以下。 ② 电子产额因素 对于单相材料来说,因为成分没有差别,我们选择电子产额最大的区间V1~V2即可,但是对于混合物相材料来说,我们希望在有形貌衬度的同时还能有较好的成分衬度,这样的图片显得衬度更好,信息量也最大,往往我们也会认为这样的图片最清晰。因此我们需要选择二次电子产额相差较大的区域进行拍摄。 如图5-13,左图是碳和金的二次电子产额,中间图片是金颗粒在1kV下的二次电子图像,右图是200V下的二次电子图像。显然,在200V下碳和金的产额一样,所以此时拍摄的图像仅呈现出形貌上的差别,而碳和金的成分差异无论怎么调节明暗对比度也不会出现。而在1kV下,碳和金的电子产额差异达到最大,所以除了形貌衬度外,还表现出极好的成分衬度。 图5-13 金和碳在电子产额(左)及1kV(中)、200V(右)电压下的SE图像 对于一些金属材料来说,往往较高的加速电压下有相对较大的产额差异,而对于一些低原子序数试样,较低的电压往往电子产额差异更大。 如图5-14,试样为碳银混合材料。左图为5kV SE图像,右图为20kV SE图像。5kV下不但能表现出比20kV更好的成分衬度,还有更好的表明细节。 图5-14 碳银混合材料在5kV(左)、20kV(右)电压下的SE图像 如图5-15,试样为铜包铝导线截面,左图为5kV SE图像,右图为20kV SE图像。20kV下能够更好的将外圈的铜层和内部的铝层做更好的区分。 图5-15 铜包铝导线截面在5kV(左)、20kV(右)电压下的SE图像 对于有些本身差别很小的物相,如果能找到二次电子产额差异最大所对应的电压,也可将其区分。当然有的产额没有参考曲线,需要经过诸多尝试才能找到。比如图5-16,试样为掺杂半导体基底上的本征半导体薄膜,其电子产额差异在1kV达到最大,对应1kV的图像能将两层膜就行区分,而其它电压则没有太好的衬度。 图5-16 半导体薄膜在不同电压下的衬度对比 ③ 衬度的平衡 虽然通过上一点提到的加速电压的选择可以将成分衬度达到最大,但有时该条件并不是观察形貌最佳的电压。此时我们需要考虑究竟是注重形貌还是注重成分衬度,使用二次电子来进行观察,还是用背散射电子进行观察,或者用折中的办法进行观察。这都需要操作者根据电镜照片想说明的问题来进行选择。 要获得好的形貌衬度图像和原子序数图像所需的电压条件一般都不一样,也有另外的办法可以适当解决。对最佳形貌衬度和最佳原子序数衬度单独拍摄照片,后期在电镜软件中通过图像叠加的方式,将不同的照片(位置需要完全一样)按照一定的比例进行混合,形成一张兼有两者衬度的图片。 ④ 有效放大率因素 一般电镜在不同的电压下都有着不一样的极限分辨率,其对应的有效放大率也随之而改变。拍摄特定倍数的电镜照片,特别是高倍照片,需要选择电压对应的有效放大率能够达到需求。否则,视为图像出现了虚放大。虚放大后,图像虽然也在放大,但是并没有出现更多的信息,而且虚放大而会有更多环境因素的影响。 所以如果出现虚放大,可以提高加速电压,以增加有效放大率;如果电压不能改变,可以考虑增加图像的采集像素,来获得类似放大的效果。此时受环境因素或者样品损伤因素更小。 ⑤ 穿透深度因素 前面已经详细的讲述了加速电压和电子散射之间的关系。加速电压越高,能量越大,电子的散射区域就越大。那么产生的二次电子或背散射电子中,从更深处发射的比例则更多。因此较大的加速电压虽然有更好的水平方向的分辨率,但是却忽略了试样很多的表面细节;而低电压虽然水平方向分辨率相对较差,但是却对深度方向有着更好的灵敏度,可以反映出表面更多的形貌细节。 如图5-17,试样为表面修饰的二氧化硅球,5kV电压看不出任何表面细节,而2kV下则能观察到明显的颗粒。再如图5-18,纳米颗粒粉末在不同电压下的表现,因为颗粒团聚严重,所以在5kV电压下无法将团聚颗粒很好的区分,显得粒径更大,而1kV下则能观察到相对更细小的颗粒。 图5-17 SiO2球在5kV(左)、1kV(右)电压下的图像 图5-18 纳米颗粒在5kV(左)、1kV(右)电压下的图像 当加速电压降低到200V左右的超低水平后,电子束的作用区域变得很小,常规的边缘效应或者尖端效应基本可以去除,如图5-19。 图5-19 200V左右的电压可以消除边缘效应 更多详情内容请关注“TESCAN公司”微信公众号
  • 如何正确选择扫描电镜加速电压和束流 ——安徽大学林中清32载经验谈(8)
    p style=" text-align: justify text-indent: 2em " strong span style=" text-indent: 2em " 【作者按】 /span /strong span style=" text-indent: 2em " 扫描电镜测试条件的选择主要包括以下四个方面:加速电压、束流与工作距离、探头。前两个主要影响样品信息的溢出,后两者影响着信息的接收。测试条件选择的是否合适,决定了您能获得怎样的测试结果。 /span br/ /p p style=" text-align: justify text-indent: 2em " 本人在第一篇32载经验谈《扫描电镜加速电压与分辨力的辩证关系》一文中,就加速电压与图像分辨力的辨证关系进行了深入的探讨。充分分析了改变加速电压会给表面形貌像的分辨力带来怎样的变化;解答了为什么获取高分辨像,钨灯丝扫描电镜要选择较高的加速电压(10KV以上),而场发射扫描电镜需要选择较低的加速电压;阐述了场发射电镜为什么会比钨灯丝电镜有着更高的分辨能力。 /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 除了对图像分辨力的影响,加速电压的改变还会在样品的信息特性、荷电的产生及应对等方面对测试结果产生较大的影响。一直以来,许多专业人员对此,普遍存在一种单调的思维模式及处理方法,这将给最终的测试结果带来偏差。 /p p style=" text-align: justify text-indent: 2em " 这种认识上的偏差也存在于束流的选择上,对最终测试结果同样会形成很大的影响。错误的束流选择,你将无法获得完美的测试结果,还会给仪器的调整带来麻烦。 /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 本文将通过大量的实际测试事例,为大家充分展示,选择不同的加速电压及束流究竟能给测试结果带来怎样的影响。分析形成这种结果的原因,以及传统观念在加速电压和束流选择上存在怎样的认识偏离。为今后大家在进行扫描电镜测试时,合理的选择加速电压和束流提供一些参考。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-size: 18px " strong 一、& nbsp 加速电压的选择 /strong /span & nbsp & nbsp /h1 p style=" text-align: justify text-indent: 2em " 加速电压的选择除了对表面形貌像的细节分辨力存在极大影响,还在以下几个方面影响着测试结果:1. 获取的样品信息在样品中所处的位置,表层还是内层;2. 荷电场形成的位置及强度。而无论在那一方面,改变加速电压所带来的变化都充满了辨证法的规律。下面将以充分的事例来加以展示。 /p p style=" text-align: justify text-indent: 2em " strong 1.1& nbsp 加速电压与图像分辨力的关系 /strong /p p style=" text-align: justify text-indent: 2em " 加速电压与图像分辨力的辨证关系,前文有充分的探讨,在此将只做简单的描述。本节主要是以充分及清晰的事例来展示,改变加速电压将带来怎样的图像分辨力变化。 /p p style=" text-align: justify text-indent: 2em " 提升加速电压对图像分辨力会产生两种相互对立的影响: /p p style=" text-align: justify text-indent: 2em " 1. 从信息扩散来说,不利于获取高分辨形貌像。 /p p style=" text-align: justify text-indent: 2em " 2. 对电子束发射亮度的提升,有利于高分辨图像的获取。 /p p style=" text-align: justify text-indent: 2em " 这两方面的共同结果必然是存在一个最佳值或最佳范围。这个值与样品特性和其它测试条件的选择都有关联。 /p p style=" text-align: justify text-indent: 2em " 实际测试中,应先对图像所显示的样品信息特征作出正确研判,然后再做出正确的调整来找到这个最佳值。 /p p style=" text-align: justify text-indent: 2em " br/ /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/fa2635bd-6b96-4bce-9171-265cc0bb3c82.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: justify text-indent: 2em " 想获取更好的介孔形态必须降低加速电压。改用小工作距离测试,可缩少电子束裙散和透镜球差形成的弥散并增加探头对信号的接收效果,使得对电子束发射亮度的要求降低。此时选择1KV加速电压即可获取更佳的图像效果。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/9d154d57-9819-4674-bf25-23c1d0da39ff.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center text-indent: 0em " strong 实例二、小工作距离、减速模式的加速电压选择(kit-6介孔) /strong /p p style=" text-align: center text-indent: 0em " & nbsp img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/23ccfeb0-85bf-47d4-b1ee-9189f64bb660.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-indent: 0em " br/ /p p style=" text-align: justify text-indent: 2em " strong 1.2 加速电压与样品中的信息分布 /strong /p p style=" text-align: justify text-indent: 2em " 样品中的信息分布:指样品信息所处位置,表层?内部? /p p style=" text-align: justify text-indent: 2em " 加速电压的提升,电子束在样品表层激发的信息将减少,内部信息的激发会增多。选取不同加速电压对样品进行分析,有助于获取更全面、更充分的样品信息。 /p p style=" text-align: justify text-indent: 2em " strong 实例一、二氧化钛与银的复合膜& nbsp /strong /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 该样品是将二氧化钛与银颗粒分层蒸镀在玻璃表面,银颗粒起先分布在极表层。高温烧结后观察薄膜表面形貌的变化及银颗粒存在的位置。先采用XRD与XPS检测银含量的变化,均未检测到银的存在。扫描电镜检测的结果如下: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/71cf90d7-a4fc-4797-bc79-d5f88a725f06.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: justify text-indent: 2em " 上例我们可以看到,任何测试条件的选择都有其局限性,很难单独给出全面的样品信息。需要不停的改变测试条件,综合分析才能够获取更全面且充分的样品信息。 /p p style=" text-align: justify text-indent: 2em " strong 实例二,含有钴颗粒的核壳结构碳球 /strong /p p style=" text-align: justify text-indent: 2em " 内部为结构紧密的碳球,包裹一个球形的碳壳层,中间有钴纳米量子点存在。以下组图将给我们提供完整信息: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/b149b0cd-9014-4a7f-b45d-0f5e58750392.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: justify text-indent: 2em " 这组照片,合在一起才能提供样品的完整信息:一个核壳结构的碳球,内部是高密度球体,中间为絮状夹层,钴颗粒镶嵌于絮状夹层中,极表层较为平实。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/87b50fb1-9fcb-41ae-9720-81e2eb095201.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: justify text-indent: 2em " strong 实例三、石墨烯的观察 /strong /p p style=" text-align: justify text-indent: 2em " 单层石墨烯厚度仅不到一个纳米,个人观点:较难形成可被扫描电镜观察到的衬度。一般说,十来层左右的碳层被观察到的可能性更高,加速电压较低可观察到的碳层也较薄。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/652f21c2-13d1-45a3-ac00-f2be0b08c4c5.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: justify text-indent: 2em " 对簿膜样品加速电压选择低一些,效果较好,但有个度。 /p p style=" text-align: justify text-indent: 2em " strong 1.3改变加速电压对样品荷电场强度与位置的影响 /strong /p p style=" text-align: justify text-indent: 2em " 样品的荷电现象:高能电子束轰击足够厚的样品,如有电子驻留在样品中漏电性较差的部位,将形成静电场影响该部位及附近电信号的正常溢出。出现异常亮、异常暗或磨平的现象,这就是样品的荷电现象,该静电场也称“荷电场”。(关于样品的荷电现象,后期将有专文加以深入探讨)。 /p p style=" text-align: justify text-indent: 2em " 影响样品荷电场形成的因素有许多,加速电压正是其中最为重要的一个方面。 /p p style=" text-align: justify text-indent: 2em " 加速电压对样品荷电场的影响主要表现在以下几点: /p p style=" text-align: justify text-indent: 2em " 1.加速电压的升高,发射亮度增加,使得注入样品的电子数增加,荷电场强度得以加强,将加重样品的荷电现象。 /p p style=" text-align: justify text-indent: 2em " 2.加速电压的升高,电子击入样品的深度增加,形成荷电场的位置下移,达一定值时,对样品电信号溢出的影响将会减弱直至消除。但SE2的增加,会影响表面细节的分辨。 /p p style=" text-align: justify text-indent: 2em " 3.加速电压的升高,使得背散射电子能量增加,背散射电子能量越大,其溢出量受荷电场的影响也就越小。 /p p style=" text-align: justify text-indent: 2em " strong 实例一、介孔材料KIT - 6不同加速电压下的荷电现象 & nbsp /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/f1a4138c-34fa-47e0-9b73-51fa3f0e6e15.jpg" title=" 8.png" alt=" 8.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/e691f38e-c9b1-4ea9-9cd5-c67cf0df65d4.jpg" title=" 9.png" alt=" 9.png" / /p p style=" text-align: justify text-indent: 2em " strong 实例二、二氧化硅小球,减速模式的加速电压与荷电 /strong /p p style=" text-align: justify text-indent: 2em " 二氧化硅小球。形态松软,容易形成样品的荷电现象。主流观点:减速、低电压是解决样品荷电问题的最佳方案,且加速电压越低,荷电现象越弱。真实情况却未必如此。 /p p style=" text-align: justify text-indent: 2em " 用减速模式500V、1KV,观察得出的是如下结果: /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/764fd804-f00b-4e93-bed6-03b652d70f53.jpg" title=" 10.png" alt=" 10.png" / /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " & nbsp /span br/ /p p style=" text-align: justify text-indent: 2em " strong 实例三、钼化铬纳米颗粒 /strong /p p style=" text-align: center text-indent: 0em " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/f222ae41-0b71-45ac-9969-ca0e2806ff94.jpg" title=" 11.png" alt=" 11.png" / /strong /p p style=" text-align: justify text-indent: 2em " 以上三例可见,无论采用何种模式,加速电压与样品的荷电现象之间都存在一个辩证的关系。 /p p style=" text-align: justify text-indent: 2em " 加速电压升高,会增加注入到样品中的电荷总量,提升样品中的荷电场强度,加重样品的荷电现象。 /p p style=" text-align: justify text-indent: 2em " 提升加速电压,电子注入样品的深度增加,自由电子在样品中形成堆积的位置下移至更深处,荷电场位置也将下沉。荷电场的下沉会逐步减弱其对样品表面电子溢出量的干扰,荷电现象也将逐步减弱,但这是一个量变到质变的过程。当加速电压达到一定值,荷电场接地形成电荷通道,此时样品中多余的自由电子完全消失,样品中也就不存在荷电场。 /p p style=" text-align: justify text-indent: 2em " 加速电压的提升,可以增加背散射电子的能量,达到一定值,背散射电子信息将克服荷电场对其正常溢出的影响,减弱并消除形貌像所显现出的样品荷电现象。 /p p style=" text-align: justify text-indent: 2em " 因此不能简单的认为:低加速电压是不蒸金解决样品荷电的唯一有效途径。以辩证的思维方式来综合评估各方面的影响,合理选择加速电压才是应对样品荷电的有效方式。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-size: 18px " strong 二、束流大小的选择 /strong /span /h1 p style=" text-align: justify text-indent: 2em " 目前主流的观点认为:束流越大,电子束斑的直径越大,束斑直径越大,图像的分辨率越差。各电镜厂家的工程师在进行分辨率测试时,都会选用小束流,但观察的都是信号量充足的标准样品(金颗粒)。 /p p style=" text-align: justify text-indent: 2em " 实际测试时,常发现小束流下样品的整体信息量较差& nbsp ,很难形成高质量表面形貌像。那么该怎样选择合适的束流? /p p style=" text-align: justify text-indent: 2em " 依辩证法的观点,降低束流强度将得到以下两个矛盾的结果: /p p style=" text-align: justify text-indent: 2em " 1.& nbsp 束斑直径降低,信号溢出区面积减小对图像清晰度有利且能降低荷电场强度,削弱样品荷电的影响。 /p p style=" text-align: justify text-indent: 2em " 2.& nbsp 减少注入样品的电子量,信号量将减弱,不利图像分辨。 /p p style=" text-align: justify text-indent: 2em " 而现实的操作中,在主流观点的影响下,往往把眼光只放在第一点上,夸大束斑直径的影响,忽视束流强度不足所引起的信号量缺乏,故常常无法获得高质量的高分辨图像。 /p p style=" text-align: justify text-indent: 2em " 特别在面对氧化物、高分子等本身信号较弱的材料时,信号量常常是关键点,小束流的模式很难获得满意的结果。 /p p style=" text-align: center text-indent: 0em " span style=" font-size: 16px " strong style=" font-size: 14px text-align: center text-indent: 2em " 实例一、钴纳米颗粒和碳材料,不同束流下图像质量的比较 /strong strong style=" font-size: 14px text-align: center text-indent: 2em " /strong /span /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/29ecf822-c796-4da0-a394-fa93a248c2d0.jpg" title=" 12.png" alt=" 12.png" / /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/858092ec-e7c9-4e0e-a8e3-a1564d3b4800.jpg" title=" 13.png" alt=" 13.png" / & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/f8de383e-1046-4e7d-a4d1-540843a72d14.jpg" title=" 14.png" alt=" 14.png" / span style=" text-indent: 0em " & nbsp & nbsp /span /p p style=" text-align: center text-indent: 0em " & nbsp img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/34a0c424-2f08-44fe-8f0c-cd31c149f9ab.jpg" title=" 15.png" alt=" 15.png" / /p p style=" text-align: justify text-indent: 2em " 以上四例说明:束流的选择同样也遵循辩证法的规律,束流改变带来的往往是正、反两方面影响。如何平衡这些影响获取最佳的结果,还与样品的特性有关,必须全面考虑。 /p p style=" text-align: justify text-indent: 2em " 样品本身信号量充足且漏电能力较差,束流适当选择较低一些,可以减少荷电的影响,提升图像的清晰度,但图像信噪比就是牺牲的对象。反之,束流应当选择稍高一些,可以获得的样品信号量更为充分,图像的质量更佳。 /p p style=" text-align: justify text-indent: 2em " 依据个人的测试经验,起始条件选择的束流大一些,综合效果会更好。选择小束流,常常会使得图像的信息量不足,分辨力减弱过多,很多细节反而分辨不清。欲对仪器做出适当的调整,看清信息是基础,信息太弱会失去调整的方向。 /p p style=" text-align: justify text-indent: 2em " 任何测试条件的选择都应当坚持适度性原则。具体问题、具体分析,摒弃单调的思维模式,才能找到最佳的测试条件,获得满意的测试结果。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px color: rgb(0, 176, 240) " strong 三、结束语 /strong /span /h1 p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 本文通过大量的实例给大家展示,不同加速电压及束流的选择,究竟能带给我们怎样的测试结果。 /p p style=" text-align: justify text-indent: 2em " 辨证的观点要求我们能够做到具体问题、具体分析。 /p p style=" text-align: justify text-indent: 2em " 摒弃单调的思维模式,有助于我们选择正确的测试条件,获得满意的测试结果。 /p p style=" text-align: justify text-indent: 2em " 同样的样品、不同的测试条件获取的样品信息不同。单一的测试条件往往很难带给我们完整且充分的样品信息。 /p p style=" text-align: justify text-indent: 2em " 要获取充分的样品信息,需要测试者能准确预判出测试条件的改变对测试结果会产生怎样的影响。做到这一点,测试者的经验积累十分重要。希望本文的各种实例,能对大家在加速电压和束流选择方面的经验累积提供一些帮助。 /p p style=" text-align: justify text-indent: 2em " strong 参考书籍: /strong /p p style=" text-align: justify text-indent: 2em " 《扫描电镜与能谱仪分析技术》张大同2009年2月1日 /p p style=" text-align: justify text-indent: 2em " 华南理工出版社 /p p style=" text-align: justify text-indent: 2em " & nbsp 《微分析物理及其应用》 丁泽军等 & nbsp & nbsp & nbsp 2009年1月 /p p style=" text-align: justify text-indent: 2em " 中科大出版社 /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 《自然辩证法》 & nbsp 恩格斯 & nbsp 于光远等译 1984年10月 /p p style=" text-align: justify text-indent: 2em " 人民出版社 & nbsp /p p style=" text-align: justify text-indent: 2em " 《显微传》 & nbsp 章效峰 2015年10月 /p p style=" text-align: justify text-indent: 2em " & nbsp 清华大学出版社 /p p style=" text-indent: 2em " strong 作者简介: /strong /p p style=" text-indent: 2em text-align: justify " img style=" max-width: 100% max-height: 100% width: 80px height: 123px float: left " src=" https://img1.17img.cn/17img/images/202005/uepic/6dc1a11e-8c90-4ad2-be79-65574928318f.jpg" title=" 741ca864-f2b8-4fc3-b062-2b0d766c5a7b.jpg" alt=" 741ca864-f2b8-4fc3-b062-2b0d766c5a7b.jpg" width=" 80" height=" 123" border=" 0" vspace=" 0" / 林中清,1987年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。& nbsp /p p style=" text-indent: 2em " strong 延伸阅读:& nbsp /strong /p p style=" text-indent: 2em " strong /strong /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200414/536016.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜操作实战技能宝典——安徽大学林中清32载经验谈(7) /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200318/534104.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜的探头新解——安徽大学林中清32载经验谈(6) /span /a /p p style=" text-indent: 2em " a href=" http://二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5)" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5) /span /a /p p style=" text-indent: 2em " a href=" http://二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4)" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4) /span /a /p p style=" text-indent: 2em " a href=" http://电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3)" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3) /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191126/517778.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2) /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191029/515692.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 /span /a /p
  • 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈
    p style=" text-align: justify text-indent: 2em " strong span style=" text-indent: 2em " 作者按: /span /strong span style=" text-indent: 2em " 加速电压对扫描电镜分辨力的影响目前很难有定论。各电镜厂家所给出分辨率指标的指向是加速电压越高分辨率越好。实际检测过程中常常发现,加速电压越高我们所能获得的样品表面细节却越少。本文将尝试用自然辩证法的观点来分析产生这种现象的原因。 /span span style=" text-indent: 2em " & nbsp /span /p p style=" text-align: justify text-indent: 2em " 对于扫描电镜加速电压与分辨力关系的认识,存在着两种相互矛盾的观点。即“加速电压越低分辨力越好“、“加速电压越高分辨力越好”。形成这种相互矛盾表述的原因在于我们那种机械、单调的思维模式。在一次偶尔观看的综艺节目中,有嘉宾提到“两面性看问题”这种辩证法的观点对我触动很大,由此开始尝试将辩证法的观点引入到对扫描电镜的认识中来,从而获得许多有意思的结果。 /p p style=" text-align: justify text-indent: 2em " 由于篇幅原因,本文将只探讨加速电压对扫描电镜分辨力的影响。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 一、 自然辩证法及其三大规律 /strong /span /p p style=" text-align: justify text-indent: 2em " 《自然辩证法》是德国哲学家弗里德里希· 恩格斯一部未完成的著作。在著作中对当时的自然科学成就用辩证唯物主义的方法进行了概括,提出了对事物认识中存在的“对立统一”、“否定之否定”、“量变到质变”三大规律。 /p p style=" text-align: justify text-indent: 2em " 这三大规律告诉我们:任何事物都存在着相互矛盾、相互否定的几个方面,而这些方面各自间的量变会导致事物整体发生质的变化。比如,我们人类一出生,每个个体就包含了“生、死”这两种相互矛盾、相互否定的因素。起先 “生”是主因,因此我们人类就处在一个成长的过程中。但是随着年岁的增长这个主因会做减速变化,而另一个主因“死”会做增速的变化。达到一定时候,也就是“人到中年”,我们将进入生命最旺盛的时期,同时我们也达到了“生、死”这两个主因的主导地位发生变化的关口。接下来 “死”这个因素将占据主导地位,生命个体也开始走入死亡阶段,由此发生质的变化。这就是 “量变到质变”,一切取决于“度”。 /p p style=" text-align: justify text-indent: 2em " 扫描电镜测试条件的改变对结果影响也遵循这样的规律。任何一个条件的改变必然带来正、反两个方面效果。当正面效果是主导因素时,这个条件增加带来的结果就越好。但随着条件进一步增加反面效果必然占据主导地位,此时该条件继续增加,所带来的结果就会变差。 /p p style=" text-align: justify text-indent: 2em " 下面以扫描电镜加速电压这个因素的改变,来讨论其对图像细节分辨力这个结果的最终影响。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 二、扫描电镜加速电压与分辨力的基本认识 /strong /span /p p style=" text-align: justify text-indent: 2em " strong 2.1几个相关名词: /strong /p p style=" text-align: justify text-indent: 2em " 分辨力、加速电压、电子束发射亮度、 span style=" text-indent: 2em " 电子枪本征亮度、样品的信号扩散 /span /p p style=" text-align: justify text-indent: 2em " 2.1.1分辨力: /p p style=" text-align: justify text-indent: 2em " “分辨力”指的是扫描电镜分辨细节的能力。分辨力越强我们获取的样品细节也就越多。许多时候我们喜欢用“分辨率”这个概念来描述,但是分辨率这个概念往往和某一确定的数值有关。扫描电镜分辨率的值到底是多少?其影响因素非常多,我们目前还无法找到合适的标样或公式来进行令人信服的科学验证。因此本人倾向用“分辨力”这个模糊的概念来代替。 /p p style=" text-align: justify text-indent: 2em " 2.1.2 加速电压: /p p style=" text-align: justify text-indent: 2em " 电镜的电子枪都设计为三级结构:钨灯丝为阴、栅,阳;场发射是阴、第一阳极、第二阳极。 /p p style=" text-align: justify text-indent: 2em " 电子束是由阴极、栅极(钨灯丝)或阴极、第一阳极(场发射)形成。该电子束由加载在阴极、阳极或阴极、第二阳极上高压形成的电场加速,给电子束提供能量以形成高能电子束。该电压称为“加速电压”。加速电压越高,形成的电子束能量越大。 /p p style=" text-align: justify text-indent: 2em " & nbsp 2.1.3电子束的发射亮度: /p p style=" text-align: justify text-indent: 2em " 电子光学中的亮度定义基本延续光学中关于亮度的定义,只是将功率改成了电流强度。其定义为:单位立体角内的束流密度,量纲是A/cm2.sr。该值受加速电压影响,基本与加速电压成正比关系。但加速电压对其的调整必须在一个水平线上进行,这个水平线就是电子枪的本征亮度(或称为约化亮度)。 /p p style=" text-align: justify text-indent: 2em " 从电子束发射亮度的定义可以看到,发射亮度越大束流密度也越大、固体角越小。固体角小可以保证形成的信号范围小,高束流密度保证小范围产生大信号量。因此发射亮度大就保证样品在很小范围内产生更多的样品信息,有利于形成样品的高分辨像。 /p p style=" text-align: justify text-indent: 2em " 2.1.4电子枪的本征亮度: /p p style=" text-align: justify text-indent: 2em " 电子枪是电子显微镜的光源。对于显微镜来说光源系统是基础,决定着显微镜品质的高低。 /p p style=" text-align: justify text-indent: 2em " 描述电子枪品质的参数就是其“本征亮度”或称为 “约化亮度”。量纲是A/cm2.sr.KV。这个值扣除了加速电压影响,反映的是电子枪品质高低。本征亮度越大电子枪品质越好,越有利于形成高分辨像。 /p p style=" text-align: justify text-indent: 2em " 不同类型电子枪的本征亮度是不同的。电子枪本征亮度是一个常数,一旦电子枪制作完成其本征亮度也就确定了。钨灯丝、六硼化镧、热场、冷场这些不同类型的电子枪,本征亮度依次增大,由其为基础所制造的扫描电镜分辨能力也依次增强。 /p p style=" text-align: justify text-indent: 2em " 2.1.5样品信号的扩散: /p p style=" text-align: justify text-indent: 2em " 电子束与样品相互作用产生样品的各种信息。其中二次电子、背散射电子是扫描电镜表面形貌像的主要信息源。这些信息在样品中会有一定的扩散范围。扩散范围越大对图像的清晰度影响也越大,严重到一定程度就会影响到图像的细节分辨,从而降低图像的分辨力。 /p p style=" text-align: justify text-indent: 2em " 信号的扩散范围与加速电压、样品特性以及所选的信号能量大小有关。加速电压越大、样品密度越低以及所选的信号能量越强,信号的扩散范围也就越大。图像分辨力也就越差。 /p p style=" text-align: justify text-indent: 2em " 加速电压对样品信号扩散的影响如下图: span style=" text-indent: 2em " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 286px " src=" https://img1.17img.cn/17img/images/201910/uepic/d9345286-9fa2-4321-a8a5-b7778aeeba5a.jpg" title=" 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 (2).jpg" alt=" 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 (2).jpg" width=" 500" height=" 286" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 电子束与样品相互作用产生的二次电子信号及溢出范围示意图 /strong /p p style=" text-align: justify text-indent: 2em " 上图所示,电子束轰击到样品后所形成的每一种类样品信息都包含两部分(以二次电子为例):一部分是电子束直接激发并溢出样品表面,称为SE1;另一部分是由样品内部的背散射电子所激发并溢出样品表面,称为SE2。SE1主要集结在电子束周围,因此其扩散范围小,对样品表面细节信息影响也小。SE2由内部背散射电子产生,因此它们离散在电子束周边较宽的范围,且加速电压越大离散范围就越大对图像细节影响也越大。 /p p style=" text-align: justify text-indent: 2em " strong 2.2电子枪本征亮度、电子束发射亮度、加速电压之间的关系 /strong /p p style=" text-align: justify text-indent: 2em " 电子枪本征亮度、电子束发射亮度、加速电压之间遵循着以下关系: /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 526px height: 76px " src=" https://img1.17img.cn/17img/images/201910/uepic/1472813d-72df-437f-b19c-02bf1315466a.jpg" title=" 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈.png" alt=" 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈.png" width=" 526" height=" 76" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 由于电子枪本征亮度是一个定值,由此公式可见:加速电压和电子束发射亮度成正比,加速电压越高发射亮度也就越大。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 三、 加速电压对扫描电镜分辨力的影响 /span /strong /p p style=" text-align: justify text-indent: 2em " 任何仪器设备在测试过程中只做两件事:产生样品信息,接收及处理样品信息。因此对最终结果的影响,也必然是这两方面的综合效果。各种因素的叠加,起决定性的因素称为“最短板”,也就是影响最大的因素。最短板会随着测试条件的选择、样品的特性以及所需要的样品信息不同而发生改变。 /p p style=" text-align: justify text-indent: 2em " 扫描电镜测试中需进行四大测试条件的选择:加速电压、束流、工作距离以及探头。其中加速电压和束流的选择主要影响的是信号产生,工作距离和探头的选择主要影响的是信号接收。 /p p style=" text-align: justify text-indent: 2em " 自然辩证法的观点:任何一个条件的选择都会对最终结果形成正、反两个方面的影响。 /p p style=" text-align: justify text-indent: 2em " 加速电压的选择也是一样,任何一次加速电压的改变都会带来电子束发射亮度以及信号扩散的变化。以加速电压的提升为例:升高加速电压会带来电子束发射亮度的提升,有利于我们获取样品高分辨像;同时会带来样品信息溢出区域的扩大,不利于我们获取样品高分辨像。加速电压的提升对最终结果影响是有利还是不利,取决于那个因素是“最短板”。信号扩散是最短板,加速电压越高则图像分辨能力越差。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 422px " src=" https://img1.17img.cn/17img/images/201910/uepic/18861c0d-0bc8-4dce-b058-1a3670030c7f.jpg" title=" 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 (2).png" alt=" 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 (2).png" width=" 500" height=" 422" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 上图为介孔材料在四个不同加速电压下的结果 /strong /p p style=" text-align: justify text-indent: 2em " 从上图可见,加速电压小于2KV时,SE1为信号主体,电子束发射亮度是“最短板”,此时,如上面两张图片所示,加速电压越高分辨力越好。当加速电压超过2KV时,SE2将变成信号主体,信号扩散将转变为“最短板”,我们看到下面两张图片的结果,加速电压越高细节分辨越差。 /p p style=" text-align: justify text-indent: 2em " 因此我们可以看到,任何条件的改变都会带来正、反两方面的结果,而最终结果取决于 “最短板”。 “最短板”也会随着测试条件的改变而发生变化。 /p p style=" text-align: justify text-indent: 2em " 加速电压改变对分辨力的影响从电子束发射亮度的角度出发来分析,同样也是充满着自然辩证法的规律。想要获得高质量、高分辨的扫描电镜图像,电子束的发射亮度必须达到一定值,可以将这个值定义为:基本亮度。这个值就如同扫描电镜灯丝饱和点一样,在没有达到 “基本亮度”时,加速电压的改变对高分辨像影响的 “最短板”出现在电子束发射亮度上,此时加速电压越高分辨率越好。而电子束发射亮度超过这个值以后,电子束发射亮度提升对最终结果的影响将大大减少,加速电压提升形成的信号扩散将成为影响最终结果的“最短板”,此时加速电压越高仪器的分辨力将大大的减弱。 /p p style=" text-align: justify text-indent: 2em " 通过2.2中给出的关系式,我们可以清晰的解释为啥钨灯丝必须选择较高的加速电压,而低加速电压测试是场发射电镜的优势所在,也是场发射电镜高分辨测试的基本保证。 /p p style=" text-align: justify text-indent: 2em " 钨灯丝电子枪的本征亮度要大大低于场发射电子枪,因此要想获得高分辨所需的“基本亮度”,就必须提高加速电压来满足需求,提高加速电压带来的结果就是信号扩散的增加。钨灯丝扫描电镜需要加速电压高于10KV才能获得高分辨像所需的“基本亮度”值,而这个值往往会使得样品信号扩散成为影响最终结果的主要因素,这就是钨灯丝电镜分辨率低的主要原因。 /p p style=" text-align: justify text-indent: 2em " 扫描电镜高分辨像对加速电压选择的要求:信号扩散尽可能的小,电子束发射亮度尽可能的大。只有提升电子枪的本征亮度才能满足这个要求,这也是电子枪本征亮度越大分辨力也越强的缘由。 /p p style=" text-align: justify text-indent: 2em " 过高的电子枪本征亮度也会对样品形成热损伤,当热损伤成为对最终结果影响的主体时,分辨力也就无从谈起。He离子镜就是实例。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 四、 结 束 语 /strong /span /p p style=" text-align: justify text-indent: 2em " 自然辨证法的精要在于:认识中的唯实践论,方法上的唯矛盾论。 /p p style=" text-align: justify text-indent: 2em " 它以自然科学、人文科学、社会学等学科为基础,总结出了以“对立统一”、“否定之否定”、“量变到质变”三大规律为基础的世界观、认识论以及方法论。和我国传统哲学思想中的“中庸之道”、“过犹不及”等思维模式有着异曲同工之处。对我们认识事物,从事各种实践活动(科学、社会、人文等)都有着现实的指导意义。 /p p style=" text-align: justify text-indent: 2em " 做任何事情、解决任何问题时都要正确认识到其所存在的两面性、矛盾性,避免单调的思维模式,正确把握适度性原则,将会使我们获得最佳的结果。& nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" text-align: right text-indent: 2em " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp strong 安徽大学现代实验技术中心 /strong /p p style=" text-align: right text-indent: 2em " strong & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 林中清 /strong /p p style=" text-align: justify text-indent: 2em " strong 参考书籍: /strong /p p style=" text-align: justify text-indent: 2em " 《扫描电镜与能谱仪分析技术》张大同2009年2月1日& nbsp span style=" text-indent: 2em " 华南理工出版社 /span /p p style=" text-align: justify text-indent: 2em " 《微分析物理及其应用》 丁泽军等& nbsp & nbsp & nbsp 2009年1月 中科大出版社 /p p style=" text-align: justify text-indent: 2em " 《自然辩证法》& nbsp 恩格斯& nbsp 于光远等译 1984年10月 人民出版社& nbsp & nbsp & nbsp /p p style=" text-align: justify text-indent: 2em " br/ /p p style=" text-align: justify text-indent: 2em " strong 作者简介: /strong /p p style=" text-align: justify text-indent: 2em " strong img style=" max-width: 100% max-height: 100% float: left width: 85px height: 132px " src=" https://img1.17img.cn/17img/images/201910/uepic/6eed12e9-0e76-4aae-86bf-2d07a9410b00.jpg" title=" 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 (3).jpg" alt=" 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 (3).jpg" width=" 85" height=" 132" border=" 0" vspace=" 0" / /strong 林中清,87年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。& nbsp & nbsp /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制