差异性

仪器信息网差异性专题为您整合差异性相关的最新文章,在差异性专题,您不仅可以免费浏览差异性的资讯, 同时您还可以浏览差异性的相关资料、解决方案,参与社区差异性话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

差异性相关的耗材

  • 探头应用-面团拉伸测定系统
    该系统装置主要用于测定面团延展性(extensibility)和拉伸强度(resistance)及样品的均质化程度,样品用量少、测定方便,与传统拉伸仪相比更适用于观察与比较配方和加工过程中的差异性,可作为产品改善的可靠依据。
  • CAPCELL PAK MF 苯丙基柱
    卡赛帕克MF使用在UG中用的经过精密分级的高纯度硅胶基材,在其表面形成均一的用硅氧聚合包被的薄膜后,作为亲水基的聚氧乙烯基和疏水基的苯基以一定的比率键合在其上。含有蛋白质的生物样品注入色谱柱后,像蛋白质这样的大分子受到和填料结合的亲水基的立体障碍以及因小孔径所受的大小排阻功能的影响,不被保留而直接溶出。药物和代谢物这样的低分子化合物和与填料结合的疏水性基相互作用(反相分配),或被保留或溶出。卡赛帕克MF含以上两种功能组合的填料,具有优越的安定性,没有批次间的差异性,是再现性良好的最终前处理色谱柱。
  • CAPCELL PAK MF 苯基柱
    卡赛帕克MF使用在UG中用的经过精密分级的高纯度硅胶基材,在其表面形成均一的用硅氧聚合包被的薄膜后,作为亲水基的聚氧乙烯基和疏水基的苯基以一定的比率键合在其上。含有蛋白质的生物样品注入色谱柱后,像蛋白质这样的大分子受到和填料结合的亲水基的立体障碍以及因小孔径所受的大小排阻功能的影响,不被保留而直接溶出。药物和代谢物这样的低分子化合物和与填料结合的疏水性基相互作用(反相分配),或被保留或溶出。卡赛帕克MF含以上两种功能组合的填料,具有优越的安定性,没有批次间的差异性,是再现性良好的最终前处理色谱柱。

差异性相关的仪器

  • 全新的COUNTESS II FL自动细胞计数仪是一款台式细胞分析平台,它采用最先进的光学元件和图像分析软件,快速评估悬浮细胞。该仪器具有3通道灵活性-明场和两个可选的荧光通道-研究人员可以计数细胞、监测荧光蛋白表达并检测细胞活性。灵活-选择适合您的应用的荧光滤光片超值-可重复使用的计数板供您选择,减少了耗材成本精确-自动聚焦,可提高准确度,减少差异性简单-易于使用的触摸屏界面
    留言咨询
  • 梅特勒托利多服务部凭借专业技能和工具,以及原装备件为您提供快速、可靠的维修服务,快速恢复正常生产运行状态,并避免类似情况的发生。1. 恢复宝贵的正常运行时间设备的正常运行时间对于您的工作效率而言至关重要,当设备出现故障或未按照您的要求运行时,您需要过程快速返回至正常运行状态。快速干预和回收成本是较大限度地缩短设备停机时间的关键。 梅特勒托利多将以方便您的方式在现场或维修中心对您的设备进行维修。2. 来自原厂制造商的能力梅特勒托利多经认证的服务技术人员凭借合适的技能和工具、使用原厂备件提供快速、可靠的维修服务,确保:■ 较短停机时间■ 仅根据差异性诊断选择性更换备件■ 避免今后出现问题3. 现场维修服务我们设在当地的服务技术人员方便您在工厂现场获得维修解决方案,提供:■ 快速响应时间■ 工厂培训和实践■ 专有工具和原厂备件■ 本地和全球支持的专业知识■ 通过测试符合工厂规范4. 服务中心维修我们的服务中心提供: ■ 快速回收成本■ 具有成本效益的诊断与维修■ 设备返回至工厂规范■ 在清洁、受控的环境中完成作业——————————————————————————————————————————————————如果您有任何设备服务的相关需求,请拨打免费咨询热线:或扫描下方二维码填写信息,提交您的服务需求。您还可以通过“梅特勒托利多服务在线”公众号,与我们进行图文咨询。
    留言咨询
  • Countess自动细胞计数仪30秒完成细胞计数Countess 自动细胞计数仪仅需30秒即可进行简单、准确的细胞计数和存活率计算。仪器采用台盼蓝染色并结合先进的图像分析算法,可准确地进行细胞计数和存活率计算,并检测活细胞、死细胞及全部细胞的平均大小。其检测范围为1 x 104至1 x 107个细胞/mL,最佳范围为1 x 105至4 x 106个细胞/mL,与血球计数器相比,其检测范围更广(图1)。适合检测大小为 5 &mu m 至 60 &mu m 的细胞。&bull 准确 &mdash &mdash 消除了手动细胞计数的主观性;无需估算,消除了用户之间的差异性&bull 快速 &mdash &mdash 仅需 10&mu L 样品且仅在 30 秒内对死、活细胞进行计数,同时检测细胞存活率及平均大小&bull 方便快捷 &mdash &mdash 无需设置、清洁或维护图1. 与血球计数器相比,Countess 可对更高浓度的细胞进行计数。Countess(27x20x19cm),且具有数据存储功能,便于不同用户或实验室之间的数据共享。此外,使用一次性细胞计数板,降低了用户与生物危害性样本接触的风险。Countess 自动细胞计数仪适用于各种类型的研究室,比如:&bull 细胞培养实验室&bull 流式细胞仪核心实验室&bull HTS 实验室&bull HIV 及其它传染病实验室Countess自动细胞计数仪操作简便(图2)。只需吸取样本至计数板,将计数板插入Countess自动细胞计数仪,然后按&ldquo Count cells&rdquo ,30秒内即可显示结果。图 2. Countess 自动细胞计数仪的操作流程。(A) 吸取样本至计数板。 (B) 将计数板插入 Countess&trade 计数仪。(C) 按&ldquo Count cells&rdquo 。(D) 30 秒内显示结果。Life Tech新浪微博Life Tech优酷视频
    留言咨询

差异性相关的方案

差异性相关的论坛

  • 高低温试验箱价格存在的差异性

    具备质量保证的产品是受消费者所喜爱的产品,追溯到质量消费者可想而知是价格,决定价格的因素有很多,而这些因素都决定着[url=http://www.bjyashilin.com/product_show-19.html][b]高低温试验箱[/b][/url]价格的差异性,而这些导致差异的因素就包含产品质量以及服务在内。  产品存在差异性是厂家与厂家之间的品牌不同,产品的服务与质量差异所致,就比如说:“同一件产品又使用相同的零部件那么究其价格而言,不会相差太大其中差异是由各个厂家定价时所产生的”,但如果又是同一件产品也使用相同零部件如果价格比之过小,那小编可以肯定的说“找不到”,这也是因为每个厂家核定的价格都是源自于产品成本。  对环试行业而言价格低的有很多,价格中端的也存在不少,价格高的更是数不胜数,小编所了解到的消费者都不会过多的因为价格去选择一个产品,而是从价格,质量以及服务等全方面出发选择合适的试验设备。  市场上品牌也不少,但为什么绝大多数消费者愿意选择北京雅士林,那是因为我们雅士林的高低温试验箱综合产品质量,售后服务以及价格等方面都从是用户的满意点出发!获取其他试验箱详情欢迎您继续浏览本站。

差异性相关的资料

差异性相关的资讯

  • [安捷伦] 电子烟参照卷烟监管!风味物质差异分析怎么做
    国务院 11 月 26 日发布了关于修改《中华人民共和国烟草专卖法实施条例》的决定,条例明确,电子烟等新型烟草制品参照本条例卷烟的有关规定执行。12 月 2 日,国家烟草专卖局举行政策吹风会,进一步明确了电子烟的法律属性、监管主体、监管范围等。电子烟可谓是迎来了新一波的“强监管”。对于电子烟的消费者而言,不同电子烟之间或者和传统卷烟的差别最主要来自于烟油的口味。生产企业为了研发、调配出受欢迎的电子烟口味,可能需要搭配不同种类的精油、溶剂,植物萃取成分等等来营造更加丰富多样的香味和口感。从理化分析的角度来说,是不同风味物质的组合缔造了不同口味的电子烟,而香气馥郁的电子烟,往往意味着其成分中具有更多及更高的化合物组成含量。这次专题我们来看看借助安捷伦 GC/MS 如何来区分不同电子烟中风味物质数量的“多少”,以及如何明确不同样品之间的关键差异。不同数据间的简单比较通过对电子烟烟油中各类可挥发的风味物质进行比较,可以更好地认识不同类型电子烟的差异性,有效地对关键性差异化合物进行确认,是明确不同口味、不同香型电子烟组分特征的基础。我们先来看看几种相对简单的数据比较方式。当需要将多个样品进行比较时,小伙伴们最常用及最直接的办法,是使用定性软件将色谱图进行分列或叠加。但这样的方式并不适用于样品数量较大或者化合物数目较多的情形。使用安捷伦 MassHunter 定量分析软件的目标物解卷积功能(Target Deconvolution)可以进行多个样品间的比较。图 1 在一个用户界面内直观显示了目标物尼古丁在不同样品中的响应、浓度和谱库匹配分数等信息,还可以将目标峰再次谱库检索以查找其它可能的匹配结果。也可以对不同样品的色谱图进行比较,也能够方便地对目标化合物的定量、定性离子(或离子对)和线性结果进行检查和确认。图 1. 使用 MassHunter 定量软件对多个样品间的目标化合物进行定性定量结果的比较当需要更清楚地掌握不同样品之间的整体差异情况时,还可以使用上一篇电子烟系列推文中提到过的未知物分析(Unknown Analysis)软件导入定量结果,软件的目标物匹配和空白扣除功能,将自动显示出不同样品中出现的目标物数目以及空白扣除的化合物数目。这个工作流程,能轻松地对所有化合物进行定性分析,还能够比较不同样品之间出现目标(已知)化合物的数量差异。图 2. 使用未知物分析软件对多个样品间的目标和未知化合物进行比较当研究几类不同的样品组时,我们更需要搞清楚不同组别的差异以及组内的变化,这就到了安捷伦 MassHunter Profinder 软件上场发挥的时候啦。如图 3 中的示例,MassHunter Profinder 软件可以对重复的数据文件进行分组,软件自动对分子特征提取到的化合物进行归类和对齐、显示出叠加的色谱图、组内的峰面积变化等等。三组样品中出现的化合物总数、化合物出现的频次、化合物含量的高低就这样清楚直观地呈现在我们眼前了,是不是很轻松呢?图 3. 使用 MassHunter Profinder 软件进行样品组之间的比较统计学差异分析电子烟烟油风味物质的分析除了进行数据的简单比较,还需要用到一些在差异分析中的“高端操作”。Agilent Mass Profiler Professional (MPP) 软件是一个化学计量学平台,专门用于发掘质谱数据的复杂信息内容,可以用在任何基于质谱的差异分析中,以确定两个或更多个样品组和变量之间的关系。来源于 GC/MS、LCMS 或 ICPMS 的质谱数据(四极杆或高分辨质谱)经过未知物分析软件或者 Profinder 软件处理后可以发掘出成百上千个化合物组分,MPP 将这些组分信息导入之后就可以对这些数目庞大的信息进行对齐(Alignment)、筛选(Filtering),以及统计学计算并提供可视化工具来确定样品组和变量之间的关系。以下是两组不同口味电子烟油样品(以 S01 和 S06 表示)进行统计学差异分析的工作流程实例。在 MPP 软件中使用热图(heat map)对对齐后的组分进行差异性可视化显示(见图 4)。热图显示出两组烟油样品的差异性还不是特别明显,这是因为经过未知物分析挖掘出的组分数量庞大,也包含了一些所有样品中都含有的溶剂、背景等组分,这些组分还没有经过统计筛选。图 4. 两组电子烟油样品 S01 和 S06 中组分的热图使用火山图功能挑选出表达水平差异程度(Fold Change)2,以及统计学显著性(p value)图 6. 两组电子烟油样品基于样品的层次聚类分析可以运用 PLS-DA(偏最小二乘回归分析)模型找出这些组分中 VIP值(variable importance in projection)1 的重要化合物,并且用建立好的模型对未来未知的样品进行归类预测(图 7)。图 7. 两组电子烟油样品中组分的 VIP 值以及建模后对未知样品进行预测总结本次专题介绍了安捷伦 GC/MS 数据比较的多种方式,我们除了可以直接用“定性软件叠图”的方式进行比较以外,还可以通过“定量软件目标物解卷积”、“ 未知物分析软件目标匹配”、“ Profinder 软件分组比较”等多种方式。其中,定量软件在注重目标物含量变化的同时包括了谱库检索的定性功能、未知物分析软件在注重谱图定性的同时包括了对目标物的整体比较、Profinder 软件则更强调组内变化以及组间差异。在更高端的应用中,我们还可以借助 MPP 软件对大批量的数据进行统计学分析,将差异用各种工具直观地可视化呈现,并最终达到确认关键性差异物质的目的。这些方式和工具在区分电子烟口味之间的差异,抑或是在区分和传统卷烟风味物质的差异时,都能够有针对性的进行差异分析达到事半功倍的效果。推荐阅读: 安捷伦气质联用系统 (GC/MS)https://www.agilent.com.cn/zh-cn/product/gas-chromatography-mass-spectrometry-gc-ms关注安捷伦微信公众号,获取更多市场资讯
  • 华南农业大学陈澄宇、崔理华等ES&T封面:水环境中彩色纳米塑料的差异性光老化效应——理化特性与凝聚动力学
    第一作者:苏佳娜通讯作者:陈澄宇、崔理华通讯单位:华南农业大学资源环境学院封面图成果简介近日,华南农业大学资源环境学院陈澄宇副教授与崔理华教授等在环境领域著名学术期刊Environmental Science & Technology上发表了题为“Differential Photoaging Effects on Colored Nanoplastics in Aquatic Environments: Physicochemical Properties and Aggregation Kinetics”的封面论文。纳米塑料(NPs)具有不同颜色,可能会影响其在水环境中的光老化过程。该论文研究了光照对5种彩色NPs的理化性质和凝聚动力学的影响。光降解率和光氧化度排序为白色»黄色红色蓝色»黑色NPs,说明颜色波长较长的NPs光老化较快。褪色过程依次为变色(2-14天,白色NPs除外)、变黄(10-16天)、黄度褪色(18天)、变透明(20-22天)。白色NPs展现出不同于其它颜色NPs的光老化顺序(C–H → C–OH → C=O → O–C=O)。光降解主要由单线态氧(1O2)控制,产生的13种化学物质以有机酸为主。原始NPs的整体胶体稳定性排序为蓝色黄色红色黑色白色。光照16天后,白色和其它颜色NPs在NaCl溶液中的凝聚减慢,其临界聚沉浓度(CCC)分别提高了82.14%和0.85-7.90%。相反,光照降低了白色NPs(67.37%)和其它颜色NPs(33.33−37.58%)的CCC值,促进其在CaCl2溶液中的凝聚。研究结果表明,彩色NPs经历的光老化过程不同于白色/透明NPs,强调了颜色在其环境命运和运输中的重要作用。引言微/纳米塑料(MPs/NPs)通过颜料附着不同颜色,广泛用于制药和个人护理产品、油漆、涂料和电子产品,而次要MPs/NPs可能来自彩色塑料的分解或在光照过程中获得颜色。颜色诱导的MPs/NPs在水环境中的差异分布及其对水体生物的风险引起了人们对其环境行为的关注。在自然环境下暴露于阳光照射下,NPs的颜色可能是其光老化过程中一个重要但被忽视的因素。光照如何影响水中不同颜色NPs的物理化学性质和凝聚动力学尚不清楚。本研究的目的是研究紫外线照射对水环境中五种颜色NPs的物理化学性质和凝聚动力学的不同影响。本论文系统比较了彩色NPs光照后的性质变化特征,对原始和光老化NPs在电解质溶液中的凝聚动力学进行了量化,并采用微观表征来阐明光老化机制。结果表明,NPs的颜色对其在水环境中的命运和迁移有重要影响。图文导读光照对5种颜色NPs悬浮液性质的影响图1:(a) 0-24 天光照期间的颜色;(b-f)光吸收;(g)溶液pH;(h)总有机碳(TOC)含量;(i)18和(j)20天后溶液中光降解产物的峰面积黄、红、蓝、黑四种颜色NPs的颜色变化经历了如下四个步骤,而白色NPs只经历了最后三个步骤:(步骤1)颜色褪色,(步骤2)变黄,(步骤3)黄度褪色,(步骤4)变透明。在步骤2中,白色、黄色、红色、蓝色和黑色NPs悬浮液分别经过10、10、10、14和16天的照射后逐渐变黄,这可能是通过延长共轭序列在聚合物主链上形成和积累了不饱和单元。光老化速率为白色»黄色红色蓝色»黑色NPs。光照对5种颜色NPs颗粒性质的影响图2:光照前后的(a)流体动力直径(Dh)和(b)ζ 电位;(c)由XPS分析确定的O/C比值和(d)由FTIR分析计算的校正羰基吸光度值;基于FTIR光谱的光照0、2、10、14、16天后 2D-COS(e-i)同步和(j-n)异步相关谱图5种颜色NPs的Dh持续下降,在14-16天内下降最显著,黑色NPs下降最慢。DLS和SEM结果均表明,0-16天的尺寸减小百分比为黄色白色蓝色红色黑色。白色、黄色和红色NPs的O/C比值和羰基吸光度的拟合斜率(m)远高于蓝色和黑色NPs。白色、黄色和红色NPs的光氧化越强,表明碳链断裂越强,这可能与它们更小的粒径有关。同时,它们形成更多的含氧基团可以解释它们的负电位增强。由于形成不饱和结构(如羰基)会引起塑性变黄,因此,特别是在10−16天光照期间,5种颜色NPs的O/C比和羰基吸光度增加。光照对5种颜色NPs在盐溶液中胶体稳定性的影响图3:5种颜色NPs的附着效率(α)与(a-e) NaCl和(f-j) CaCl2浓度的关系;(k-o) ζ 电位与电解质浓度的关系;(p-t) 300 mM NaCl溶液中总相互作用能(VT)光照16天后,5种颜色NPs在NaCl溶液中的稳定性曲线均向右偏移,CCC增加82.14%(白色)7.90%(黑色)5.88%(红色)3.85%(黄色)0.85%(蓝色)。这些结果表明,紫外线照射稳定了NPs在NaCl溶液中的凝聚,其中白色NPs比其他颜色NPs的作用更强。在NaCl溶液中光照后,白色NPs的 ζ 电位变得更负,特别是在浓度低于100 mM时。在CaCl2浓度≤15 mM时,16 天光照促进了5种颜色NPs的凝聚。在照射过程中,钙与颗粒表面形成的含氧(如羧基)官能团桥连,促进NPs在CaCl2溶液中的凝聚行为。5种颜色NPs可能的光老化机制图4:(a)根据2D-COS结果所得光老化顺序的变化;(b)基于UPLC-Q-TOF-MS、EPR和ROS猝灭分析的光降解过程白色NPs的光老化顺序为C–H ® C–OH ® C=O ® O–C=O,黄色、红色和蓝色NPs的光老化顺序为C–OH® O–C=O® C=O ® C–H,黑色NPs的光老化顺序为 C–OH® C=O/O–C=O® C–H。根据光降解产物,光照18和20天后用UPLC-Q-TOF-MS对产物进行分析。途径1−3与脂肪碳链断裂有关,形成P145、P175和P173,而途径4−10与芳香碳链断裂有关,产生P121、P137、P153、P165、P197、P149、P179、P207和P225。EPR和ROS猝灭结果表明,5种颜色NPs的光老化机制均受ROS参与的过程控制,其中ROS的贡献排序为1O2 O2•− •OH。小结该研究表明,水环境中NPs的颜色在其光老化过程中起着关键作用。光老化速率和光氧化程度依次为白色»黄色红色蓝色»黑色NPs。这一结果表明,具有较长颜色波长(如黄色)的NPs可能会吸收较短波长但能量较高的光(如紫外线),因此比具有较短颜色波长(如蓝色)的NPs经历更快的光老化。因此,考虑到NPs的环境持久性及其光降解产物的危害,颜色波长较短的NPs(如蓝色)可能经历较慢的光老化,从而具有较长的存活时间,并在较长的时间内将有机酸释放到水环境中。然而,就塑料的制造和使用而言,颜色波长较短的塑料(例如蓝色)可能具有更高的抗紫外线性,以防止破碎形成MPs和NPs。同时,还应考虑色素在NPs的透光性和光降解中的作用。不同颜色的NPs在光照过程中均逐渐褪色和变黄,这表明颜色可能是水环境中NPs光老化状态的一个指标,并且黄色NPs样品也可能来自各种颜色的NPs。同时,光老化NPs的褪色和变黄可能影响水动物对其的摄食和对植物的生长抑制。与白色/透明NPs相比,彩色NPs表现出不同的光老化序列和光氧化程度。凝聚动力学对比进一步表明,光老化对白色NPs的环境迁移影响强于其它颜色NPs。因此,可能不适宜直接将白色/透明NPs的环境行为直接延伸至各种颜色NPs,需在未来研究中进一步阐明颜色对NPs和MPs的环境命运、运输和风险的影响。本研究获得李永涛教授团队支持,依托华南农业大学中英环境科学研究中心(国际联合实验室)与广东省农业农村污染治理与环境安全重点实验室等科研平台,获得了国家自然科学基金面上项目、广东省“珠江人才计划”创新创业海外引进(青年)团队项目、广东省自然科学基金青年提升项目与面上项目等项目资助。作者简介第一作者:苏佳娜,女,中共党员,硕士研究生,毕业于华南农业大学资源环境学院。以第一、第二作者身份在Environmental Science & Technology和Environment International发表SCI论文。通讯作者:陈澄宇,中共党员,华南农业大学资源环境学院副教授,硕士生导师,美国罗格斯大学博士,主要从事纳米颗粒环境行为研究。入选广东省珠江人才计划引进创新创业(青年)团队、广州市科学技术协会青年人才托举工程、华南农业大学高层次引进人才。主持国家自然科学基金2项、广东省自然科学基金2项、广州市基础研究项目、新泽西州水资源研究所科研基金等项目。近年来发表论文52篇,其中以第一或通讯(含共同)作者发表论文30篇,包括中科院一区13篇、二区7篇,发表在Environmental Science & Technology(3篇,2篇封面)、Water Research(5篇)、Chemical Engineering Journal(2篇)、Journal of Hazardous Materials、Environment International等领域权威学术期刊。曾获国家建设高水平大学公派博士留学基金资助、新泽西州John J. Lagrosa Award、罗格斯大学Summa Cum Laude Award等奖项。担任Biochar、Carbon Research、Reviews of Environmental Contamination and Toxicology和生态环境学报青年编委、Frontiers in Environmental Chemistry客座编委以及Eco-Environment & Health青年(预备)编委,担任十余个期刊审稿人。通讯作者:崔理华,男,博士,现任华南农业大学资源环境学院环境科学与工程系教授,兼任广东高校污水生态处理与水体修复工程技术研究中心主任和畜禽养殖污染控制与资源化技术国家工程实验室华南分中心主任及广东省环境科学学会理事。主要从事城镇与农村污水以及污水处理厂尾水人工湿地生态处理、规模化养猪场废水厌氧-生化-生态处理组合工艺、城市河流水环境生态修复治理以及养殖池塘尾水生态治理技术等研究、设计与工程施工。主持和参加部省级课题30余项,发表论文120余篇,其中,SCI收录论文50余篇。申请及授权国家发明专利20余项,主持设计农村生活污水人工湿地处理工程5000余座,获得中国发明协会一等奖以及广东省、生态环境部、中国环境保护产业协会、广州市科学技术奖励二等奖各1项;参与设计与施工的规模化养猪场废水处理工程400余座以及主持养殖池塘尾水生态治理工程施工5项;主持和参与城市河流黑臭水体综合整治与河流水环境生态修复治理工程设计、施工与运营服务项目10余项。文章链接:https://pubs.acs.org/doi/full/10.1021/acs.est.3c04808
  • 【飞诺美色谱】【方法建立】基于化学模式识别和熵权TOPSIS法分析鱼腥草不同部位的差异
    基于化学模式识别和熵权TOPSIS法分析鱼腥草不同部位的差异潘玲 ,施文婷 ,张兰兰 ,文珊 ,刘权震 ,黎桃敏 ,陈丹燕 ,刘燎原(广东一方制药有限公司,广东省中药配方颗粒企业重点实验室,广东佛山 528244)DOI:10.3969/j.issn.1008-6145.2023.02.002基金信息: 国家工业和信息化部2019年产业技术基础公共服务平台项目(2019-00902-1-2);佛山市应急科技攻关专项(2020001000206)摘 要: 基于高效液相色谱(HPLC)指纹图谱比较鱼腥草不同部位(茎、叶)化学成分的差异性,并综合评价鱼腥草不同部位的质量。建立鱼腥草不同部位的HPLC指纹图谱,通过相似度评价、化学模式识别及熵权TOPSIS法对其化学成分进行差异性研究,并对其质量标志物(槲皮苷)进行含量测定。建立的HPLC指纹图谱中鱼腥草药材及其茎叶均确定了8个共有峰,指认了其中6个成分;聚类分析(CA)和主成分分析(PCA)结果表明鱼腥草叶和茎的质量差异大,叶和药材的质量较接近;偏最小二乘法-判别分析(OPLS-DA)发现4种成分是造成不同批次样品差异性的主要标志物;熵权TOPSIS法分析显示同批次鱼腥草药材与其茎叶既有相关性也有差异性,且四川产地的鱼腥草药材质量较佳;含量测定结果显示,同批次鱼腥草中的槲皮苷含量由高到低均依次为叶、药材、茎。鱼腥草不同部位HPLC指纹图谱存在显著差异。该方法可反映鱼腥草不同部位质量差异性,为鱼腥草药材的质量控制及资源开发利用提供参考。关键词: 鱼腥草; 不同部位; 化学模式识别; 熵权TOPSIS法; 槲皮苷中药特征图谱是中药整体性的化学表征,在中药质量评价方面应用广泛。化学模式识别分析包括聚类分析和主成分分析等,是用于揭示隐含于化学测量数据内部规律的一种多元分析技术,已被广泛应用于中药材及中药制剂的质量评价。逼近理想解排序法(TOPSIS)是一种多指标决策法,利用各方案与理想方案和负理想方案的欧式距离来度量方案优劣,使得属性与其效用之间呈线性变化关系,同时将多个评价指标进行合理赋权得到一个综合指标,把多维问题转化为一维问题,有效地排除主观因素的影响,明显提高多目标决策分析的科学性和准确性。笔者利用HPLC法建立鱼腥草不同部位的指纹图谱,运用聚类分析、主成分分析、偏最小二乘法-判别分析等化学模式识别方法对鱼腥草不同部位指纹图谱进行质量评价,同时运用熵权TOPSIS法对鱼腥草不同部位的槲皮苷含量进行综合排序评价,旨在全面反映鱼腥草药材及其不同部位化学成分差异,为鱼腥草药材的合理应用和资源开发提供一定的数据支撑。本文摘选自《化学分析计量》202302期,有部分改动1 主要实验部分1.1 色谱条件色谱柱:Phenomenex Luna C18柱(250 mm × 4.6 mm,5 μm,美国Phenomenex公司);流动相:A相为乙腈,B相为0.1%磷酸水溶液;洗脱方式:梯度洗脱;洗脱程序:0~10 min时,A相体积分数由6%逐渐增加至8%,10~35 min时,A相体积分数由8%逐渐增加至27%,35~37 min时,A相体积分数由27%逐渐下降至6%,37~40 min时,A相体积分数为6%;流动相流量:1.0 mL/min;柱温:30 ℃;检测波长:0~25 min时为326 nm,25~40 min时为254 nm;进样体积:10 μL。1.2 溶液配制(1)混合对照品溶液。分别精密称取新绿原酸、绿原酸、隐绿原酸、芦丁、金丝桃苷、槲皮苷对照品适量,置于同一只5 mL容量瓶中,加入90%甲醇溶液溶解并定容至标线,配制成新绿原酸、绿原酸、隐绿原酸、芦丁、金丝桃苷、槲皮苷的质量浓度分别为7.492 6、7.443 4、7.198 5、9.185 0、8.817 1、7.960 3 μg/mL的混合对照品溶液。(2)鱼腥草药材样品溶液。取鱼腥草药材样品粉末(过4#筛)约0.5 g,精密称定,置于具塞锥形瓶中,精密加入90%甲醇溶液25 mL,称定质量,超声(功率300 W,频率40 kHz)处理30 min,取出,放冷,再称定质量,用90%甲醇溶液补足减失的质量,摇匀,滤过,即得。1.3 实验方法利用HPLC法建立鱼腥草不同部位的指纹图谱,运用聚类分析、主成分分析、偏最小二乘法-判别分析等化学模式识别方法对鱼腥草不同部位各特征峰进行化学模式识别分析。2 主要结果与讨论2.1 HPLC指纹图谱的建立取18批鱼腥草药材、茎和叶样品,制备样品溶液,按色谱条件进样测定,记录色谱图。将采集到的HPLC色谱图导入中药色谱指纹图谱相似度评价系统(2012版)软件进行匹配,分别生成对照指纹图谱R1、R2和R3。2.2 化学模式识别分析2.2.1 聚类分析采用SPSS 26.0软件,以18批鱼腥草药材、茎和叶共54个样品的指纹图谱中8个共有峰的“峰面积占比”(各共有峰峰面积占共有峰总面积的比例)作为变量进行聚类分析。2.2.2 主成分分析采用SPSS 26.0软件,以18批鱼腥草药材、茎和叶共54个样品的指纹图谱中8个共有峰的“峰面积占比”作为变量进行主成分分析,分析结果与主成分因子载荷矩阵分别见下表,得分图如图所示。以特征值大于1为提取标准提取主成分,提取出前2个主成分,对总方差的累积贡献率达72.782%,表明提取的2个主成分能基本反映全部指标的信息。主成分1的特征值为4.043,方差贡献率为50.533%,载荷(绝对值)较高的峰有新绿原酸、绿原酸、隐绿原酸、金丝桃苷、槲皮苷,表明这5个成分主要反映主成分1的信息;主成分2的特征值为1.780,方差贡献率为22.249%,载荷(绝对值)较高的峰有峰4、芦丁、峰7,表明这3个成分主要反映主成分2的信息。由主成分得分图可以看出药材和叶基本聚为一类,茎单独聚为一类,与聚类分析结果一致。表 18批鱼腥草药材、茎、叶的主成分分析结果表 18批鱼腥草药材、茎、叶的主成分因子载荷矩阵注:“-”代表方向。图 18批鱼腥草药材、茎、叶的主成分得分图2.3.3 正交偏最小二乘法-判别分析正交偏最小二乘法判别分析(OPLS-DA)是一种与主成分有关的统计学方法,将数据降维后建立回归模型并对结果进行判别分析。模型通过Y轴累积解释率(R2Ycum)、模型累积预测率(Q2cum)建立模型参数,R2Ycum与Q2cum值差距越小且接近1,表示模型效果越好。采用SIMCA 14.1软件,以18批鱼腥草药材、茎和叶共54个样品的指纹图谱中8个共有峰的“峰面积占比”作为变量进行OPLS-DA分析,结果如图所示。由模型参数可知,数据矩阵的模型解释率R2Ycum=0.82,模型预测参数Q2cum=0.57,均大于0.50,表明该数学模型稳定可靠。54批样品可分成2类,鱼腥草的茎单独聚为一类,药材和叶聚为一类。以VIP值大于1为提取标准,结果表明,槲皮苷、隐绿原酸、峰4和芦丁是影响分类的主要标志性成分。文献研究表明鱼腥草中黄酮类成分具有杀菌、祛痰、止咳等作用,因此选择槲皮苷作为鱼腥草的质量标志物,对18批鱼腥草药材、茎、叶样品进行含量测定。图 18批鱼腥草药材、茎、叶的OPLS-DA分析得分图图 OPLS-DA分析VIP值2.5 熵权TOPSIS法分析对18批鱼腥草药材不同部位HPLC指纹图谱中各共有峰的峰面积进行熵权TOPSIS法分析,依次建立各样品的初始决策矩阵、标准化决策矩阵,计算得到各项指标的熵值Ej=(1.522、1.822、1.892、2.022、2.012、1.912、1.883、1.856);权重wj=(0.079、0.118、0.128、0.147、0.146、0.131、0.127、0.123);根据加权决策矩阵得到最优方案Zj+=(0.079、0.118、0.128、0.147、0.146、0.131、0.127、0.123),最劣方案Zj-均为0。计算18批鱼腥草药材不同部位与最优方案的距离(D+)、与最劣方案的距离(D-)及最优解的欧氏贴近度(Ci)。D+越小、D-越大、Ci越大,则被评价样品越优。18批药材、茎、叶的Ci平均值分别为0.159、0.063、0.300,提示叶的质量最优,药材次之,茎最差。质量排序:鱼腥草药材前三位的分别是H4、H5、H1,茎前三位的分别是S4、S5、S6,叶前三位的分别是L4、L1、L5,不同产地鱼腥草样品存在较大差异,可为优良药材资源的进一步研究与开发提供参考。3 结论笔者通过建立鱼腥草不同部位HPLC特征图谱,结合化学识别模式和熵权TOPSIS法分析鱼腥草不同部位质量差异。采用HPLC法,从鱼腥草药材、茎和叶的指纹图谱中标识出8个共有峰,通过对照品指认出其中6个成分,分别为新绿原酸、隐绿原酸、绿原酸、芦丁、金丝桃苷、槲皮苷。相似度评价结果表明,18批鱼腥草药材、茎和叶的HPLC指纹图谱与其相应对照指纹图谱的相似度均大于0.85,表明不同批次鱼腥草同一部位的整体质量较为稳定;通过聚类分析、主成分分析、正交偏最小二乘法判别分析明确各化学成分的富集部位及影响分类的主要标志性成分,可用于评价鱼腥草药材的整体质量及茎、叶各部位的质量差异;含量测定结果表明同一批鱼腥草中的槲皮苷含量由高到低均依次为叶、药材、茎;熵权TOPSIS法确定了鱼腥草中8个共有峰的权重,根据Ci值对不同部位的鱼腥草样品进行排序,可实现对鱼腥草整体质量控制以及优质种源筛选。建立的鱼腥草药材及其不同部位HPLC指纹图谱检测方法稳定可靠,通过化学模式识别和熵权TOPSIS法,对鱼腥草药材及其不同部位的HPLC指纹图谱进行分析评价,可全面、综合、系统地对样本进行质量评价和差异分析,从而比较不同部位的化学成分差异,明确化学成分的分布规律,为鱼腥草药材的质量控制和临床应用提供数据支持。引用本文: 潘玲,施文婷,张兰兰,等 . 基于化学模式识别和熵权TOPSIS法分析鱼腥草不同部位的差异[J]. 化学分析计量,2023,32(2):6. (PAN Ling, SHI Wenting, ZHANG Lanlan, et al. Analysis of the differences of Houttuynia cordata with different parts based on chemical pattern recognition and entropy TOPSIS method[J]. Chemical Analysis and Meterage, 2023, 32(2): 6.)通讯作者:陈丹燕,本科,研究方向:中药配方颗粒制备工艺与质量标准研究基金信息: 国家工业和信息化部2019年产业技术基础公共服务平台项目(2019-00902-1-2);佛山市应急科技攻关专项(2020001000206)中图分类号: O657.7文章编号:1008-6145(2023)02-0006-07本文来源:“ 化学分析计量”微信公众号
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制