蛋白聚合物

仪器信息网蛋白聚合物专题为您整合蛋白聚合物相关的最新文章,在蛋白聚合物专题,您不仅可以免费浏览蛋白聚合物的资讯, 同时您还可以浏览蛋白聚合物的相关资料、解决方案,参与社区蛋白聚合物话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

蛋白聚合物相关的耗材

  • 反相聚合物填料
    Uni系列反相填料是纳微科技全球领先的专利技术专门为在分析及工业规模分离有机化合物、天然产物、蛋白、多肽、核酸等所设计聚合物反相填料,采用单分散均一粒径,因其在耐碱性、长寿命与避免碱性化合物拖尾上具有显著优势,与硅胶色谱填料在分离性能和溶剂兼容性上优势互补,可提供全球品种规格最多的单分散聚合物色谱填料类型,从亚微米UPLC填料、HPLC填料及中低压FPLC填料,在实验室分析、生物制药、中药、化药、食品饮料等领域得到广泛应用。按照不同的基质及特性,提供UniPS、UniPMM、UniPSN、UniPSA、NM五种聚合物反相填料,其中前四种为单分散均一粒径填料,最后一种为非单分散粒径填料。反相聚合物色谱填料基本属性一览表订货信息
  • 聚合物管切割器
    聚合物管切割器得到平整、90° 无毛刺切口。与刚性聚合物管兼容。用于 1/16in 和 1/8in 管的导孔。订货信息:聚合物管切割器描述目录编号数量聚合物管切割器A-327单件装替换刀片A-3285 个/包
  • 聚合物管路
    聚合物管路专门设计用于众多重要的低压和中压应用。大部分的此类管路设计为半透明或透明的材质,为了可以更方便看到流路的状态。我们提供各种材质和尺寸来满足您系统的需求。我们的聚合物管路还提供卓越的化学兼容性,让其成为当今分析领域的明智选择。

蛋白聚合物相关的仪器

  • 仪器简介:热塑性聚合物在加热时熔融或流动,由无规缠结的(无定形热塑性塑料)或以微晶方式部分有序的(半结晶热塑性塑料)线性大分子组成。它们在农业、汽车工业、航空业、建筑工业、电气工业、纺织等行业广泛运用。本书不仅可作为应用手册查询,也可以作为实验指南,对热分析工作者及热分析学习者有帮助和裨益。目录应用列表1 热分析导论 Introduction to Thermal Analysis1.1 差示扫描量热法 (DSC)Differential Scanning Calorimetrv1.1.1 常规 DSC Conventional DSC1.1.2 温度调制 DSC Temperature&mdash modulated DSC1.1.2.1 ADSC1.1.2.2 IsoStep1.1.2.3 TOPEMTM1.2 热重分析(TGA) Thermogravimetric Anaiysis1.3 热机械分析(TMA) Thermomechanical Analysis1.4 动态热机械分析(DMA) Dynamic Mechanical Analysis1.5 与TGA的同步测量 Simultaneous Measurements with TGA1.5.1 同步DSC和差热分析 (DTA,SDTA) SimuItaneous DSC and Differential Thermal Analysis1.5.2 析出气体分析(EGA) Evolved Gas Analysis1.5.2.1 TGA&mdash MS1.5.2.2 TGAF&mdash TIR2 聚合物的结构和性能 Structure and Behavior of Polymers2.1 聚合物领域的一些定义 Some Definitions in the Field of Polvmers2.2 聚合物的物理结构 Physical Structure of Polymers2.3 热塑性聚合物 Thermoplastic Polymers2.3.1 无定形塑料 Amorphous Plastics2.3.2 半结晶塑料 Semicrystalline Plastics3 热塑性聚合物的重要领域 Important Fields of Thermoplastic Polymers4 热塑性聚合物的应用一览表 Application Overview of Thermoplastic Polymers5 热塑性聚合物的特征温度表 Table of characteristic temperatures of thermoplastic polymers6 重要热塑性聚合物的性能和典型的热分析应用 Properties of Important Thermoplastic Polymers and Typical TA Applications6.1 聚乙烯,PE Polyethylene6.2 乙烯/醋酸乙烯共聚物,E/VAC Ethylene/Vinylacetate Copolymer6.3 聚丙炳,PP Polypropylene6.4 聚苯乙烯,PS Polystyrene6.5 聚氯乙烯,PVC Polyvinyl Chloride6.6 聚醋酸乙烯,PVAC Polyvinyl Acetate6.7 聚酰胺,PA Polyamide6.8 聚对苯二甲酸乙二醇酯,PET Polyethylene Terephthalate6.9 聚碳酸酯,PC Polycarbonate6.10 聚甲醛,POM Polyoxymethylene6.11 聚四氟乙烯,PTFE Polytetrafluoroethylene7 热塑性聚合物的应用 Applications of Thermoplastic Polymers7.1 聚乙烯测试 Measurements on Polyethylene7.2 聚丙烯测试 Measurements on Polypropylene Based Material7.3 聚苯乙烯的玻璃化转变 Glass Transition of Polystyrene7.4 聚氯乙烯的热分析测试TA Measurements on Polyvinyl Chloride7.5 聚酰胺及其共混物 Polyamides and Their Blends7.6 聚对苯二甲酸乙二醇酯的热行为 Thermal Behavior of Polyethylene Terephthalate7.7 其它聚合物测试 Measurements on Other Polymers7.8 热塑性弹体 Thermoplastic Elastomers7.9 聚合物共混物和共聚物 Polymer Blends and Copolymers7.10 热塑性塑料及其产品的进一步测试 Further
    留言咨询
  • 产品特点: 世界上最完整协调的自动聚合物粘度测量系统;针对不同聚合物样品,不同测试要求的灵活组合解决方案;来自UKAS英国皇家认可委员会及ISO组织授权实验室的最专业技术支持和整体解决方案;您的样品粘度测试从此变的轻松简单。 专业 ●聚合物溶液浓度确认基于质量/质量法,采用万分之一或十万分之一天平定量,配置的溶液浓度准确无误 ●聚合物溶解过程中,对同一性质溶液采用固定加温-恒温-降温曲线控制,并采用固定剪切速度和剪切应力进行搅拌,免除了溶解过程中可能带来的误差 ●针对客户的个性测试,由粘度测试应用专家辅助客户建立一套完整的,有溯源性的实验解决方案及数据处理方案 ●全自动,且各功能模块可根据用户需求灵活组合 自动溶液配置 自动样品溶解 自动进样 自动测试 自动清洗 自动结果计算,统计及报表输出 自动保修,自动电话回访,自动上门服务 ●节省 粘度浴槽制冷采用循环冷却器,无需连接实验室冷却水,免除了大量的冷却水的浪费 粘度管清洗系统采用间断冲洗方式,在保证完全清洁的前提下节约了大量的清洗溶剂 ●完善 典型应用:PA,Nylon,PET,PVC,PE,PP,PC,PLA,PBT,纤维素,纤维酯,纸桨,墨水等 可符合的标准:ASTM,D445,D446,D789,D871,D1243,D1601,D2857,D4020,D4603,D1795,ISO307,5351&1628PART16,DIN53726,53727,53728,7744等 可显示的数值:运动粘度、相对粘度、固有粘度、比粘度、比浓粘度、特性粘度、极限粘度值、分子量、K值、聚合度等 ●标准:典型聚合物测量标准偏差 PVC(ASTM D1243)好于0.15% PA (ISO307)好于0.03% PA (ASTM D789)好于0.10% PET(ASTM D4603)好于0.26% 粘度测试温度稳定性:± 0.01℃ 样品下落时间测量分辨率:0.001S 误差小于0.1% 样品质量称量准确性:0.1mg或0.01mg ●高效 开机后快速的温度稳定 测试、清洗、烘干、下一样品测试一气呵成,一个测量位每小时可测量8-10个样品,最多可四个测量位同时运行 由于整体的自动化控制以及完整的安全保护措施,可实现无人守候测试,节约了实验人员大量的宝贵时间 ●安全 使用者在整个测试过程中不接触溶剂 所有与溶剂接触部分均采用高品质PTFE材质制造,100%耐腐蚀 粘度浴槽超温报警及自动关机功能 粘度浴槽防干烧低液位预警,以及预警后无人响应时采取的报警及自动关机功能 溶剂瓶无溶剂提醒功能 废液瓶满瓶提醒功能 自动粘度管清洗时&ldquo SAFE VACCUM&rdquo 真空安全清洗系统1.强大的软件功能:控制操作整个系统,收集整理大批量的测试数据,并根据测试数据计算客户需要的参数,特殊功能可订制,可直接连接到LIMS系统上 2.粘度浴槽制冷单元:该制冷单元通过粘度浴槽内置的冷却环与浴槽联用,可在夏天保证25.00℃的稳定测试环境 3.样品及溶剂进口,全PTFE材质,可连接机器手自动进样,或者直接旋开顶盖,将样品直接倒入;倒入后,样品直接进入到玻璃粘度管的进样管中 4.粘度测量浴槽:给整个粘度测试提供稳定,精准的温度环境,温度稳定性± 0.01℃隔热设计,在最高150℃最低-40℃时运行稳定安全 5. 测试系统主机:该主机负责完成整个系统的协调运行,并与电脑进行通讯控制,完成样品提升,下落时间测量,粘度管清洗步骤 6.X,Y,Z坐标轴自动进样器:该进样器在软件控制下,有选择性的吸取样品并添加到粘度管中,并带有管路自清洁功能,可实现无人测试;在高温粘度样品进样时整个管理采用保温设计,不影响样品性质 7. 样品溶解系统,采用内置有冷却盘管的金属浴加热搅拌器。该溶解系统受软件控制,严格按照设定的温度曲线控温和搅拌,使得样品分批测试的重复性极大的提高,对聚合物生产工艺改良有很大的指导意义 8. 防化学腐蚀真空泵:负责整个粘度测量清洗系统的真空动力提供,真空表显示真空度,完全防化学腐蚀 9. 自动溶液配置系统:该系统采用精密液体分注器与分析天平联用,利用重量/重量法精确配置固定浓度的聚合物样品溶液,整个配置过程软件自动控制,精确安全 如需了解更多物性测试产品请致电:40080921068
    留言咨询
  • 开创聚合物分离的新纪元以更高分离度的体积排阻分离进行聚合物色谱表征通过实现快速的日常校准提升数据一致性和数据质量利用系统先进的技术实现自动化的方法开发以更快的速度获取目标聚合物的更多信息增强对聚合物化学结构的了解,加速创新如今,聚合物科学家所处的市场环境日趋活跃,对高性能材料、生物材料创新的需求不断增长,愈发激烈的竞争导致产生了更强的紧迫感。有了ACQUITY APC系统,聚合物色谱表征脱去极长运行时间的标签。得益于超高效聚合物色谱的优势,分析人员能以快于传统GPC/SEC技术5-20倍的速度,获取准确且可重现的聚合物分子量信息,从而加快创新速度,同时改善实验室运营环境。缩短聚合物样品实验室检测周期:更快地为研发实验室、生产运营团队以及您的客户提供可供决策的结果。推动创新:更快获取结果并掌握更多信息,帮助整个环节更快速地做出响应,从而缩短开发周期并加快上市步伐。简化工艺监测并灵活实现批次一致性控制,可对工艺和合成优化做出灵活的“动态”决策。显著降低每个样品的分析成本:减少溶剂消耗和废液处理量。通过快速溶剂切换和强溶剂兼容性优化方法开发配备聚合物四元溶剂管理器(p-QSM)的APC系统赋予了化学家和聚合物科学家出众的灵活性,让他们能够在同一套系统上使用标准聚合物色谱、梯度聚合物洗脱色谱(GPEC)和反相LC分析非常复杂的共聚混合物和聚合物添加剂。附加的系统功能支持自动化选择多达六种不同的溶剂。自动化色谱柱切换功能结合ACQUITY APC色谱柱的刚性和可灵活溶剂切换的颗粒配合使用,为体积排阻色谱法分离聚合物的方法开发,率先提供了全世界真正意义上的自动化解决方案。这套解决方案支持在数小时内完成聚合物的方法开发到检测,而无需数天时间。全方位多维色谱细节决定一切 — 更优的细节是我们不懈努力的目标当与PSS Polymer Standards Service GmbH的WinGPC UniChrom&trade 软件结合使用时,沃特世APC系统有助于研究人员使用多维分离方法深入了解复杂的聚合物材料,从而增加单次色谱分析的峰容量。应用多维色谱方法能够通过两种不同的连续保留机制分离分析物。该方法可以使分析物与单维色谱分离中通常发生共洗脱的其它化合物实现分离。这有助于大幅提升多维分离度,并提供有关复杂聚合物样品化学结构和组成的详细信息。始终能满足您研究需求的色谱柱技术BEH色谱柱技术采用亚乙基桥杂化(BEH)技术的颗粒可确保色谱柱在恶劣的运行条件下仍具有高柱效和长使用寿命。先进的反相和HILIC HPLC色谱柱BEH色谱柱适用于常见的反相色谱分析,此外,这款色谱柱在极端pH条件下可保持稳定,并且广泛适用于多种化合物,因此也是方法开发的理想选择。使用先进的检测解决方案获取有关聚合物样品的更多信息ACQUITY APC系统配备先进的检测器,可通过单次分析为聚合物研究人员提供有价值的决策支持信息。将沃特世APC系统与先进的检测解决方案相结合,可通过引入示差折光(RI)检测器、紫外(UV) PDA、光散射(LS)和粘度检测器(IV)显著提升SEC分析的信息获取能力。借助第三方先进检测功能集成,科学家还能对样品进行更全面的表征,从而更好地掌握新型复杂聚合物的结构-性能关系。利用业内率先推出专用校准套件提升数据质量和一致性由于运行时间小于10 min,使用ACQUITY APC校准标准品在30 min内即可校准一套串联ACQUITY APC色谱柱。这些标准品套件与ACQUITY APC色谱柱的分子量范围相匹配,可通过简单的稀释后进样为任何串联色谱柱生成10点校准图。这是一款有助于为特定应用选择理想色谱柱和校准标准品的便捷工具。得益于可对串联色谱柱进行日常校准的优势,数据一致性得到了极大改善,提供批次间测量结果始终如一的可靠性。功能和优势加速创新:亚3 μm刚性大孔径ACQUITY APC色谱柱与ACQUITY APC系统的超低系统扩散优势相结合,实现高分离度的聚合物分离。优化方法开发:快速溶剂切换和强溶剂兼容性,有助于应对聚合物分析中的严苛分离条件。提高分析范围和实验室效率:一套系统支持多种应用,包括基础LC、梯度、等度、反相和GPC分析。更深入地了解您的聚合物样品:可兼容多种检测器技术包括第三方先进的检测器,例如示差折光、紫外/可见光、光电二极管阵列或蒸发光散射检测器,还可兼容多角度光散射和粘度检测器等。缩短聚合物样品实验室检测周期:以快于传统SEC/GPC技术5-20倍的速度为您的研发实验室、生产运营团队和客户提供可供决策的结果。简化并优化串联色谱柱的校准:提供与串联色谱柱分子量范围匹配的标准品。多样化的色谱柱管理功能:可自动从多达两套串联ACQUITY APC色谱柱和多达两套串联传统GPC色谱柱中进行选择 - 所有色谱柱都安装在稳定的恒温环境中。溶剂管理器提供的精确流量:可确保分子量数据的准确性始终如一。
    留言咨询

蛋白聚合物相关的试剂

蛋白聚合物相关的方案

蛋白聚合物相关的论坛

  • 牛奶蛋白和其他纤维聚合怎么确定成分 ?

    大家好,不知道大家做牛奶蛋白纤维聚合物的多不多,行业标准制订了牛奶蛋白改性聚丙烯晴聚合物的检测方法,可是最近牛奶蛋白聚乙烯醇聚合物在市场上出现较多,大家对这样的产品有没有好的定性定量方法?

  • 【原创大赛】聚合物整体柱的制备及其在蛋白质分离中的应用

    [align=center]聚合物整体柱的制备及其在蛋白质分离中的应用[/align][align=center]摘 要[/align][align=center][color=black] [/color][/align][align=left][color=black]整体柱作为第四代分离介质,具有制备简单、通透性好、传质快等优点,在生物分离分析中发挥的作用日益增加。多孔聚合物整体柱具有高通透性和高柱空间利用率,与填充柱相比优势明显。至今已成功地用于分离科学,特别是用于分离型生物分子。本文简要综述了聚合物整体柱的制备及其在蛋白质分离中的应用,并对其应用做了展望。[/color]关键词:[color=black]聚合物整体柱;蛋白质分离;综述[/color][b]1 引言[/b]蛋白质在人体生命过程中发挥着极其重要的作用,某些蛋白质在体内的含量水平严重影响着生命的质量,这就要求对其进行定量研究,而对其实现分离分析成为首要任务。对蛋白质进行分离鉴定通常使用电泳[color=black]—[/color][color=black]质谱、液相色谱[/color][color=black]—[/color][color=black]质谱联用技术,但这些方法并不能完全满足蛋白质分子对操作环境和分析方法要求较高的要求,并且费用较高。而聚合物单体种类繁多,且其上面的官能团可以有多种修饰方法从而对不同的生物分子具有不同的作用,从而对其实现快速分离。[/color]色谱柱是色谱分离的核心,整体柱代表了色谱柱技术发展的方向[sup][color=black][/color][/sup][color=black]。整体柱[/color][color=black]( Monolithiccolumn) [/color]又称连续床层( Continuous bed) [color=black],是一种用有机或无机聚合方法在色谱柱内进行原位聚合的连续床固定相[/color][sup][color=black][/color][/sup][color=black]。[/color][color=black]整体柱具有独特的双孔结构,具有灌注色谱的特点,比填充柱的通透性更好,可实现快速分离[/color][sup][color=black][/color][/sup][color=black]。根据整体材料基质的不同,整体柱分为硅胶整体柱、有机聚合物整体柱、有机[/color][color=black]-[/color][color=black]硅胶杂化整体柱。硅胶整体柱具有良好的稳定性和机械强度,通透性好,但制备周期长,需要柱后衍生[/color][sup][color=black][/color][/sup][color=black]。有机聚合物整体柱则制备简单、[/color][color=black]pH [/color][color=black]值适用范围广,具有良好的通透性、独特的比表面积和较好的化学稳定性,并且能在玻璃毛细管、不锈钢柱管、[/color][color=black]tip [/color][color=black]头甚至是微流控芯片的通道等多种模具中制备[/color][sup][color=black][/color][/sup][color=black]。[/color][b]2 聚合物整体柱的制备[/b]多孔聚合物整体柱出现在上世纪90年代初,继而在制备和应用中得到发展[sup][/sup]。与采用溶胶凝胶技术制备的无机硅胶整体柱相比,通过自由基聚合方式制备的聚合物整体柱更容易制备。除了传统的自由基聚合,其他方法预期制备一种具有均匀结构的新型聚合物整体柱。2006年,Hosoya等人报道了一种将环氧单体与二胺类开环聚合的高性能有机聚合物整体柱,在毛细管液相色谱上,其对苯的分离塔板高度(H)可以达到小于5μm[sup][/sup]。值得注意的是,相比链生长聚合(比如自由基聚合反应)产生的球状结构,逐步聚合方式导致整体柱有完全不同的形态。[b]3 聚合物整体柱的分类[/b]多种多样的功能单体使整体柱设计变得更容易,按单体不同,聚合物整体柱可分为聚丙烯酰胺类,聚甲基丙烯酸酯类和聚苯乙烯类[sup][/sup]。单体决定其适用范围,整体柱已被广泛用于不同的色谱模式,包括反相液相色谱(RPLC)、亲水相互作用色谱(HILIC)、离子交换色谱(IEC)等[sup][/sup]。而[color=black]从制备工艺上,聚合物整体柱可分为三类:后修饰整体柱、原位合成整体柱和结合微加工技术的整体柱。[/color]原位合成整体柱是一定温度或紫外光条件下,将交联剂、单体、引发剂、致孔剂,在不锈钢色谱柱管中充分反应,再冲洗除去致孔剂和残余未反应物得到。除研究可用单体外,新的制备方法和制备工艺和的研究也取得了很好发展。通过调节交联剂、单体、致孔剂之间的比例,可以较好地控制制备的整体柱的柱效和通透性[sup][color=black][/color][/sup][color=black]。原位聚合制备的整体柱并不能满足某些特定的分离需求。原位聚合时,很多功能团被包埋在颗粒内部,暴露在表面上的并不多,这导致聚合物整体柱的性能明显下降。后修饰整体柱则会改善这一问题。聚合物整体柱的后修饰方法使用最多的是在聚合物表面接枝[/color][sup][color=black][/color][/sup][color=black]。近年来,利用甲基丙烯酸缩水甘油酯[/color][color=black]( GMA) [/color][color=black]的环氧基团的接枝方法较为流行,并成功运用到离子交换色谱、亲和色谱等色谱柱的制备中[/color][sup][color=black][/color][/sup][color=black]。相对于接枝的方法,将功能化的纳米颗粒包被在聚合物的表面的方法较为简单,也常用于制备功能化的聚合物柱。作为固定相载体,微加工整体柱是芯片色谱柱所独有的。[/color]原位合成聚合物整体柱最为便捷,根据分离要求的不同,已经开发了各种各样的单体材料和制备工艺。对于一般分离需求,是很好的选择。采用后修饰的方法在固定相表面连接功能基团可以提高柱效,而微加工整体柱仅适用于芯片色谱。[b]4 聚合物整体柱的应用[/b]一般来说,多孔聚合物整体柱具有典型球状结构,其通孔之间的聚合微球显著有利于提高聚合物整体柱的通透性,并且使其在高流速下能够有效地分离蛋白质分子。然而,聚合物整体柱对小分子的分离通常表现为低的柱效,据研究是由于表面积较硅胶整体柱小造成的。为了解决这个问题,研究者提出了几种试图增加表面积的方法,如将纳米粒子引入聚合物整体柱和制备超交联整体柱[sup][/sup],分离能力在一定程度上得到了提高。此外,斯韦克系统地阐述了各种多孔聚合物整体柱的制备技术[sup][/sup]。例如,2,2,6,6-四甲基-1-哌啶(TEMPO)介导的活性自由基聚合。Kanamori等合成的聚合物(二乙烯基苯)单体具有明确的连续形态,高的比表面积[sup][/sup]。[b]5 展望[/b][color=black]实际有机分子样品结构复杂、种类众多,而且对操作环境和分析方法要求较高。不同色谱模式的液相色谱方法不仅对特定的生物分子具有较好的选择性,且制备方法简单易得,结构可控。此外,聚合物单体的种类繁多,且其上面的官能团可以有多种修饰方法从而对不同的生物分子具有不同的作用。因此,随着液相色谱固定相的发展,聚合物整体柱以其独有的优势也会在生物分子的分离与分析中得到越来越广泛的应用。[/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][b]参考文献[/b] 杨帆, 毛劼, 何锡文. 基于巯基-烯点击反应制备有机-无机杂化硼酸亲和整体柱用于糖蛋白的选择性富集. 色谱, 2013, 31(6): 531-536. 平贵臣, 袁湘林, 张维冰等. 整体柱的制备方法及其应用.分析化学,2001,29(12):464-469. Jing Liu, Fangjun Wang, Zhenbin Zhang. Reversed phasemonolithic column based enzymereactor for proteinanalysis. Chinese Journal of Analytical Chemistry,2013, 41(1):10-14. Motokawa M, Ohira M, Minakuchi H [i]et al[/i]. Performance ofoctadecylsilylated monolithic silica capillary columns of 530μm innerdiameterin HPLC. J.Sep Sci,2006, 29(9): 2471-2477. 王超然, 王彦, 高也等. 聚(4-乙烯基苯硼酸-季戊四醇三丙烯酸酯)亲和整体柱的制备与应用. 分析化学研究报告,2012, 40(8):1207-1212. 李晶, 周琰春, 张嘉捷等. 阴离子交换聚合物整体柱的制备及其在[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]中的应用.分析测试学报,2012, 31(9):1089-1094. 张振宾, 欧俊杰, 林辉等. 有机-硅胶杂化整体柱的制备及应用研究进展.高等学校化学学报,2013,34(9):2011-2019. 刘婵, 江茜, 陈蕾等. 金纳米粒子修饰的氨基硅胶整体柱的制备及超灵敏表面增强拉曼散射检测.高等学院化学学报,2013,34(11):2488-2492. Yongqin Lv, Zhixing Lin, Frantisek Svec. Thiol-ene clickchemistry: a facile and versatile route for the functionalization of porouspolymer monoliths.Analyst,2012,137(9):4114-4118. 吕仁江, 丁会敏, 李英杰. 丙烯酰胺-β-环糊精毛细管电色谱手性整体柱的制备及应.应用化学,2012,29,(5):604-607. Frantisek Svec, Yongqin Lv. Advances and recent trends in thefield of monolithic columns for chromatography. Analytical Chemistry,2014,87(9):250-273. Zhongshan Liu, Junjie Ou, Hui Lin. Preparation of monolithic polymercolumnswithhomogeneousstructure viaphotoinitiated thiol-yne click polymerization and their application inseparation of small molecules.Analytical Chemistry,2014,86,(105):12334-12340. Trojer L, Lubbad S H, Bisjak C [i]et al[/i]. Monolithicpoly( p-methylstyrene-co-1,2-bis(p-vinylphenyl) ethane) capillary columns as novel styrene stationary phases forbiopolymer separation.J. Chromatogr. A, 2006, 1117(1): 56-66. Luo Q Z, Zou H F, Xiao X Z [i]et al[/i]. Chromatographic separation of proteins on metal immobilizediminodiacetic acid-bound molded monolithic rods of macroporous poly( glycidylmethacrylate-co-ethylene dimethacrylate) . J. Chromatogr. A,2001,926(2):255-264. 郑晖, 李秋顺, 马耀宏等. 微流控芯片上电色谱聚合物整体柱研究进展.山东科学,2013,26(1):16-21. J. Zhang, HL. Zou, Q. Qing [i]et al[/i]. Effect of chemical oxidation on the structure of singlewalled carbon nanotubes. J. Phy. Chem. B, 2003, 107(16):3712-3718. Junjie Ou, Zhongshan Liu, Hongwei Wang. Recent development ofhybrid organic-silica monolithic columns in CEC and capillary LC.Electrophoresis ,2015, 36(9):62-75. 王玺, 何健, 季一兵. 聚甲基丙烯酸酯毛细管整体柱的制备及其性能考察.中国药科学学报,2012, 67(7):78-85.[/align]

蛋白聚合物相关的资料

蛋白聚合物相关的资讯

  • 表面分子印迹聚合物电位型传感器构建成功 实现蛋白分子快速高灵敏电化学检测
    p   发展适合于现场快速检测海洋生物大分子及海洋细菌的生物传感器技术,对于及时快速地开展海洋环境监测和评价具有重要意义。目前,对生物大分子的检测,一般采用酶联免疫法、生物化学测试法、聚合酶链式反应法等技术 对全细胞的检测,则通常需要通过细胞培养实验来完成。然而,上述方法存在仪器复杂、设备昂贵、检测耗时长等缺点,仅适用于实验室分析。 /p p   在海洋环境中,贻贝可通过其足丝分泌贻贝粘蛋白,该蛋白具有优越的粘滞性和良好的生物相容性。近期,中国科学院烟台海岸带研究所研究员秦伟课题组利用聚多巴胺类仿贻贝粘蛋白材料,成功构建了表面分子印迹聚合物电位型传感器,实现了对蛋白质分子及细胞体的高灵敏、高选择、快速电化学检测。他们采用基于仿贻贝粘蛋白的表面分子印迹技术,在电位型传感器表面原位构建了生物分子选择性识别印迹层 利用表面分子印迹层与待测生物分子之间的高选择性识别作用,实现了样品中生物分子在传感器表面的高选择性分离与富集 利用聚离子作为指示离子,指示富集前后传感器膜界面的电位变化,从而实现了对蛋白质分子及细胞体的免标记电化学检测(如下图)。该方法有效解决了电化学生物传感器难以实现免标记分析的难题,有望应用于海洋病毒及海洋致病菌的现场快速检测中。 /p p   相关研究成果已于近日发表在化学期刊《德国应用化学》(Rongning Liang, Jiawang Ding, Shengshuai Gao, Wei Qin*. Mussel-Inspired Surface-Imprinted Sensors for Potentiometric Label-Free Detection of Biological Species. Angew. Chem. Int. Ed., 2017, 56, doi: 10.1002/anie.201701892)。此外,秦伟课题组也于近期在该期刊发表了关于电化学生物传感研究的其它成果(Angew. Chem. Int. Ed., 2016, 55, 13033–13037)。 /p p style=" text-align: center " img width=" 600" height=" 495" title=" W020170526571669789953.jpg" style=" width: 600px height: 495px " src=" http://img1.17img.cn/17img/images/201705/insimg/dfa6e65f-ceeb-4ed3-8f15-be9f33a61853.jpg" border=" 0" vspace=" 0" hspace=" 0" / & nbsp p /p p & nbsp 基于海洋贻贝粘蛋白的仿生电化学生物传感器检测原理 /p p /p p /p /p
  • 美科学家制成聚合物纳米纤维反应器
    美国研究人员已开发出一种仅用大约1000个分子即可进行化学反应的新型化学合成方法,该新系统利用的是聚合物纳米纤维相互交织后所产生的微弱的化学反应,该方法已被证明可用于新型药物和工业原料的快速筛选。   研究人员称,这种新工艺还可用于对新的蛋白或DNA识别标签进行高通量测试,以改进目前用于测序的蛋白或DNA识别标签;或用于检测罕见的生物分子,如癌症或其他疾病早期阶段的微量蛋白特性。   目前,研究人员一般使用微流体系统来进行小规模的化学反应,即在一个芯片上通过由微型管路和泵组成的网络来传递化学物质。而美国博林格林州立大学化学家帕维尔安祯贝切尔开发的这个新系统则完全不同,反应在悬浮于干燥的聚合物纳米纤维中进行,且只在纤维相遇时才会相互发生反应。   研究人员使用静电技术研制出了这个纤维反应器。他们将液体聚氨酯装入配有细针的注射器,在针尖处形成一个微小的液滴,然后给针尖施加电压。电荷相斥驱动液滴形成细长的聚合物纤维,每条的直径约在100纳米至300纳米之间。研究人员认为,利用含有少量反应物的聚氨酯溶液所产生的静电,就可编制出一个液态纤维网,这样就创建出了反应器。经向的纤维包含一种反应物,纬向的纤维则包含另一种反应物。当施以微热使这些纤维融合时,结合处的化学物质就混合在一起发生反应。通过荧光成像和质谱等各种方法,这些生成物就可被鉴别出来。   在最近一期《自然化学》杂志上,研究人员介绍了利用该微型反应器对4种不同反应所做的测试。这些反应只发生在具有zepto-mole(10的负21次方摩尔)量级的大约1000个分子间。其中两种反应可用来测试与荧光染料分子相关的方法,这些分子只在经向与纬向相互交织的线上碰到相似的目标分子时才会发光。安祯贝切尔的研究领域之一便是开发可检测特定蛋白片段或DNA碱基的染料,目前他正在开发attoliter(一万亿分之一升)级的反应器纤维,以对这些染料进行高通量筛选。该系统加以改进后就可使用非常小的样本来研究数千个蛋白的相互反应。   研究人员表示,这种纤维反应器的最大优势在于比其他技术费用低廉,低反应量在测试那些目前尚未知晓的物质之间的新反应时也具有优势。更重要的是,反应和生成物仅限于纤维内,它们不会蒸发和泄露,因而更为安全。
  • 安捷伦宣布收购聚合物标准品公司PSS
    安捷伦本周二表示收购了聚合物标准品制造商Polymer Standards Service(PSS),交易的财务条款未披露。  PSS公司是全球知名的凝胶渗透色谱 (GPC) 和尺寸排阻色谱 (SEC)高品质标准品制造商之一,可提供从小型实验室规模(1克)到量产级别(5千克或更多)的聚合物标准品、特制聚合物、聚合物颗粒、聚合物网络等产品,专注用于表征分子结构的构建和修饰的硬件和软件解决方案。  此次收购拓宽和扩展了安捷伦的产品组合和客户服务范围,特别是在化学和生物制药行业,用于分析核酸、蛋白质、单克隆抗体、多糖和合成塑料等天然和合成聚合物。  据悉,安捷伦还将添加一个关键软件组件,以补充其凝胶渗透色谱/尺寸排除色谱产品组合。  同时,安捷伦覆盖全球的业务范围也将助力用户更广泛地使用PSS产品和专业知识。  安捷伦生命科学和应用市场集团总裁 Jacob Thaysen 表示:“我们非常高兴PSS团队加入安捷伦,帮助我们扩大在液相色谱和 GPC/SEC 市场的领导地位。即将添加到安捷伦产品组合中的先进的 PSS 硬件、软件、色谱柱和参比材料,将增强我们的产品,并确保我们提供客户重视的广泛的液相色谱设备、GPC/SEC 分析以及软件。”  PSS 董事总经理 Thorsten Hofe 表示:“这对 PSS 和安捷伦来说都是非常具有战略意义的举措。我们可以一起为客户提供全系列的 GPC 和 LC 产品,并将 PSS 产品的覆盖范围扩展到快速增长的新市场。对于 PSS 团队来说,这是一个激动人心的时刻。”
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制