初级粒径

仪器信息网初级粒径专题为您整合初级粒径相关的最新文章,在初级粒径专题,您不仅可以免费浏览初级粒径的资讯, 同时您还可以浏览初级粒径的相关资料、解决方案,参与社区初级粒径话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

初级粒径相关的耗材

  • COSMOSIL 平均粒径 (球形?中性)填料 30511-64
    COSMOSIL 平均粒径 (球形?中性)填料 30511-64因为硅胶呈弱酸性,在用柱色谱分离的时候,一些对pH敏感的化合物会被酸性的硅胶分解。将硅胶60(球形、中性)的pH值调整到中性,不但能将对pH敏感的化合物分离,而且也能分离一些理化性质未知的新物质。订购信息● 平均粒径 (球形 中性)产品名称平均粒径产品编号包装尺寸平均粒径 60 (球形?中性)开放柱层析75 μm30511-64100 g30511-35500 g30511-511 kg30511-065 kg30511-2225 kg140 μm30518-94100 g30518-65500 g30518-811 kg30518-5225 kg● 平均粒径 (球形)产品名称Particle size孔径级别产品编号包装尺寸平均粒径 60, 球形约. 70 ~ 230 目60ASP30731-711 kg30731-4225 kg约. 150 ~ 325 目SP30733-511 kg30733-2225 kg平均粒径 120, 球形约. 70 ~ 230 目120ASP30734-411 kg约. 150 ~ 325 目30735-311 kg● 平均粒径 (不规则)产品名称Particle size孔径级别产品编号包装尺寸平均粒径 60约. 70 ~ 230 目60ASP30724-55500 g30724-711 kg30724-845 kg30724-4225 kg约. 230 ~ 400 目SP30721-85500 g30721-011 kg30721-145 kg30721-7225 kg
  • 填料粒径3μm的手性色谱柱
    3&mu m色谱柱系列综合介绍 3&mu m色谱柱系列 &mdash &mdash 填料粒径3&mu m的手性色谱柱,实现更高的分离性能 涂敷型:CHIRALPAK® AD-3/AD-3R, CHIRALPAK® AS-3/AS-3R CHIRALCEL® OD-3/OD-3R, CHIRALCEL® OJ-3/OJ-3R CHIRALPAK® AY-3/AY-3R, CHIRALCEL® OZ-3/OZ-3R 耐溶剂型:CHIRALPAK® IA-3, CHIRALPAK® IB-3, CHIRALPAK® IC-3 产品描述: 3&mu m的手性色谱柱系列,由于使用了3&mu m填料,所以可得到很尖锐的峰。由于能实现很高的理论塔板数,即使是短柱也可以在缩短分析时间的基础上显示出优异的分离能力。另外由于使用了高通用性的手性选择剂,可对各类化合物进行光学拆分。 更小粒径填料的优点: - 更高效 - 更高流速 - 更快出峰时间 - 更高操作压力 - 优化HPLC系统 可根据用途选择最适合的色谱柱规格: 4.6*150mm Ø 用于通常分析 4.6*50mm Ø 用于高速分析 4.6*250mm Ø 用于特别需要高分离度的时候 2.1*150mm、2.1*250mm Ø 用作LC-MS或者微型HPLC 3&mu m与5&mu m分离度对比: Column: (L) CHIRALPAK® AD-3 (particle size 3&mu m) (R) CHIRALPAK® AD-H (particle size 5&mu m) Size: 4.6*250mm Mobile Phase: n-Hexane/IPA=90/10 Flow rate: 1ml/min Temperature: 25℃ Sample: &alpha -(Trifluoromethyl)-benzylalcohol
  • AQ 粒径/内径*柱长2.7μm/2.1×50mm
    CAPCELL CORE核壳柱§ 由1.7μm的实心核和0.5μm的多孔硅胶构成粒径为2.7μm的核-壳填料,可以实现UPLC和HPLC上的快速高效分析固定相粒径内径长度50mm价格长度100mm价格长度150mm价格C182.7μm2.1mmF511035500F511056500F5110670004.6mmF511145500F511167100F511177500AQ2.7μm2.1mmF511635800F511656900F5116674004.6mmF511745800F511767400F511777800MP2.7μm2.1mmF512135800F512156900F5121674004.6mm————F512267400F512277800WP2.7μm2.1mmF512335800F512356900F5123674004.6mm————F512467400F512477800PFP2.7μm2.1mmF511435800F511456900F5114674004.6mmF511545800F511567400F511577800PC2.7μm2.1mmF511235500F511256500F5112670004.6mmF511345500F511367100F511377500ADME2.7μm2.1mmF511835600F511856500F5118670004.6mmF511935700F511957200————

初级粒径相关的仪器

  • 产品简介  粒径谱分析仪以激光二极管作为光源,31个粒径通道测量模块可准确计算颗粒物质量浓度和分布基础。该分析仪可检测固体颗粒物和小液滴粒径分布,测量过程没有半挥发性物质损失,适合官方作为PM10和PM2.5测量的组网仪器。在解决环境监测中需要解决的大气可吸入颗粒物等多种污染物的连续、实时、自动监测问题,特别是对颗粒物源解析、数浓度谱的研究有着重要的作用。功能特点  全自动无人值守在线实时监测,19寸机柜安装;  可同时测量PM1,PM2.5,PM10(可选配31个粒径通道),获得PM10,PM2.5 所有的EU及US-EPA认证;  粒径分布、相对温湿度探头、大气压力(三种选项);  不受震动影响,没有放射源,维护少,具有自动跟踪系统;  使用NAFION 作为除湿方法,使得SVC没有损失;  可做为大气监测系统的组网仪器;  维护费用、监测成本低。
    留言咨询
  • ——检测下限低至1.1nm产品介绍PSMPS纳米颗粒物粒径谱仪是一个纳米颗粒物粒径分析系统,该系统创新地将改进后的DMA(Differential Mobility Analyzer)差分粒子电迁移器和CPC(Condensation Particle Counters)凝结核粒子计数器与AIRMODUS PSM(Particle Size Magnifier)颗粒物粒径放大器结合起来,将检测粒径范围拓展至1.1nm。1~2nm范围内的颗粒物粒径分布,对于帮助我们研究和理解高动态过程的新颗粒物形成(NPF)的基本机制以及颗粒物的形成速率和成长速率至关重要。改进后的DMA可以最大程度的减少颗粒物的扩散损失,尤其是对于细微颗粒物,极大地提高了DMA对于1nm~3nm颗粒物的可通过性。DMA对颗粒物进行粒径分类,PSM对颗粒物进行初级凝结增大,CPC凝结核粒子计数器对经过PSM凝结长大后颗粒物再次进行增大并计数。设备用于1.1nm~55nm粒径范围、100 ~ 108P/cm3浓度范围内的纳米颗粒物计数和粒径分析。工作原理DMA对颗粒物进行粒径分类,PSM对颗粒物进行初级凝结增大,CPC凝结核粒子计数器对经过PSM凝结长大后颗粒物再次进行增大并计数。设备用于1.1nm~55nm粒径范围、100 ~ 108P/cm3浓度范围内的纳米颗粒物计数和粒径分析。产品特征2 PSMPS系统将测量粒径拓展到1.1nm2 紧凑的配置,多合一的结局方案2 多种中和器可选2 扫描、步进和单颗粒模式可供选择2 监测软件操作简单,自动高效2 可外接传感器输入所需参数,如温湿度等2 适合用于各种纳米颗粒物应用,如:大气成核,纳米颗粒物生长、凝结与运输等。使用PSMPS捕捉到的颗粒物形成的快速变化过程技术参数DMA参数测量范围S-DMA:1.1~55nmM-DMA:2.8~155nm分辨率步进模式:45~255通道扫描模式:64通道,对数间隔HV输出正电极或负电极,5~10000VPSM参数工作液二甘醇D50切割点1.3~3.5nm可调采样流速2.5LPM电源100~240 VAC 50/60 Hz max. 280 W尺寸29 x 45 x 46.5 cm重量17kg5417CPC参数工作液异丙醇D50切割点4nm采样流速0.3或0.6LPM鞘气流速3或10LPM浓度范围150000 P/cm3(单颗粒模式)107 P/cm3(光度计模式)电源90~264 VAC 47~63 Hz 80~130 W尺寸40 x 25 x 29 cm重量12.4kgPSMPS系统参数数据输出颗粒物粒径谱图样气湿度0~95 % RH, 无冷凝压力范围600~1050 mbar
    留言咨询
  • EDM 665 宽粒径气溶胶粒径谱仪&bull 仪器简介EDM665 WRAS(Wide Range Aerosol System)宽粒径气溶胶粒径谱仪,是将光学粒径谱(OPC)和扫描电迁移率粒径谱仪(SMPS+C)结合起来分析颗粒物粒径的设备,光学粒径谱(OPC)主要用于微米级的颗粒的监测,监测31个通道;扫描电迁移率粒径谱仪(SMPS+C)用于纳米颗粒研究,监测44个通道。粒径监测范围为5nm到32μm,共分为70多个通道,系统软件将自动绘制粒径和浓度分布图。系统带有自动采样、干燥除湿系统,可在无人监管条件下连续监测长达1月。可安装GPS和无线传输系统。。&bull 仪器优势&bull 宽范围,5.0nm ~ 32μm,71个粒径通道&bull 浓度范围1 ~ 107P/cm3&bull 独立监测系统,全自动,可长期无人监守工作&bull 48cm仪器固定架&bull SMPS,CPC,软件,在线实时监测,远程控制, GPS,认证,可靠稳定。&bull 仪器应用&bull 环境研究&bull 气溶胶研究&bull 移动气溶胶研究&bull 路旁监测&bull 引擎排放研究&bull 健康效应研究&bull 性能参数&bull SMPS+C测量原理静电分类和冷凝生长检测粒径范围M–DMA (5 – 350 nm) L–DMA (10 – 1094 nm)最小扫描时间150s浓度范围107 p/cm3采样流量0.3 L/min&bull 光学设备粒径范围250nm – 32μm粒径浓度1 ~ 2×103P/cm3采样流量1.2 L/min可重复性3%最大量程&bull 电源110 – 220 VAC, 50 – 60 Hz&bull 功率100 – 150 W&bull 温度范围- 20 to + 40°C (- 4 to 104°F), RH 95%&bull 尺寸(LWH)49 x 28 x 65 cm (19.3 x 11 x 25.6 in)&bull 重量38 kg
    留言咨询

初级粒径相关的试剂

初级粒径相关的方案

初级粒径相关的论坛

  • 等效粒径定义

    简单地说,粒径就是颗粒的直径。从几何学常识我们知道,只有圆球形的几何体才有直径,其他形状的几何体并没有直径,如多角形、多棱形、棒形、片形等不规则形状的颗粒是不存在真实直径的。但是,由于粒径是描述颗粒大小的所有概念中最简单、直观、容易量化的一个量,所以在实际的粒度分布测量过程中,人们还都 ◇ 粒度和粒径的定义 ◇ 等效粒径定义 ◇ 常见粉体的密度 ◇ 粒度分布的表示方法 ◇ 粒度仪器的重复性 ◇ 粒度仪器的准确性 是用粒径来描述颗粒大小的。一方面不规则形状并不存在真实的直径,另一方面又用粒径这个概念来表示它的大小,这似乎是矛盾的。其实,在粒度分布测量过程中所说的粒径并非颗粒的真实直径,而是虚拟的“等效直径”。等效直径是当被测颗粒的某一物理特性与某一直径的同质球体最相近时,就把该球体的直径作为被测颗粒的等效直径。就是说大多数情况下粒度仪所测的粒径是一种等效意义上的粒径。   不同原理的粒度仪器依据不同的颗粒特性做等效对比。如沉降式粒度仪是依据颗粒的沉降速度作等效对比,所测的粒径为等效沉速径,即用与被测颗粒具有相同沉降速度的同质球形颗粒的直径来代表实际颗粒的大小。激光粒度仪是利用颗粒对激光的散射特性作等效对比,所测出的等效粒径为等效散射粒径,即用与实际被测颗粒具有相同散射效果的球形颗粒的直径来代表这个实际颗粒的大小。当被测颗粒为球形时,其等效粒径就是它的实际直径。

初级粒径相关的资料

初级粒径相关的资讯

  • 外泌体粒径分析该选谁?不同外泌体粒径分析技术间的比较
    测量外泌体的粒径分布一直以来都是外泌体表征的重要组成部分。但是由于外泌体的尺寸仅为30~200 nm,所以必须借助一些特殊的检测手段才能够对这种在光学显微镜下不可视的颗粒进行观测。本篇就外泌体粒径测量技术的发展进行简述,并对不同技术的差异进行比较。一、电镜技术在外泌体发现的早期,由于还没有专门针对这类尺寸颗粒的分析方法,因此直接在电镜下面观察粒径并统计成为了早的外泌体粒径统计方法。但是这种方法费时费力,且通量低,在面对临床和科研中的大量样本时显得十分无力。文献中外泌体在电镜TEM模式下的经典形态 二、动态光散射技术 & 纳米粒子跟踪分析技术由于外泌体与材料学所合成的脂质体在形态上十分相似,因此用于脂质体表征的动态光散射技术(DLS)便被应用于外泌体的尺寸测量上。DLS利用光射到远小于其波长的小颗粒上时会产生瑞利散射现象,通过观察散射光的强度随时间的变化推算出溶液中颗粒的大小。但是这种技术会受到测量物质的颜色、电性、磁性等理化特性的影响,并且对于灰尘和杂质十分敏感。因此使得DLS在测量尺寸较小的粒子时,测量出的粒径与实际的分布具有较大的偏差。为了弥补DLS的短板,纳米粒子跟踪分析(NTA)技术孕育而生。这种技术采用激光散射显微成像技术,用于记录纳米粒子在溶液中的布朗运动轨迹,并通过Stokes-Einstein方程推算粒子大小。这种技术能够对30~1000 nm的粒径进行测量,因此能够提供更为地粒径数据。在诸多文献的测试中均取得了较DLS更好的精度,因此成为目前为主流的外泌体尺寸测量手段。NTA技术的工作原理与DLS技术在测量不同尺寸纳米球的数据对比。可见相比于DLS,NTA测量的粒径分布更为。 虽然NTA取得了比DLS 更高的性,但是随着外泌体研究的深入,其局限性也十分明显。先NTA仅能够测量溶液中颗粒的平均粒径尺寸,但是NTA无法分辨其中的外泌体、囊泡、脂蛋白,也不能区别不同源性的外泌体。这直接限制了外泌体粒径表征的意义,使得研究者很难探究外泌体尺寸与外泌体来源之间的关系。另外NTA本身对于测试时的温度、浓度和校准都有着较高要求,因此使得NTA在测试较小的粒子时其精度仍不能达到令人满意的效果,其测试结果却仍与电镜、AFM等成像技术所观测到的粒径存在着明显差异。外泌体在TEM下的成像及粒径统计与NTA测量的结果对比。可见NTA测量到的粒径要比TEM直接测量的结果大50~100 nm。 三、单粒子干涉反射成像技术为了解决上述在实际测试中的问题,一种新型的单粒子干涉反射成像传感器(SP-IRIS)技术孕育而生。这种技术摒弃了布朗运动轨迹追踪方法,通过基底与颗粒形成的相干光进行成像,通过成像后的亮度来直接计算纳米粒子的大小。从而避免了NTA测量粒径轨迹误差大的短板,拥有更高的灵敏度和精度,即使对于NTA无法区分的40 nm与70 nm的粒子混合溶液也依然能够取得很好的分辨率。SP-IRIS的原理及芯片微阵列打印的成像效果和对混合不同粒径小球的区分效果。可见SP-IRIS技术拥有更高的测试通量和测量精度。得益于这种高精度测量方法,越来越多的研究者终于能够测量到与电镜直接观测相当的粒径。这种优势所带来的效果不单单是能够让TEM的数据与纳米粒子表征的数据更为一致,同时还能够表征不同来源的外泌体之间的粒径差异。SP-IRIS、NTA和TEM统计同一样品时所测量的粒径分布。SP-IRIS在测量不同尺寸的外泌体时,测量的粒径与TEM的尺寸统计基本一致,而NTA统计的粒径则比TEM大约50 nm。此外SP-IRIS技术还能够提供不同来源外泌体的尺寸差异,能够看出CD9来源的外泌体要比其它来源的外泌体大~10 nm。 SP-IRIS的另一个优势在于能够更换激光源的波长,因此除了能够实现外泌体的形貌成像外,还能够实现单外泌体的荧光成像。使得单外泌体的荧光共定位成为可能,研究者通过这种单外泌体荧光成像能够研究单外泌体的表型、载物、来源等生物信息。使用SP-IRIS 对受伤组和对照组小鼠不同时间点的血清CD9、CD81来源外泌体的分泌量监测。可以看到CD81来源的外泌体的分泌量呈现先增加后减少的趋势,而CD9来源的外泌体分泌量则一直在增加。 综上所述,由于SP-IRIS技术的高精度、高灵敏度、可做单外泌体荧光成像的优势,目前有越来越多的学者开始对比NTA技术和SP-SPIS技术,其结果均认为SP-SPIS技术测试的效果要明显优于NTA,这其中也不乏Cell等高水平期刊。相信在不久的将来,SP-IRIS技术将会越来越普及,为研究者研究外泌体打开新的大门。 参考文献:[1]. Ayuko Hoshino, et al, Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers,cell, 2020, 182, 1–18.[2]. Oguzhan Avci, et al., Interferometric Reflectance Imaging Sensor (IRIS)—A Platform Technology for Multiplexed Diagnostics and Digital Detection, Sensors 2015, 15, 17649-17665.[3]. George G. Daaboul, et al, Digital Detection of Exosomes by Interferometric Imaging, Scientific Reports,6, 37246.[4]. Federica Collino, et al, Extracellular Vesicles Derived from Induced Pluripotent Stem Cells Promote Renoprotection in Acute Kidney Injury Model, Cells 2020, 9, 453.[5]. Daniel Bachurski, et al, Extracellular vesicle measurements with nanoparticle tracking analysis – An accuracy and repeatability comparison between NanoSight NS300 and ZetaView, JOURNAL OF EXTRACELLULAR VESICLES 2019, 8, 1596016.[6]. Robert D. Boyd, et al, New approach to inter-technique comparisons for nanoparticle size measurements using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering, Colloids and Surfaces A: Physicochem. Eng. Aspects 387,2011, 35– 42.
  • 使用BeNano 90检测UV色浆粒径
    UV色浆是有机或者无机颗粒和分散液形成的分散体系,广泛应用于油墨、涂料,可进行印刷和喷涂,具有较好施工性、高光泽、干燥速度快、低污染、墨层丰满平整、美观、流平性佳、附着力优良、柔韧性好、表面耐抗性好、耐划伤、抗化学性好等特点。UV色浆在紫外光照射下会固化。UV色浆的发展趋势是使用极细纳米颗粒。纳米级颗粒UV色浆具有分散性好,光泽度更高,色彩鲜艳,更好的固化性能等特点。在这篇应用报告中,我们使用丹东百特仪器公司最新推出的BeNano 90 Zeta纳米粒度电位仪检测了分散在乙酸乙酯中的不同颜色的UV色浆的粒径和Zeta电位信息。原理和设备采用丹东百特公司的BeNano 90 Zeta纳米粒度电位仪进行测试。仪器使用波长671nm,功率50mW激光器作为光源。动态光散射光路收集90°散射光,通过相关计算得到原始相关曲线信号,进而推导出颗粒的布朗运动速度,由斯托克斯爱因斯坦方程得到颗粒的粒径和粒径分布信息。样品制备和测试条件一共检测了6个纳米色浆样品,颜色分别为红、蓝、黄、黑、白颜色。其中白色色浆有两个样品,其中一个为进口白色浆。色浆的原始浓度较高,使用乙酸乙酯(折射率1.37,粘度0.426 cp@25℃)进行分散。稀释倍数为1000-10000倍直至色浆透明。通过BeNano 90 Zeta内置的温度控制系统将测试温度控制为25℃±0.1℃,样品注入玻璃粒径池采用动态光散射进行粒径池进行粒径测试。每一个样品在放入样品池后进行至少三次测试,以检测结果的重复性和得到结果的标准偏差。测试结果和讨论图1. 动态光散射检测UV浆料的相关曲线和粒径分布(上)图1. 动态光散射检测UV浆料的相关曲线和粒径分布(下)通过使用动态光散射技术,得到了UV浆料的粒径和粒径分布。可以看出所有六个样品的光强分布为一个粒径峰,没有团聚物峰。通过表1中的结果可以看出,所有浆料中的颗粒均为纳米级颗粒,不同颜色的浆料的平均粒径在100 – 300nm范围内,多次重复性测试的标准偏差均较小,说明样品分散均匀。 PDI值均超过了0.08说明所有浆料样品中的颗粒粒径具有一定的分布。可以注意到,白色浆和进口白色浆的平均粒径非常接近,而且白色浆的PDI甚至小于进口白色浆,说明通过工艺控制国产白色浆从颗粒大小和分布的角度已经达到进口白色浆水平。表1. 6次重复性测试粒径和PDI结果
  • TSI公司将举办《粒径谱仪在灰霾观测中的应用》讲座会
    美国TSI公司将于2010-9-21在广州举办《粒径谱仪在灰霾观测中的应用》讲座会 美国TSI亚太公司北京代表处 美国TSI公司将于2010年9月21日在广州举办《粒径谱仪在灰霾观测中的应用》讲座会。我们将邀请华南环境科学研究所和中国气象局热带海洋研究所专家一起研讨珠三角地区的灰霾问题以及TSI的粒径谱仪和浊度仪在灰霾观测中的应用结果。 1. 讲座日期 : 2010-9-21 9:00-16:30 2. 讲座地点:广州润都饭店 广州天河区黄埔大道300号 (86-20)85538388  3. 日程安排: 9:00—9:30 来宾 签到 9:30—10:10 TSI 仪器在气象变化观测中的应用 10:20—11:00 TSI 仪器在灰霾检测中的应用 11:00—11:15 茶歇 11:15—11:50 介绍新型大气气溶胶计数器 12:00—13:30 午餐时间 13:30—14:10 TSI 粒径谱仪和浊度仪在中国气象局热带海洋研究所的应用及TDMA研究 14:20—15:00 TSI粒径谱仪和浊度仪在华南环境科学研究所的应用 15:10—16:30 华南环境科学研究所实验室参观 欢迎大家前来参加我们的技术讲座并聆听我们的各位专家的演讲。 TSI北京代表处 电话: 8610-82515688 传真: 8610-82515699 邮箱: tsibeijing @tsi.com
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制