壁面相互作用建模

仪器信息网壁面相互作用建模专题为您整合壁面相互作用建模相关的最新文章,在壁面相互作用建模专题,您不仅可以免费浏览壁面相互作用建模的资讯, 同时您还可以浏览壁面相互作用建模的相关资料、解决方案,参与社区壁面相互作用建模话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

壁面相互作用建模相关的耗材

  • 半井 COSMOSIL HILIC亲水作用色谱柱 HILIC柱
    COSMOSIL HILIC亲水作用色谱柱 07057-41COSMOSIL HILIC是一种新型三唑键合硅胶填料的亲水作用色谱。亲水作用色谱法来源于正相色谱法,固定相为极性,流动相中含有高浓度的水混溶的有机溶剂和低浓度的水溶液。主要保留机制是极性分析物在极性固定相和非极性流动相之间的分配,洗脱顺序类似于正相色谱,亲水性弱的样品先被洗脱,亲水性强的样品后被洗脱。不需使用离子对试剂,COSMOSIL HILIC就可分析反相色谱无法分析的高度极性组分。由于COSMOSIL HILIC使用带正电荷的固定相,可通过弱阴离子交换机制保留酸性化合物。 材料性质填料HILIC硅胶高纯度多孔球形硅胶平均粒径5 μm平均孔径约 120 A比表面积约 300 m2/g固定相三唑基相互作用亲水相互作用,阴离子交换对象物质亲水性化合物,酸性化合物特性适合C18不能分析的分析物与 C18比较COSMOSIL HILIC无需离子对试剂也可以分离甘氨酸和甘氨酰甘氨酸。虽然C18柱可以用离子对试剂分离他们,但是有一些缺点,如很难达到柱平衡,流动相制备复杂和柱损耗严重。分析条件优化COMSOSIL HILIC色谱数据,其中使用COSMOSIL HILlC包括154个色谱图,这些数据有助于亲水相互作用色谱的分析条件优化。订购信息● 分析/制备色谱柱 (粒径 5 μm)COSMOSIL HILIC 色谱柱色谱柱尺寸 内径 x 长度 (mm)货号1.0×15007869-111.0×25007870-712.0× 3008568-212.0× 5007052-912.0×10008569-112.0×15007054-712.0×25007489-913.0×15007871-613.0×25007872-514.6×15007056-514.6×150 3 lots set※09385-234.6×25007057-4110×25007059-2120×25007060-8128×25007875-21COSMOSIL HILIC 保护柱色谱柱尺寸 内径 x 长度 (mm)货号4.6×1007055-6110×2007058-3120×2007854-9120×5007873-4128×5007874-31
  • Ultra-Low Binding超低吸附384孔白色细胞培养板(NBH3384)
    Ultra-Low Binding超低吸附384孔白色细胞培养板(NBH3384)货号:NBH3384规格:24包/盒(1块/包)品牌:NoninBioNoninBio细胞培养产品采用纯医用级聚苯乙烯材料,经过严格的工艺控制,符合人体工程学设计, 限度地提高细胞培养实验的安全性、效率和便利性,以满足所有用户的需求。产品特点∶- 将特殊的两性分子聚合物镀膜至板表层,形成一面水墙,可有效抑制细胞附着- 白色板可在化学发光分析过程中减少孔间串扰- 总体积为120μL,建议工作体积为20至80μL- 更高的平整度,板内和板间CV值较低 用于顶读酶标仪- 主要适用于大分子的固化,如抗体,其具有较大的可与表面相互作用的疏水区- 经过UV灭菌,无热原- 带盖有助于减少污染,独立的字母数字编码便于区分孔
  • bioZen™ Peptide
    肽谱分析mAb 或 ADC 酶解后通常包括大量化合物,这对于理解翻译后修饰至关重要。因此,我们设计了两种Phenomenex 飞诺美 bioZen™ Peptide 色谱柱,以提供高效和独特的保留作用,同时通过利用高效核?壳或热改性全多孔颗粒获得更快的洗脱窗口,从而获得更尖锐的峰形、更好的峰容量和整体上更高的灵敏度。西妥昔单抗肽谱抗利妥昔单抗 Fab 肽谱肽定量定量生物基质中的特征肽时,需要尖锐的峰形和对亲水肽足够的保留,以避免基质抑制造成的信号丢失。两种 Phenomenex 飞诺美 bioZen™ Peptide 色谱柱旨在为密切相关的肽提供出色的选择性。此外,以这种有价值的特性为基础,它们通过独特的方式为碱性肽提供更尖锐的峰形;Phenomenex 飞诺美bioZen™ Peptide XB?C18 通过异丁基侧链屏蔽次级表面相互作用,而 Phenomenex 飞诺美 bioZen™ Peptide PS?C18 含有带正电荷的弱碱,可排斥其他碱性物质。曲妥珠单抗(4 种特征肽)

壁面相互作用建模相关的仪器

  • Creoptix总部位于瑞士。拥有基于光栅耦合干涉技术(Grating-Coupled Interferometry ,GCI)的光学生物传感器专利,以及外置的微流控的设计和Google公司研发的自动化软件。Creoptix致力于提供高质量的动力学数据,拥有业内高度灵敏准确的WAVE 系统,使全球生物科学研究者可以做以前不可能做的事情,看到以前看不见的数据。避开了SPR的限制,突破无标记技术的局限。Creoptix公司于2022年1月被马尔文帕纳科公司收购。WAVE分析互作仪 创新的无标记检测技术配合防堵塞微流控芯片和自动化检测软件,为您提供高质量的结合动力学数据,并适用于多种样品类型。高信噪比&灵敏度专利的光栅耦合干涉(Grating-Coupled Interferometry,GCI)技术,赋予WAVE系统超越传统SPR技术的检测灵敏度和时间分辨率。不同于SPR技术,Creoptix WAVE GCI产生的消逝波(evanescent field)仅在芯片表面与样品溶液接触,并且延长了其与样品相互作用的长度,以确保更低的信噪比(0.015pg/mm2)。凭借WAVE分子相互作用仪的低检测限,可轻松获取无标记互作分子高精度的动力学速率,亲和常数及浓度数据。即使检测丰度较低的样品,仍可确保数据不失真。创新型微流控芯片防堵塞设计微流控芯片适用于多种不同类型样品,确保样品活性和生物学特性,节约了纯化步骤所需时间以其他设备脱机、堵塞等问题可能耗费的时间。高时间分辨率准确的表征解离速率大于10s-1的分子间相互作用的动力学。灵活的组合兼容48,96,384板任意组合,120h无人值守运行。智能软件从方案建立,数据分析到报告生成的每一步均可利用向导设计来简化,让您工作更加轻松高效。应用范围 分析领域:分子相互作用模式的研究;动力学常数的测定;亲和常数测定,浓度的测量及构象变化的速率等。 生命科学研究领域:蛋白质组学研究、癌症研究、新药研发、信号传递、分子识别、热力学分析、免疫调节、免疫测定、疫苗开发、瞬时结合、配体垂钓、结合特异性、结构与功能的关系及酶反应等。 分析样品类型:小分子化合物、多肽、蛋白质、寡核苷酸、寡聚糖到类脂、脂质体,噬菌体、病毒样颗粒和细胞等。
    留言咨询
  • 仪器简介:FT-SPR 可以检测多层生物膜组装过程,可以检测更大或更小的分子与微粒。其动态检测范围在所有 SPR 检测仪中最为广泛。 FT-SPR 除了可以获得分子相互作用的信息,还可以配置完整的傅立叶红外光谱功能:可进行 ATR、DRIFT、PMIRRAS、VCD、Raman 等测试;通过 FTIR 中的不同检测模块可检测到相关的红外光谱,获取生物样品分子结构的信息。甚至可以与液相色谱联机检测。主要特点:赛默飞世尔分子光谱部以其近四十年傅立叶变换红外(FTIR)技术结晶结合最新的 SPR 专利技术【U.S. Patent No. 6330062】成功的发展了傅立叶变换型等离子共振技术(FT-SPR),并以此为基础推出了崭新的 FTSPR 检测模块 — SPR 100。利用成熟的傅立叶变换红外光谱仪在多通道技术与波数精度方面的优势使 SPR 检测很容易达到传统的基于角度变化的 SPR 检测所无法企及的高灵敏度与快速测试。通过检测由折射率变化引起的波长变化可以监测到吸附层大约 1 Å 的有效膜厚变化。甚至,需要超高灵敏度的亚单分子层测试也可通过 FT-SPR 技术实现。
    留言咨询
  • 优势推动Bio UHPLC超越反相 赛默飞UltiMate? 3000生物兼容快速分离系统(BioRS)在UHPLC分离中能够完美地匹配生物分子分离过程中各种色谱模式的要求。这种系统超越了反相UHPLC:是真正的Bio UHPLC。 高分离度Bio UHPLC Ultimate 3000 BioRS系统以UltiMate 3000快速分离技术为依托,可以满足生物样品在高分离度生物UHPLC色谱柱上分离所需要的高压要求。这种先进技术结合生物兼容性的低扩散流路,可为复杂样品如蛋白质、多肽、生物治疗药物等的分析提供最高的峰容量和最高的灵敏度。赛默飞Viper?手拧接头技术以几乎零死体积的最优性能,确保了稳定的系统连接。对于肽谱、单克隆抗体的电荷变异体分析、多糖分析,或是核酸分析,UltiMate 3000 BioRS系统能满足任何生物分子色谱分离分析的高要求。 随时随地信赖您的生物色谱分析结果 这一系统可在苛刻的溶剂条件下,可靠、稳定地进行生物色谱分析。整个流路系统(泵、自动进样器、柱温箱和检测器)均为耐腐蚀材料,减少了分析物与管路内部表面相互作用的风险,延长了特殊功能生物色谱柱的寿命,即使在高盐或极端pH条件下也是如此。最高的效率及灵活性 UltiMate 3000 BioRS系统在高流速条件下仍然能够达到最佳分离,同时保持最高分离度:? 压力上限达到1000 Bar(15,000psi)? 最高流速达8mL/min? 进样周期短 (20 sec)? 柱温范围宽(5℃-110℃)? 超快的数据采集和处理(最高达200 Hz) 与传统的生物色谱分析相比, UltiMate 3000 BioRS系统能够实现更快的梯度变化和更短的运行时间。其结果大大提高了典型模式下如离子交换色谱(IEC)、反相(RP)色谱和亲水作用(HILIC)色谱的样品通量。与质谱的无缝连接 从使用赛默飞离子阱、三重四极杆、高分辨率Q Exactive?和Exactive Plus质谱仪进行常规的定量或定性分析,到使用赛默飞Orbitrap?组合质谱仪完成复杂的研究,基于UHPLC+ 理念的UltiMate 3000BioRS系统都能够提供无缝连接。多功能部件实现可扩展分离 一套能满足您各种分析应用的仪器系统UltiMate 3000 BioRS系统通过充分利用RSLC技术及其本身的宽流速-压力范围,能够出色地支持各类广泛的分离应用:不论是开发、鉴定,还是质量控制(QC),都可在任何状态下表征分子的特性。生物兼容性的溶剂传输 以生物兼容性RS泵系列为核心的UltiMate 3000 BioRS系统是先进生物色谱分离的最佳选择:? 压力上限达到1000 Bar(15,000 psi)? 二元、四元和双三元梯度溶剂传输? 诸如串联或并联LC的高效解决方案 BioRS泵能够为快速和超高分辨率的(生物)应用提供最先进的性能,即使是在高盐和强酸强碱条件下也是如此。
    留言咨询

壁面相互作用建模相关的试剂

壁面相互作用建模相关的方案

壁面相互作用建模相关的论坛

  • 【技术@创新 】我国科学家构建模型 精确预测蛋白质相互作用

    记者前天从中科院上海药物所获悉,该所蒋华良研究员等发明出一套预测蛋白质—蛋白质相互作用的新方法,预测精确性大于80%。这项计算生物学重要成果发表于国际著名期刊《美国科学院院刊》(PNAS)本月在线版上。   蛋白质-蛋白质相互作用(PPI)决定着几乎所有的生物功能。目前,大多数蛋白质相互作用预测法都依赖于大量同源蛋白信息或蛋白相互作用标识物信息,应用范围有限;而新方法可仅依据蛋白质的序列信息,研究任意新蛋白的功能,或预测老蛋白的新功能,并可用于新药设计,对基因组研究也具有十分重要的意义。研究人员经过两年努力,用超过1.6万对实验测定了蛋白质相互作用结果,构建出通用性PPI预测模型

  • “MnO薄膜的电子-晶格相互作用跃迁

    本人大四,是湖南师范大学08级物理系的学生,现在要写毕业论文了,论文题目是“MnO薄膜的电子-晶格相互作用跃迁”现在是准备开题阶段 刚见过导师 老师建议我先测2种不同厚度的MnO 薄膜的拉曼光谱 选出斯托克斯与反斯托克斯谱线 再从能级方面解释 也就是电子-晶格相互作用跃迁这方面 就此 我现在想要找到MnO薄膜的标准拉曼光谱数据,有人有吗 ,没有的话 就我这个论文题目 给点建议或知识指导也行 O(∩_∩)O~谢谢啦

  • 【资料】推荐一台做 分子相互作用 的仪器

    BIA是英语“Biomolecular Interaction Analysis” 的缩写,BIA提供了实时观察生物分子间相互作用的技术。通过它能观察两种分子结合的特异性,能知道两种分子的结合有多强,还能了解生物分子的结合过程共有多少个协同者和参与者。BIA可以让得到用其他技术方法难以得到的结果,因为它可以实时反映分子结合过程中每一秒变化的情况。无需借助标记物进行分析使BIA广泛应用于各类生物体系的测定,从各类小分子化合物、多肽、蛋白质、寡核苷酸和寡聚糖直至类脂、噬菌体、病毒和细胞。一、 动力学常数的测定BIA可以用来分析不同抗体与抗原的结合与解离常数,相对与以前其它检测抗体效价的方法,BIA不仅快速,可以准确定量,和可以让你看到整个结合和解离的动态过程。二、浓度的测量三、分子相互作用模式的研究我们想知道两分子之间相互作用的比例,结合位点,抗原决定族的位点,都可以用BIA来完成。研究突变后活力大小的变化,研究复合物形成次序等等。四、蛋白质功能分析复合物的组装可以看成研究蛋白功能的一个例子。也可以设计其它的一些实验,只要前后芯片表面的质量有变化就可以利用BIA技术来检测。详情请见:[URL=http://biotech.ustc.edu.cn/html/yiqijieshao/2006/0727/2.html]http://biotech.ustc.edu.cn/html/yiqijieshao/2006/0727/2.html[/URL]

壁面相互作用建模相关的资料

壁面相互作用建模相关的资讯

  • 探索界面相互作用:大连化物所发布结构质谱实验手册
    近日,中国科学院大连化学物理研究所生物技术研究部生物分子结构表征新方法研究组研究员王方军团队发布了表征蛋白质-纳米材料界面相互作用精细结构的赖氨酸反应性分析-质谱(LRP-MS)实验手册。  微/纳米材料在生命科学、医药健康、生物催化等领域广泛应用,探讨蛋白质与材料之间的界面相互作用分子机制对生物医用材料的安全性评价、纳米药物的毒性评估和理性设计、生物-无机功能杂合体的改性和催化活性提升等具有重要意义。然而,现有光谱学等方法只能表征材料引起的蛋白质结构整体变化情况,蛋白质-材料界面相互作用分子细节的探测面临挑战。  赖氨酸残基通常定位于亲水性蛋白质表面,其侧链伯氨基的化学标记反应性取决于其溶剂可及性和微环境非共价相互作用。当蛋白质表面与微/纳米材料结合时,结合界面上赖氨酸的溶剂可及性和反应性均随之降低。因此,王方军等提出了赖氨酸的反应性变化是探测蛋白质-微/纳米材料复合体中蛋白质定位方向、相互作用序列区域、关键结合位点、材料结合引起蛋白质结构变化的有效指标。该团队发展了在蛋白质—微/纳米材料复合体活性和变性条件下的两步同位素二甲基化标记的标准化策略,结合质谱定量分析实现蛋白质上赖氨酸反应性的全面分析,研究通过材料结合前后赖氨酸标记反应性的显著性差异确定蛋白质-材料的界面序列区域和关键位点。  王方军团队长期从事生物大分子结构质谱尖端仪器和创新方法研究,所发展的LRP-MS策略近年来已应用于蛋白质-蛋白质、蛋白质-小分子、蛋白质-微/纳米材料的界面相互作用分子机制解析,取得了系列研究进展。  近日,相关研究成果以Structural Characterization of the Protein-Material Interfacial Interactions Using Lysine Reactivity Profiling-Mass Spectrometry为题,发表在《自然-实验手册》(Nature Protocols)上。研究工作得到国家重点研发计划、国家自然科学基金和大连化物所创新基金等的支持。大连化物所发布蛋白质-纳米材料界面相互作用的结构质谱表征实验手册
  • 王方军团队成果:发布蛋白质-纳米材料界面相互作用的结构质谱表征实验手册
    近日,中国科学院大连化学物理研究所生物技术研究部生物分子结构表征新方法研究组研究员王方军团队发布了表征蛋白质-纳米材料界面相互作用精细结构的赖氨酸反应性分析-质谱(LRP-MS)实验手册。  微/纳米材料在生命科学、医药健康、生物催化等领域广泛应用,探讨蛋白质与材料之间的界面相互作用分子机制对生物医用材料的安全性评价、纳米药物的毒性评估和理性设计、生物-无机功能杂合体的改性和催化活性提升等具有重要意义。然而,现有光谱学等方法只能表征材料引起的蛋白质结构整体变化情况,蛋白质-材料界面相互作用分子细节的探测面临挑战。  赖氨酸残基通常定位于亲水性蛋白质表面,其侧链伯氨基的化学标记反应性取决于其溶剂可及性和微环境非共价相互作用。当蛋白质表面与微/纳米材料结合时,结合界面上赖氨酸的溶剂可及性和反应性均随之降低。因此,王方军等提出了赖氨酸的反应性变化是探测蛋白质-微/纳米材料复合体中蛋白质定位方向、相互作用序列区域、关键结合位点、材料结合引起蛋白质结构变化的有效指标。该团队发展了在蛋白质—微/纳米材料复合体活性和变性条件下的两步同位素二甲基化标记的标准化策略,结合质谱定量分析实现蛋白质上赖氨酸反应性的全面分析,研究通过材料结合前后赖氨酸标记反应性的显著性差异确定蛋白质-材料的界面序列区域和关键位点。  王方军团队长期从事生物大分子结构质谱尖端仪器和创新方法研究,所发展的LRP-MS策略近年来已应用于蛋白质-蛋白质、蛋白质-小分子、蛋白质-微/纳米材料的界面相互作用分子机制解析,取得了系列研究进展。  近日,相关研究成果以Structural Characterization of the Protein-Material Interfacial Interactions Using Lysine Reactivity Profiling-Mass Spectrometry为题,发表在《自然-实验手册》(Nature Protocols)上。研究工作得到国家重点研发计划、国家自然科学基金和大连化物所创新基金等的支持。  论文链接:https://www.nature.com/articles/s41596-023-00849-0
  • 人工智能成功预测蛋白质相互作用 确定100多个新蛋白质复合物
    美国科学家主导的国际科研团队在最新一期《科学》杂志撰文指出,他们利用人工智能和进化分析,绘制出了真核生物的蛋白质之间相互作用的3D模型,首次确定了100多个可能的蛋白质复合物,并为700多个蛋白质复合物提供了结构模型,深入研究蛋白质相互作用有望催生新的药物。  研究负责人之一、美国西南大学人类发育与发展中心助理教授丛前(音译)称,研究结果代表了结构生物学新时代的重大进步。  丛前解释说,蛋白质通常成对或成组工作,形成复合物,以完成生物体存活所需的任务。虽然科学家已经对其中一些相互作用开展了深入研究,但许多仍是未解之谜。了解蛋白质之间所有的相互作用将揭示生物学的许多基本方面,并为新药研发提供参考。  但半个世纪以来,鉴于许多蛋白质结构的不确定性,科学家们很难了解这些相互作用。2020年和2021年,深度思维公司和华盛顿大学戴维贝克实验室独立发布了两种人工智能技术“阿尔法折叠”和RoseTTAFold,它们使用不同的策略预测蛋白质结构。  在最新研究中,丛前等人通过对许多酵母蛋白复合物建模,扩展了人工智能结构预测工具箱。为了找到可能相互作用的蛋白质,科学家们首先搜索相关真菌的基因组,寻找发生突变的基因,然后使用上述两种人工智能技术来确定这些蛋白质是否可以3D结构结合在一起。  他们确定了1505种可能的蛋白质复合物,其中699个结构已被表征,验证了其方法的实用性;另外700个复合物目前获得的数据有限,剩下106个从未被研究过。为更好地理解这些很少被描述或未知的复合物,团队研究了类似的蛋白质,并根据新发现的蛋白质与此前已知蛋白质的相互作用,确定了新发现蛋白质的作用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制