闭合环状质粒

仪器信息网闭合环状质粒专题为您整合闭合环状质粒相关的最新文章,在闭合环状质粒专题,您不仅可以免费浏览闭合环状质粒的资讯, 同时您还可以浏览闭合环状质粒的相关资料、解决方案,参与社区闭合环状质粒话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

闭合环状质粒相关的耗材

  • 自动闭合镊子
    4号自动闭合镊子DUMONT Biology Anti-Capillary, PolishedLength:108mmPoints Width x Thickness:0.07 x 0.02mm
  • 自动闭合镊子
    4号自动闭合镊子DUMONT Biology Anti-Capillary, PolishedLength:108mmPoints Width x Thickness:0.07 x 0.02mm
  • 抗体(IgG、IgM) 质粒DNA 病毒 噬菌体分析柱
    Agilent Bio-Monolith 离子交换液相柱 以聚合物为基体的monolith HPLC 柱是为分离生物大分子而设计的 流速与分离无关:无扩散、无微孔、无死体积,使流动相和固定相之间的传质非常迅速 Monolith 盘为5.2 mm x 4.95 mm(100 μL 柱容量),带连续通道,消除了传质扩散 极快速的分离加速了方法开发,降低了成本。锁定方法参数显著缩短了时间,节省了缓冲液安捷伦Bio-Monolith HPLC 柱可为抗体(IgG、IgM)、质粒DNA、病毒、噬菌体和其它生物大分子提供高分离度快速分离。该系列产品提供强阳离子交换、强和弱阴离子交换及蛋白A 固定相。Bio-Monolith HPLC 柱与HPLC 和制备液相色谱系统兼容,包括安捷伦1100 和1200 HPLC 系统。订货信息:

闭合环状质粒相关的仪器

  • 智能型NU-5800系列二氧化碳培养箱箱体内环境稳定可靠,既可用于普通的组织、细胞培养,也能用于体外受精或细胞特殊条件下的培养等方面。【产品性能】A 材质可靠,性能稳定箱体内胆304不锈钢一体成型,外部高性能保温层包裹B 极近完美的体外细胞培养环境产品设计独特,各种性能参数控制更准确,近似细胞原本体内生存环境。C 理想的防污染设计内胆构造:一体成型,不留死角,清洁方便彻底室内气体:闭合环状高效HEPA循环过滤,更洁净可能污染源:双重灭菌(干热和湿热)功能更全,模式任选。更有纯铜内胆和搁板可选。内室部件:搁板、支架和滑轨取放方便,都能单独取出高压灭菌D 独有的控制系统微电脑触控,导航清晰,操作简便。数据记录、存储、输出更准确。【技术参数】【产品认证】
    留言咨询
  • 技术参数 3.1 有效容积:160L3.2 内腔尺寸(W×D×H):514×525×610mm;外部尺寸:648×699×894mm*3.3 5〃×7〃彩色触摸屏控制, 具有历史记录存储功能,最多可达2个月的历史记录存储*3.4 采用闭合环状HEPA过滤系统,HEPA过滤器不在培养室内,不占用培养空间,且可避免二次污染,培养室内达到ISO 5级洁净标准3.5 可控制箱内温度、CO2浓度、相对湿度、O2浓度3.6 温度控制范围:室温+5℃-55℃3.7 温度均一性:±0.3℃@37℃3.8 温度精确度:±0.1℃3.9 温度恢复:0.12℃/min(平均)3.10 温度显示分辨:0.1℃ *3.11 CO2传感器类型:单光双波红外二氧化碳传感器3.12 CO2浓度范围:0.1-20%3.13 CO2浓度精度:±0.1%3.14 CO2恢复: 平均5分钟内自动恢复至5.0%-0.5%/+0.2%3.15 CO2显示分辨:0.1%3.16 相对湿度范围:环境湿度到90%3.17 相对湿度精度:+5%/-3%3.18 相对湿度水箱容量:约3L3.19 O2传感器类型:氧化锆传感器3.20 O2浓度控制范围:0.5%-21%3.21 O2浓度控制精度:±0.25%*3.22 具有95℃湿热循环消毒和145℃干热循环消毒两种消毒模式3.23 有玻璃内门、不锈钢内壁和圆角腔体3.24 标配有全尺寸水盘3.25 搁板标配4块,最多可放16块3.26 滑轨和搁板都能方便取放,可高压灭菌处理*3.27 HEPA进气过滤器位于培养箱正面、培养室下方,方便观察和更换,操作简便4. 配置和选件 4.1 配置:主机1台
    留言咨询
  • 型号:Ligasure 30品名:动物大血管闭合器 产品特点:1、 闭合大血管及更粗的软组织,先凝后切2、 有能量平台,带自动追频和阻抗识别功能,刀头没有软组织,无法启动激发3、 凝闭完成提示,自动停止能量输出4、 夹取组织时有自动识别功能提示(如硬组织不能激发切凝提示)5、 智能双极能量系统,简称傻瓜式电刀 技术参数:型号Ligasure 30刀头参数Φ5mmX长度360mm,Φ5mmX长度300mm控制器四核控制,采用双回路架构正常闭合时间6S额定电压AC 220V额定频率50hz最大电流4A功能类880W电源电压AC220V、50Hz;
    留言咨询

闭合环状质粒相关的试剂

闭合环状质粒相关的方案

闭合环状质粒相关的论坛

  • 漩涡混匀器在细胞质粒提取中的应用

    分子生物学(基因工程)的实验中,经常要做细胞质粒DNA的提取和检测工作,以便获得运载基因的载体DNA;或用于实行电泳检测分析,了解样品是否含有质粒DNA(包括重组质粒DNA),判断其分子量大小,区别不同质粒等等。因此质粒DNA的提取是基因工程实验中最常用的手段之一。质粒是一种染色体外的稳定遗传银子,大小从1kb到200kb不等,大多数来自细菌的质粒是双链、共价闭合环状的分子,并以超螺旋形式存在于宿主的细胞质中。它是细菌内的共生型遗传因子,主要发现于细菌、放线菌和真菌细胞中,质粒具有自主复制和转录能力,能在子代细胞中保持恒定的拷贝数,并表达所携带的遗传信息。质粒的分离是利用质粒DNA和染色体DNA在变性与复性中的差异来达到的目的。当菌体在NaOH和SDS溶液中裂解时,蛋白质与DNA发生变性,由于染色体DNA与质粒DNA拓扑构型不同,染色体DNA双螺旋结构解开,而共价闭合质粒DNA的氢键虽被断裂,但两条互补链彼此相互盘绕仍会紧密地结合在仪器。当加入中和液后,溶液pH恢复至中性,在高盐浓度的情况下,染色体DNA之间交联形成不溶性网状结构并与蛋白质SDS复合物等形成沉淀;不同的是质粒DNA复性迅速而准确,保持可溶状态而留在上清中。这样,通过离心可沉淀大部分细胞碎片、染色体DNA、RNA及蛋白质。除去沉淀后上清中的质粒可用酚氯仿抽提进一步纯化质粒DNA。前面提取质粒DNA的方法就是实验室常用的碱裂解法,该法的操作过程如下:首先讲含有质粒的细菌接种到培养基,经过大约12小时的恒温摇陪后弃去上清液,加入中和液后用漩涡混匀器将溶液充分混匀,然后加入碱液进行沉淀,这就是变性与复性,最后的操作就是实验室常用的沉淀的分离、纯化。分离、纯化DNA首先取上清液,加入分离液后采用漩涡混匀器混匀溶液,离心取上清液,加入无水乙醇后混匀,离心后弃上清液,干燥DNA即可。这个实验中常用到漩涡混匀器进行溶液混匀,意大利VELP公司推出多种型号的漩涡混匀器可满足每一个实验室的需要和安全标准。特别是红外漩涡混匀器,这是VELP公司的专利,该漩涡混匀器一旦检测到试管即自动开始震动混匀,不需要施加任何外力,震动速度可调,时间可设,漩涡混匀器稳定性高,非常适合细胞质粒提取实验。

闭合环状质粒相关的资料

闭合环状质粒相关的资讯

  • 新冠RNA疫苗重大突破!北大魏文胜组首创环状RNA制备平台!
    日前,北京大学生命科学学院魏文胜课题组在Cell杂志上在线发表题为“Circular RNA Vaccines against SARS-CoV-2 and Emerging Variants”的研究论文。魏文胜团队首先建立了体外高效制备高纯度环状RNA的技术平台,针对新型冠状病毒及其变异株,设计了编码新冠病毒刺突蛋白(Spike)受体结构域(RBD)的环状RNA疫苗。该项研究中制备的针对新冠病毒德尔塔变异株的环状RNA疫苗(circRNARBD-Delta)对多种新冠病毒变异株具有广谱保护力。新冠病毒circRNA疫苗研发示意图01首创环状RNA制备平台作为近几年兴起的突破性医学技术,mRNA疫苗的基本原理是通过脂纳米颗粒(LNP)将mRNA导入体内来表达抗原蛋白,以刺激机体产生特异性免疫反应。2019年底新冠肺炎疫情(COVID-19)暴发后,针对性的mRNA疫苗(ModernamRNA-1273 Pfizer/BioNTechBNT162b2)在多种疫苗类型中脱颖而出。mRNA疫苗的修饰及递送技术均产生于国外机构,制约了我国mRNA疫苗及其治疗技术的发展和应用,因此亟需发展新型、高效的疫苗技术。与线性的mRNA不同,环状RNA分子呈共价闭合环状结构,不含5’-Cap和3’-polyA结构;且不需要引入修饰碱基,其稳定性高于线性RNA。但是RNA的环化方法、纯化策略尚不成熟,其潜在的免疫原性对疫苗研发的影响并不清楚,诸多未知因素制约着环状RNA的研发应用。魏文胜团队首先建立了体外高效制备高纯度环状RNA的技术平台,针对新型冠状病毒及其变异株,设计了编码新冠病毒刺突蛋白(Spike)受体结构域(RBD)的环状RNA疫苗。实验证明,该疫苗可以在小鼠和恒河猴体内诱导产生高水平的新冠病毒中和抗体以及特异性T细胞免疫反应,并可以有效降低新冠病毒感染的恒河猴肺部的病毒载量,显著缓解新冠病毒感染引起的肺炎症状。CircRNA疫苗接种在小鼠和恒河猴体内提供了显著性保护02环状RNA疫苗的优势一系列的对比评估表明,与mRNA疫苗相比,circRNA疫苗具有以下特点或优势:1)circRNA具有更高的稳定性,可以在体内产生更高水平、更加持久的抗原;2)circRNA疫苗诱导机体产生的中和抗体比例更高,可以更有效地对抗病毒变异,降低疫苗潜在的抗体依赖增强症(ADE)副作用;3)circRNA疫苗诱导产生的IgG2/IgG1的比例更高,表明其主要诱导产生Th1型保护性T细胞免疫反应,可以有效降低潜在的疫苗相关性呼吸道疾病(VAERD,Vaccine-associated enhanced respiratory diseases)副作用。CircRNA疫苗的特点和优势(相比于mRNA疫苗)03有效中和奥密克戎毒株在新冠病毒奥密克戎突变株被世界卫生组织列为值得关注的变异株(Variants of Concern,VOC)后,研究团队紧急启动了针对该突变株的环状RNA疫苗研发。在获得病毒序列信息的30天内,完成了从疫苗生产、小鼠免疫到有效性评估的全流程。研究发现,基于奥密克戎变异株的环状RNA疫苗(circRNARBD-Omicron)的保护范围狭窄,其诱导产生的抗体只能够中和奥密克戎变异株。而针对德尔塔变异株设计的环状RNA疫苗(circRNARBD-Delta)则可以在小鼠体内诱导产生广谱的中和抗体,有效中和包括奥密克戎株在内的多种新冠变异株。针对新冠病毒德尔塔变异株设计的circRNARBD-Delta疫苗是一种具有广谱保护力的候选疫苗以上结果表明,针对新冠病毒德尔塔变异株设计的circRNARBD-Delta疫苗是具有广谱保护力的新冠病毒肺炎候选疫苗,该研究也为针对当前新冠变异株迅速传播的疫苗研发和接种策略提供了参考依据。同时,该项平台型技术的建立在感染性疾病、自身免疫病、罕见病以及癌症的预防或治疗中具有广泛的应用前景。北京大学魏文胜课题组博士后璩良、博士研究生伊宗裔和沈勇为论文共同第一作者。本项研究获得了众多合作实验室的鼎力支持和帮助,包括北京大学谢晓亮教授/曹云龙研究员课题组,中国医学科学院/北京协和医学院王健伟教授课题组,中国医学科学院医学生物学研究所彭小忠教授课题组,中国食品药品检定研究院王佑春课题组及黄维金课题组。该研究项目得到了国家重点研发计划、国家自然科学基金重点及面上项目、北京市科委生物医学前沿创新推进项目、北京未来基因诊断高精尖创新中心、北大-清华生命科学联合中心以及传染病防治国家科技重大专项的基金支持。破译生命密码,编辑底层蓝本他致力于前沿生物技术的研究
  • mRNA疫苗2.0!魏文胜团队开发环状RNA疫苗,对德尔塔和奥密克戎有效
    2020年初,新冠病毒(SARS-CoV-2)导致的肺炎疫情开始在全球大流行,并一直延续至今。遗憾的是,直到今天,新冠疫情的形势仍然非常严峻。据世界卫生组织(WHO)报告,截至目前全世界范围内超过3.2亿人被感染,累计死亡人数超过550万。而 Nature 近日的一篇文章更是指出,550万的死亡人数被大大低估了,全世界新冠相关死亡人数可能高达1200万到2200万【1】。值得注意的是,随着新冠病毒在全球范围内的广泛传播,新的变种病毒不断涌现,包括Alpha、Beta、Gamma、Delta,以及近期开始快速传播的Omicron,表现出超强的传染性。更关键的是,现有的新冠疫苗对Omicron的防护作用大大下降。这提醒了我们,在新冠病毒不断变异的大背景下,现有疫苗和治疗性抗体效果开始逐渐下降。因此,迫切需要开发安全有效的预防新冠病毒及其突变株感染的疫苗。2022年1月11日,北京大学魏文胜团队在预印本平台 bioRxiv 上发表题为:Circular RNA Vaccines against SARS-CoV-2 and Emerging Variants(抗SARS-CoV-2和新变种的环状RNA疫苗)的研究论文【2】。魏文胜团队在去年3月份发表的 bioRxiv 论文的基础上,在恒河猴上验证了他们之前开发的编码新冠病毒刺突蛋白三聚体受体结合域(RBD)的环状RNA疫苗(circRNA-RBD)能够引发有效的中和抗体和T细胞应答,对Delta和Omicron突变株产生有效防护。不同于现在使用的线性mRNA疫苗,这种环状RNA疫苗,由于环状RNA本身均有很高的稳定性,不需要核苷酸修饰,在室温下储存2周时间,仍不影响效果。这表明环状RNA疫苗在抗击新冠变种病毒上具有十分良好的应用前景。值得一提的是,魏文胜教授创立了基于环状RNA的疫苗和治疗公司圆因生物,并于2021年底完成了超亿元PreA轮融资。接种疫苗是结束和预防新冠大流行最有希望的方法。目前已应用的新冠疫苗种类众多,包括灭活疫苗、腺病毒载体疫苗、亚单位疫苗以及新兴的mRNA疫苗。mRNA疫苗,具有生产速度快、成本低,并且能快速应对病毒变异等优点。但与此同时,mRNA疫苗储存和运输条件较为苛刻(零下70℃),并具有潜在的免疫原性副作用。在自然界中,环状RNA(circRNA)普遍存在于真菌、植物、昆虫、鱼类和哺乳动物,甚至于某些病毒的基因组本身就是环状RNA,如D型肝炎病毒和植物类病毒。与线性mRNA不同,环状RNA是高度稳定的,因为它的共价闭合环结构可以保护它免受外切酶介导的降解。到目前为止,只有少数内源性的环状RNA被证明可以作为蛋白质翻译模板。虽然环状RNA缺乏翻译成蛋白质所必要的元件,但它可以通过内部核糖体进入位点(IRES)或其5' UTR区域的m6A修饰来实现蛋白质翻译。魏文胜团队针对新冠病毒及其变种病毒设计了环状RNA疫苗,魏文胜实验室也是全世界首个将环状RNA应用于疫苗研发的实验室。研究团队利用自我剪接Ⅰ型内含子核酶来产生编码SARS-CoV-2-RBD抗原的环状RNA——circRNA-RBD。为了增强RBD抗原的免疫原性,他们将噬菌体T4纤溶蛋白三聚体基序融合到其C端,以此模拟了新冠S蛋白三聚体的自然构象。circRNA-RBD的设计模式图细胞实验显示,circRNA-RBD可以在人类细胞和小鼠细胞中大量表达新冠病毒的RBD抗原,表达量显著高于线性的mRNA-RBD,且能够有效阻断新冠假病毒感染细胞。在小鼠实验上,脂质纳米颗粒(LNP)递送的circRNA-RBD能够有效中和新冠假病毒,且小鼠脾脏中产生了强烈的T细胞免疫应答。这表明circRNA-RBD疫苗确实在小鼠体内诱导了持久的体液免疫应答和强烈的T细胞免疫应答。circRNA-RBD疫苗在小鼠体内诱导了持久的体液免疫应答和强烈的T细胞免疫应答研究团队还设计了针对Delta突变株的circRNA-RBD疫苗,实验结果显示,该疫苗能够产生针对Delta和Omicron突变株的高水平中和抗体。这一次,研究团队还在猴子中测试了这种环状RNA疫苗的效果,实验结果显示,该环状RNA疫苗能够对恒河猴产生有效保护。脂质纳米颗粒(LNP)递送的环状RNA疫苗能够引发有效的中和抗体和T细胞应答,产生比经过修饰的线性mRNA疫苗更强更持久的效果。重要的是,该研究发现,针对Omicron的环状RNA疫苗只能诱导针对Omicron的高水平中和抗体,而针对Delta的环状RNA疫苗既可以诱导针对Delta的高水平中和抗体,又能诱导针对Omicron的高水平中和抗体。这表明针对Delta的环状RNA疫苗是疫苗的有力选择,能够对目前主要的新冠流行株提供广泛防护。总的来说,这项研究证实,环状RNA疫苗具有热稳定性好、编码抗原表达量高以及适用性广泛等优点,并成功设计了相应的环状RNA疫苗来对抗新冠病毒及其突变株的感染,表明环状RNA疫苗在COVID-19大流行中可以作为一种全新的疫苗和治疗平台。
  • 远慕总结:质粒DNA的提取方法
    (一)碱裂解法提取质粒[实验原理]碱裂解法提取质粒是根据共价闭合环状质粒DNA与线性染色体DNA在拓扑学上的差异来分离它们。在pH值介于12.0~12.5这个狭窄的范围内,线性的DNA双螺旋结构解开而被变性,尽管在这样的条件下,共价闭环质粒DNA的氢键会被断裂,但两条互补链彼此相互盘绕,仍会紧密地结合在一起。当加入pH4.8的乙酸钾高盐缓冲液恢复Ph至中性时,共价闭合环状质粒DNA的两条互补链仍保持在一起,因此复性迅速而准确,在而线性的染色体DNA的两条互补链彼此已完全分开,复性就不会那么迅速而准确,它们缠绕形成网状结构,通过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来而被除去。[实验仪器与设备]1.恒温培养箱 2.恒温摇床3.台式离心机(最大转速4000rpm) 4.冷冻高速离心机5.高压灭菌锅 6.超净工作台7.微量移液器 8.eppendorf tupe、tip[实验材料]1.葡萄糖 2.三羟甲基氨基甲/烷(Tris)3.乙2胺四乙酸(EDTA) 4.氢氧/化钠5.十二烷基硫酸钠(SDS) 6.乙酸钾7.冰乙酸 8.氯/仿9.乙醇 10.胰RNA酶11.氨苄青霉素 12.蔗糖13.溴酚蓝 14.酚15.β巯基乙醇 16.盐酸17.含pUC18质粒的大肠杆菌附:试剂的配制1.溶液Ⅰ50mmol/L 葡萄糖5mmol/L 三羟甲基氨基甲/烷(Tris) TrisHCl (pH8.0)10mmol/L 乙2胺四乙酸(EDTA)(pH8.0)2.溶液Ⅱ0.4 mol/L NaOH, 2%SDS, 用前等体积混合3.溶液Ⅲ5mmol/L 乙酸钾 60 ml冰乙酸 11.5 ml水 28.5 ml4.TE缓冲液10mmol/L TrisHCl1 mmol/L EDTA(pH8.0)5.70%乙醇(放-20℃冰箱中,用后即放回)6.胰RNA酶将RNA酶溶于10mmol/L TrisHCl(pH7.5)、15mmol/L NaCl中,配成10mg/ml的浓度,于100℃加热15min,缓慢冷却至室温,保存于-20℃。7.终止液:40%蔗糖、0.25%溴蓝酚8.酚[实验步骤](一) 提取质粒1.将2ml含相应抗生素的LB液体培养基加入到试管中,接入含质粒的大肠杆菌,37℃振荡培养过夜。2.取1.5ml培养物倒入微量离心管中,4000rpm,离心2min。3.吸去培养液,使细胞沉淀尽可能干燥。4.将细菌沉淀悬浮于100μl溶液Ⅰ中,充分混匀,室温放置10 min。5.加200μl溶液Ⅱ(新鲜配制),混匀内容物,将离心管放冰上5 min。6.加入150μl溶液Ⅲ(冰上预冷),盖紧管口,颠倒数次使混匀。7.1200rpm,离心15 min,将上清转至另一离心管中。8.向上清中加入等体积酚:氯/仿(去蛋白),反复混匀,12000rpm,离心5min,将上清转移到另一离心管中.9.向上清加入2倍体积乙醇,混匀后,室温放置5-10min。12000rpm离心5min。倒去上清液,把离心管倒扣在吸水纸上,吸干液体。10.用1ml70%乙醇洗涤质粒DNA沉淀,振荡并离心,倒去上清液,真空抽干或空气中干燥。11.加50μl TE缓冲液,其中含有20μg/ml的胰RNA酶,使DNA完全溶解,-20℃保存。(二)琼脂糖凝胶电泳检测DNA[实验原理]琼脂糖凝胶电泳是分离鉴定和纯化DNA片段的常用方法。DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应,DNA分子在高于等电点的pH溶液中带负电荷,在电场中向正极移动。由于糖磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此它们能以同样的速度向正极方向移动。不同浓度琼脂糖凝胶可以分离从200bp至50kb的DNA片段。在琼脂糖溶液中加入低浓度的溴化乙锭(ethidum bromide ,EB),在紫外光下可以检出 10ng的DNA条带,在电场中,pH8.0条件下,凝胶中带负电荷的DNA向阳极迁移。琼脂糖凝胶有如下特点:(1) DNA的分子大小 在凝胶基质中其迁移速率与碱基对数目的常用对数值成反比,分子越大迁移得越慢。(2) 琼脂糖浓度 一个特定大小的线形DNA分子,其迁移速度在不同浓度的琼脂糖凝胶中各不相同。DNA电泳迁移率(u)的对数与凝胶浓度(t)成线性关系。(3) 电压 低电压时,线状DNA片段迁移速率与所加电压成正比。但是随着电场强度的增加,不同分子量DNA片段的迁移率将以不同的幅度增长,随着电压的增加,琼脂糖凝胶的有效分离范围将缩小。要使大于2kb的DNA片段的分辨率达到最大,所加电压不得超过5v/cm。(4) 电泳温度 DNA在琼脂糖凝胶电泳中的电泳行为受电泳时的温度影响不明显,不同大小的DNA片段其相对迁移速率在4℃与30℃之间不发生明显改变,但浓度低于0.5%的凝胶或低熔点凝胶较为脆弱,最好在4℃条件下电泳。(5) 嵌入染料 荧光染料溴化乙锭用于检测琼脂糖凝胶中的DNA,染料嵌入到堆积的碱基对间并拉长线状和带缺口的环状DNA,使其刚性更强,还会使线状迁移率降低15%。(6) 离子强度 电泳缓冲液的组成及其离子强度影响DNA电泳迁移率。在没有离子存在时(如误用蒸馏水配制凝胶,电导率最小,DNA几乎不移动,在高离子强度的缓冲液中(如误加10×电泳缓冲液),则电导很高并明显产热,严重时会引起凝胶熔化。对于天然的双链,常用的几种电泳缓冲液有TAE、TBE等,一般配制成浓缩母液,室温保存,用时稀释。[实验仪器与设备]1. 恒温培养箱2. 琼脂糖凝胶电泳系统3. 高压灭菌锅 4. 紫外线透射仪[实验材料]1.三羟甲基氨基甲/烷(Tris) 2.硼/酸3.乙2胺四乙酸(EDTA) 4.溴酚蓝5.蔗糖 6.琼脂糖7.溴化乙锭 8.DNA marker9.DNA样品[实验步骤]1.缓冲液的配制① 5×TBE(5倍体积的TBE贮存液)配1000ml 5×TBE:Tris 54g硼/酸 27.5g0.5mol/l EDTA 20mlPh8.0② 凝胶加样缓冲液(6×)溴酚蓝 0.25%蔗糖 40%③溴化乙锭溶液(EB) 0.5μg/ml2.制备琼脂糖凝胶按照被分离DNA的大小,决定凝胶中琼脂糖的百分含量。可参照下表:琼脂糖凝胶浓度 线性DNA的有效分离范围0.3% 5-60 kb0.6% 1-20 kb0.7% 0.8-10 kb0.9% 0.5-7 kb1.2% 0.4-6 kb1.5% 0.2-4 kb2.0% 0.1-3 kb3.胶板的制备(1) 用高压灭菌指示纸带将洗静、干燥的玻璃板的边缘(或电泳装置所皿备的塑料盘的开口)封住,形成一个胶膜(将胶膜放在工作台的水平位置上,用水平仪校正)。(2) 配制足够用于灌满电泳槽和制备凝胶所需的电泳缓冲液(1×TBE)。准确称量的琼脂糖粉。缓冲液不宜超过锥瓶或玻璃瓶的50%容量。 在电泳槽和凝胶中务必使用同一批次的电泳缓冲液,离子强度或pH值的微小差异会在凝胶中形成前沿,从而大大影响DNA片段的迁移率 。(3) 在锥瓶的瓶颈上松松地包上一层厚纸。如用玻璃瓶,瓶盖须拧松。在沸水浴或微波炉中将悬浮加热至琼脂糖溶解。注意:琼脂糖溶液若在微波炉里加热过长时间,溶液将过热并暴沸。应核对溶液的体积在煮沸过程中是否由于蒸发而减少,必要时用缓冲液补充。(4) 使溶液冷却至60℃。加入溴化乙锭(用水配制成10mg/ml的贮存液)到终浓度为0.5ug/ml,充分混匀。(5) 用移液器吸取少量琼脂糖溶液封固胶模边缘,凝固后,在距离底板0.5-10mm的位置上放置梳子,以便加入琼脂糖后可以形成完好的加样孔。如果梳子距玻璃板太近,则拔出梳子时孔底将有破裂的危险,破裂后会使样品从玻璃板之间渗透。(6)将剩余的温热琼脂糖溶液倒入胶模中。凝胶的厚度在3-5mm之间。检查一下梳子的齿下或齿间是否有气泡。(7)在凝胶完全凝固后(于室温放置30-45分钟) ,小心移去梳子和高压灭菌纸带,将凝胶放入电泳槽中。低熔点琼脂糖凝胶及浓度低于0.5%的琼脂糖凝胶应冷却至4℃,并在冷库中电泳。(8)加入恰好没过胶面约1mm深的足量电泳缓冲液。4.加样DNA样品与所需加样缓冲液混合后,用微量移液器,慢慢将混合物加至样品槽中。此时凝胶已浸没在缓冲液中。 一个加样孔的最大加样量依据DNA的数量及大小而定,一般为20-30μl样品。已知大小的DNA标准,应同时加在凝胶的左凝胶的左侧和右侧孔内。确定未知DNA的大小。测量未知DNA的大小时,要所有样品都用相同的样品缓冲液。5.电泳在低电压条件下,线形DNA片段的迁移速度与电压成比例关系,但是,在电场增加时,不同相对分子质量的DNA片段泳动度的增加是有差别的。因此,随着电压的增加,琼脂糖凝胶的有效分离范围随之减小。为了获得电泳分离DNA片段的最大分辨率,电场强度不应高于5V/cm。当溴酚蓝指示剂移到到距离胶板下沿约1-2cm处,停止电泳。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制