比例效应

仪器信息网比例效应专题为您整合比例效应相关的最新文章,在比例效应专题,您不仅可以免费浏览比例效应的资讯, 同时您还可以浏览比例效应的相关资料、解决方案,参与社区比例效应话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

比例效应相关的耗材

  • 降低荷电效应样品杯
    降低充电效应样品杯包含一限压孔,可将特定量的空气导入样品腔,使得样品附近气压升高,降低样品表面的充电效应,同时保持电子腔内的高真空,使系统稳定运行。降低充电效应样品杯专为不导电样品设计,为用户免去了额外的预处理过程。各种不导电样品,如纸张、聚合物、有机材料、陶瓷、玻璃以及涂层等,均可借助降低充电效应样品杯,得到其原始形貌的图像。适用于高分辨率成像,可用于观测粉末,薄膜,及各种不规则形状的三维样品。降低充电效应样品杯可直接观察不导电的样品,无需喷金样品尺寸:直径25mm;高30mm
  • 降低荷电效应控温样品杯
    控温样品杯应用低真空技术,在控温的同时将样品周围相对湿度控制在高水平,显著降低样品中水分的蒸发、升华,延长敏感样品的观测窗口时间。控温样品杯可以对样品进行冷冻或加热,改变样品周围湿度、气压。同时利用低真空技术,减小电子束轰击造成的荷电效应和样品损伤。优点:阻止样品中水分的丧失,避免因脱水而造成的样品形变;保持样品原始形貌 ; 可以长时间观测生物、有机样品 ;降低电子束损伤。样品尺寸:直径25mm;高5mm控温范围:- 25℃ ~ + 50℃ 降温速率:20℃/min
  • 热补偿微型比例阀
    简介: VSO® 微型比例阀,气体流量与输入电流成正比,阀门可通过直流电流或脉宽调制电流配合闭环反馈系统进行控制,实现上佳的系统性能。流量控制高达56L/min。另外VSO® 微型比例阀可以在多种温度和多种介质下实现精确控制。是医疗设备和分析设备制造商及各种要求流量线性控制的理想选择。 详细介绍:VSO® 微型比例阀,气体流量与输入电流成正比,阀门可通过直流电流或脉宽调制电流配合闭环反馈系统进行控制,实现上佳的系统性能。流量控制高达56L/min。另外VSO® 微型比例阀可以在多种温度和多种介质下实现精确控制。是医疗设备和分析设备制造商及各种要求流量线性控制的理想选择。典型应用:l 气相色谱l 质谱l 呼吸机l 制氧机/存储罐l 麻醉气体传输和监控l 压力和流量控制l 质量流量控制特征l 能够实现精确流量控制,提高仪器准确度l 通过热补偿在各种介质上保持精确流量l 计算机自动校准和序列化,实现了性能可追溯性l 已清洗,可用于氧气和分析级应用l 经过验证的性能,开关循环数可达1亿次l 符合RoHS指令 技术文档:VSO® 微型比例阀

比例效应相关的仪器

  • 亚历山大效应光谱高温仪可精确测量1000K到100,000 K的高温到超高温,同时可为研发需要测定辐射体的发射光谱,是迄今为止唯一可以直接测量4000 K以上高温的仪器.一、原理简介  亚历山大宝石效应可被分为四种类型。类型一:变色与黑体温度变化相应,在不同的光源下,色彩与温度变化。类型二:亚历山大宝石效应与两种光源的谱差种类相应。类型三:亚历山大宝石效应与色彩温度的变化及谱差种类均相应。类型四:亚历山大宝石效应与白炽光和荧光之间极大的色彩温度差相应。  用亚历山大宝石效应方法来测量温度是以类型一亚历山大宝石效应的CIELAB色彩空间中温度与色彩角的关系为基础的。图1显示了在CIELAB色彩空间 中亚历山大宝石晶体沿a晶轴的色彩角与温度之间的关系。合成亚历山大宝石晶体的色彩角大约在温度是2856 K时为335度,红紫色;而在温度6500 K时为162度,蓝绿色。2856K与6500 K时的色彩角度差大约为173度。 温度和色彩角之间的关系可用数学方法来测定。温度是色彩角的函数:这里,h是CIELAB色彩空间的色彩角。   当辐射体的辐射光线穿过晶体时,晶体色彩会随着辐射体温度变化而变化。亚历山大宝石效应的色彩角只取决于辐射体的温度,而与该辐射体的光谱功率分布无关。这个特性是利用亚历山大效应测量任何辐射体温度的基础。因此可以准确测量任何辐射体的温度,不管该辐射体的光谱功率分布是何种类型。 二、系统构成  系统由光学观测系统或光探针,频谱仪、计算机及带有数字亚历山大宝石效应滤波器的温度测量软件构成。 图2 系统构成LASP spectropyrometer软件: 图3:LASP spectropyrometer屏幕界面1. 光谱显示:被测波长范围380 -760 nm辐射体的相对光谱功率分布。相对光谱功率分布的标准值为波长560nm时100。2. 温度显示:显示被测辐射体的温度。3. 积分时间:进行每次测量的时间,单位为ms。 4. 采样平均:每次测量的采样平均数。5. 最大信号:在波长范围中测量到的最大信号。注意:最大信号不应超过3000。最大信号超过3000会引起信号饱和。6. 光谱校正:输入校正值校正光谱。7. 光谱校正指令:将输入的校正值应用于相对光谱功率分布。8. 温度监测:监测被测辐射体的温度,不显示辐射体的相对光谱功率分布。9. 温度测量:测量被测辐射体的温度,带有相对光谱功率分布。10. 温标选择:在开氏、摄氏及华氏温度之间选择温标。三、应用领域  1.测量等离子枪温度2.测量电弧及放电超高温度3.测量铝合金中化学元素浓度温度及激光光谱4.为多晶硅设备的温控提供支持5.优化高性能内燃机的混合燃料比例、温度及排放6.测定合金炉的光谱并对其温度进行调控7.对炼钢炉的碳浓度进行控制四、规格LASP 0260 800 - 1200 KLASP 1260 1000 - 2500 KLASP 2260 1800 - 5000 KLASP 3260 3000 - 10000 KLASP 4260 5000 - 50000 KLASP 5260 10000 - 100000 K探测器种类:1. 光学观测系统2. 积分球3. 准直透镜4. 电准直仪光谱波长范围:380 - 760 nm温度测量精度:黑体及灰体: 0.5%非灰体(光谱校正后): 1.0%温度分辨率: 1 K光谱分辨率: 1 nm温标:开氏温度,摄氏温度及华氏温度
    留言咨询
  • 1.压电效应及逆压电效应演示仪,压电与逆压电效应仪 型号:YDX 【实验目的】演示压电与逆压电效应的应用。【实验原理】 电介质中有类其分子的电偶矩不为零,即它是有分子。在由分子构成晶体时,其 具有定对称性的排列使这种电介质晶体作为个整体不表现出电性来,宏观电偶矩为零,原因是多个分子的电偶矩的矢量和为零;但当电介质晶体受到外力(应力不为零)而有形变时(应变不为零),其晶胞中分子电偶矩的矢量和不再为零,从而出现宏观电化现象,即岀现宏观电偶矩,电介质的表面会出现化电荷,这种现象称为压电效应。反之,把压电晶体放在电场中它也会出现定的形变,内产生应力应变,这种现象称为逆压电效应。本实验用的元件是压电陶瓷片,它具有压电性,把它放在声场中,声波的机械振动通过压电效应在压电陶瓷片的电上激起化电荷变为音频电信号,经放大可为人们所听到。逆压电效应可被用来利用电场控制细微的密机械运动,如扫描隧道显微镜的探针的控制就是由逆压电效应通过压电陶瓷片实现的。 【实验步骤】 1、打开放大器电源开关,将转换开关置于压电端;2、将压电片紧贴马蹄表,调节放大器音量,即可听到钟表走时声;3、将转换开关置于逆压电侧,即可观察到逆压电现象。 【注意事项】使用毕后妥善保管仪器,以免组件丢失。 【实验拓展】压电效应实质上是由于电介质分子结构而产生的联系力学和电学量的效应,试设想它有什么用途。 2.经济型 药物凝固点测定仪 型号:HAD-G0613控制方式:浴体温度 试样温度 试样搅拌 结果采集 结果打印采用微电脑自动控制适用标准:药典2015版0613凝点测定法浴体耐温硼硅玻璃缸控制范围:室温-90℃控制方式:微电脑自动控制控温度:±1℃加热方式:不锈钢电热管加热检测方式:控制程序自动判断凝点作方式:双孔试样搅拌方式:自动机械搅拌结果处理微型打印机:自动打印加热率:800W整机率:1KW作电源:AC220V±10% 50HZ 3.颗粒活性炭四氯化碳吸附仪 综合吸附率测定仪 型号:HAD-XF2 1、输入电压:AC220V 2、控温范围:0℃-50℃ 3、环境温度:0℃-50℃ 4、加热方式:不锈钢U型管 5、加热率:2KW 6、制冷方式:压缩机制冷 7、措施:漏电保护开关 8、流量计材质:玛瑙 9、控温度:±0.05℃ FS≤150PM 10、外形尺寸:长*宽* 温控系统:255 mm *550 mm *450mm mm 恒温水浴:570mm*525 mm *510 mm 制冷机:200 mm *340 mm *300 mm 11、恒温水浴艺:氩弧焊 12、整机率:≤2500W 13、配件:四氯化碳吸附配件; 4.北京厂COD恒温加热器 COD智能加热器 COD智能消解仪 温冷凝回流提取仪 智能冷水COD回流消解仪 智能型回流加热装置 型号:HAD-6B12C HAD-6B12C型COD智能加热器(消解仪)是依据家标准GB11914-89分析方法(经典分析方法)研制的智能型回流加热装置。 该机采用新型数字化温度控制术(PID),中文液晶界面显示术,可方便行数字式温度和时间设定,运用空气自然冷凝代替原来水冷凝方式,从而减小了体积、节约了水资源,是测定水质化学需氧量仪器化的新产品。 广泛用于环保、疗、卫生、食品、自来水、纸、制药、污水处理、印染、石化、冶金、科研院校等行业的水质COD测定。   【仪器特点】   节电、节水、体积小、热辐射小、操作简便   ,自动计时,反应2小时到达后仪器自动切断电源   升温速度快,温度稳定均匀 采用微电脑控制,不小于7寸触控屏操作和显 30段程序升温   【术标】   测量范围:5~1000mg/L,1000~10000mg/L(稀释,标配100毫升烧杯)   测量时间:0-200分钟内意设置   控温度:±1℃   孔温误差:±0.2℃   升温时间:≤15分钟   控温范围:室温-300℃   作环境温度:5~40℃   批处理样:12样/批   平均耗:≤880瓦   作电压:AC220V±10%/50Hz   外尺寸:355×320×110mm 5.新货供应紫外臭氧检测仪 发生器臭氧测定仪 度紫外臭氧浓度检测仪型号:HAD-UV04 参 数:量程范围:0~200mg/L(0~40mg/L,0~100mg/L可选,固定量程),0.01-20ppm(度)显示分辨率:0.01mg/L 量程根据用户订做彩色大屏幕显示浓度和触摸操作,有数据存储和查询能。同时显示温度和湿度准确率:3% 输入气体压力:0.1MPa 输入气体流量:1-5L/min(接旁路1L/min) 电源:AC 220V 50Hz 尺寸:320mm(长)×230mm(宽)×170mm() 气体输入口、输出口管内径4mm,外径6mm 做为内嵌入式仪表开孔尺寸:152mm×76mm. 6. 麦氏细菌浊度仪 麦氏比浊仪 细菌比浊计 便携式浊度计 型号:HAD-B121.用途概述:Summary of functionsHAD-B12型麦氏细菌浊度仪是种通过检测悬浮液中的微生物散射光来反映微生物数量的仪器。于药敏评价、微生物发酵和微生物检测域的细菌浊度检测。标:Specifications型号Model HAD-B12 型细菌浊度计示值Minimum readout(MCF) 0.001 MCF测量范围Measuring range(MCF) 0~6 MCF(麦氏浊度单位)量程: (0-1;1-6 ) MCF线性误差(准确度)Basic error F.S ≤2.0%F.S重复性Repeatability ≤1.0%特点 Characteristics 便携式,内置锂电池、经济型、稳定性好 外型尺寸External dimension 172×100×48 mm试样管尺寸要求 试管规格:直径16 mm、度50~100mm (其他尺寸试管可定制) 7.室内可吸入颗粒物采样器 可吸入颗粒物 颗粒物采样器 型号:HAD-13 :1、 流量计量程为3-30升/分。通常使用20升/分。2、 用蜡样杆菌芽胞制成的气溶胶。在标准的气雾室中测定 其捕获率在95%以上。3、定时器:电子定时:时间为99分钟,误差度不大于10秒。4、 电源:交流220V±10%,50HZ。 直流:12V5、 消耗率 ≤ 45W。6、 噪声 ≤ 68ab。7、 体积:290×220×200 mm3。8、 重量:7Kg。 8.实验室卧式辊压机 型号:HAD-100C 二、环境条件:本设备安装环境温度应控制在-20℃-60℃之间以下环境内,安装地点应通风良好、散热条件好。 三、术参数: 项目 性能参数 压辊直径尺寸 Φ100mm 压辊面硬度 HRC62;钢辊材质口9CR2MO 轧辊圆柱度 ≤±0.002mm; 有效间隙 0-3mm可调 作速度 变速,线速度0-6.0米/分可调 辊面光洁度 镀硬鉻不生锈 作宽度 200mm 辊面淬火深度 50mm 压力 5T 轧辊温度 200°C 作率 200W ,2.4KW 电压 AC 220V 整机尺寸约 500mm(长) ×320mm(宽) × 850mm() 重量约 105KG 9.水平摇床 水平旋转振荡器 型号:HAD-SK2 运行方式:圆周周转直径:22mm允许承重:2kg速度范围:40-350rpm时间设置范围:1-19h59min运行模式:定时/ 连续输入电压( 频率):AC100-240V(50/60Hz)输入率:20W作面尺寸:透明罩型255×255mm外壳防护等级:IP21允许环境温度:5-50℃允许相对湿度:80%外形尺寸:透明罩型420×360×145mm净重:透明罩型 7.8Kg 10电火花检测仪 电火花针孔检测仪 型号:HAD-G10D 二、HAD-G10D型电火花检漏仪术参数 1、适用检测厚度:0.05~10mm 2、输出脉冲压:0.6kV~30kV (无级连续可调,0.1KV步) 3、输出压值直接示 4、作电源:12V (内置2.8Ah大容量锂电池,满电可连续作40小时以上) 5、主机体积:220 × 130 × 88 mm 6、瞬时手动开机,自动断电关机
    留言咨询
  • 原子氧效应 400-860-5168转2623
    Resonance.Ltd开发的原子氧效应地面模拟实验舱,采用采用CO2激光加热分解产生原子氧束,可同时满足能量为5eV和通量为3~5×10^16 atoms/cm2/s的严苛条件,其试验结果与LEO飞行暴露试验结果符合程度很高,被认为是目前实现定性和定量进行原子氧效应地面模拟的最佳手段。
    留言咨询

比例效应相关的试剂

比例效应相关的方案

比例效应相关的论坛

  • 关于基质效应的问题

    基质效应对于被测物影响比较大时,通过稀释能不能有效缓解这种情况。让样品中的被测物的响应时间和离子比例尽可能的接近标准品的。

  • 溶剂效应会影响峰面积吗?

    本人最近在用HPLC做不同流动相条件对人工药物(用50%甲醇水溶解)峰面积的影响,发现在pH较小、有机相(乙腈)比例较高的情况下,物质出的峰分叉了。我查到是溶剂效应的影响,但网上大多数只讲到了溶剂效应对峰形和保留时间的影响,但没有说到对峰面积的影响与否。实验已经做了大半了,望各位大虾解惑!

比例效应相关的资料

比例效应相关的资讯

  • 利用等比例扩大管道尺寸实现用于核酸药物递送的脂质纳米颗粒的可扩展化合成
    基于脂质纳米粒子(LNPs)的核酸药物递送系统已经被证明在基因编辑、癌症治疗、传染病预防、慢性病治疗等领域具有巨大潜力。微流控技术作为一种高效的可调合成平台,可以在LNPs的合成过程中精确控制流动参数,包括流量比、总流量以及脂质浓度等,从而实现不同尺寸的粒子合成。这对于实现不同器官的精准靶向具有重要意义,是当前科学研究的一个关键焦点。然而,将LNPs从实验室研发成功转化为临床应用仍然面临一个严峻的挑战:如何稳健地实现制备规模的放大。目前,规模化合成LNPs的方法主要分为并行化合成策略和通道尺寸扩大策略两种。虽然并行化合成策略原理简单,但需要建立复杂的系统以确保流量分配的稳定性,因此尚未在LNPs的工业制造中广泛应用。通道尺寸扩大策略则采用更大尺寸的单一芯片,提高了最大容许流量,并通过高流速下的湍流混合来确保极限尺寸纳米粒子的合成,例如受限撞击射流混合器和T型混合器。然而,尽管后者能够实现稳定的大规模生产,但在不同流速下难以维持一致的粒径和尺寸分布。因此,我们迫切需要一种创新性的方法,既能保证可扩展的合成,又能维持LNPs的一致性和稳定性。为此,中科大工程学院褚家如教授团队的李保庆副教授与生命科学与医学部田长麟教授团队深入研究后,提出了一种创新的脂质纳米粒子合成策略,即“等比例缩放通道尺寸实现LNPs的可扩展合成”。这一策略通过在三个维度上等比例缩放惯性微流体混合器,并且通过控制混合时间保持一致来确保一致粒径分布的LNPs的合成。这一策略为LNPs的大规模生产提供了实际可行的途径。相关研究成果已发表在Nano Research上。中国科学技术大学在读博士生马泽森和童海洋为共同第一作者。合作团队首先研制了一种高效的惯性流混合器,该混合器充分利用了流体的惯性效应,包括迪恩涡、分离涡以及分离重组效应,以显著提高混合效率。与其他惯性流混合器相比,这种混合器在更低的雷诺数下也能实现充分混合。利用这一混合器,合作团队研究了两种LNPs配方在不同混合时间下的粒径分布,发现混合时间和粒径之间存在良好的线性关系。因此,合作团队推测,通过在不同混合器中控制混合时间的一致性,可以实现具有相同粒径分布的LNPs的合成。基于这一构想,合作团队等比例缩放了该惯性流体微混合器,并使用高精度3D打印和激光加工制备了具有不同通道尺寸的芯片。这些芯片用于实现不同通量条件下的LNP筛选和规模化制备的一致性。对于管道尺寸小于100μm的芯片,选择了摩方精密nanoArch S130设备进行打印和加工,以确保尺寸得到精确控制,从而实现了小于1mL/min流量下均匀的LNPs的合成。此外,合作团队还基于流体力学的相似性理论进行了研究,通过量纲分析和实验标定,总结出了不同管道尺寸混合器实现相同混合时间的流量关系。经过实验验证,在相同的混合时间下合成的LNPs具有一致的粒径、分散性以及包封率。此外,合作团队还验证了具有相同粒径的LNPs在核酸递送方面的能力,成功合成了包封siRNA的LNPs,并证明了它们具有相同的基因沉默效力。总体而言,合作团队提出的“等比例缩放通道尺寸实现可扩展化合成”的策略为核酸药物的大规模生产提供了一种简单、可靠且稳定的途径。这一方法有望极大地加速LNPs药物从早期开发阶段迈向临床应用,推动核酸药物研发进入崭新的领域,为人类健康做出重要贡献。利用摩方精密nanoArch S130设备打印加工的管道尺寸分别为50μm和100μm的微流控芯片模具。其中XY方向上的精度为2μm,Z方向上的精度为5μm,样件尺寸为30mm×40mm。图1 惯性流混合器的结构以及原理示意图。(a)混合器的结构示意图。(b)利用混合器合成脂质纳米粒子的原理示意图。(c)混合器混合机理示意图。三种惯性流效应共同促进了混合,包括迪恩涡、分离涡以及分离重组效应。图2 利用计算流体力学仿真不同管道尺寸混合器的流型相似性。(a)前两个混合单元混合流型的顶部视图。(b)三种管道尺寸混合器在不同雷诺数下的流型相似性。图3 通道尺寸为100、250和500μm的混合器的前两个混合元件的流态俯视图。流动状态包括层流(Re=25和132)、瞬态流(Re=264)和湍流(Re=396)。图像经过数字处理以增强对比度。将溶解有黑色染料(0.025g/mL)作为示踪剂的去离子水和乙醇以3:1的FRR泵入混合器中。流动方向是从左到右。其中100μm的芯片是通过摩方精密nanoArch S130设备打印进行加工。图4 在相同混合时间下,不同通道尺寸的混合器合成具有一致粒径和尺寸分布的LNPs。(a)等比例缩放微混合器用于可扩展化合成LNPs。(b-c)在相同的混合时间下测量了两种LNPs配方的粒径分布。图5 一步对相同粒径LNPs核酸药物递送的性能评估。合成了包封因子VII siRNA后进行静脉注射,两天后测定因子VII活性。结果表明不同组别之间呈现一致的体内沉默效率。原文链接https://doi.org/10.1007/s12274-023-6031-1
  • LI-2100 | 水汽来源复杂性对内陆山区降水稳定同位素海拔效应的影响
    祁连山脉位于青藏高原北部、河西走廊南侧,由多条平行的山脉组成,呈西北向东南延伸。石羊河流域上游是重点研究区域,海拔西南高、东北低,发源于祁连山脉北坡的冷龙岭,流经青藏高原,由西南向东北流动。该地区年降水量200~700 mm,月平均降水量24~51 mm,属于大陆性高山气候,受东亚季风、高原季风和西风影响。不同海拔对气候影响显著,山区年平均气温低于6℃,随海拔升高而降低。相对湿度随海拔增加而增加,反映了多种水汽来源的影响。图1 西北地区北麓的位置,(a)研究区采样点位置,图(a)左上:研究区水分来源(箭头大小表示重要性);(b)山区采样点位置;(c)祁连山北坡降水量与气温月平均变化。来自西北师范大学的研究团队在祁连山北坡6个采样点共采集降水样品863个,其中雪样出现在冬季(1月、2月、12月),雨样出现在3月至11月,采样期间共采集雪样61个、雨样802个(表1)。在研究区5个采样点共采集地表水(河水)样品372个,在研究区5个采样点共采集植物水样品92个,采样时间为2016年10月至2020年9月。每次降水事件后,用雨量计采集降雨样品并立即放入50 ml聚乙烯采样瓶中,同时记录降水量,最后用封口膜盖紧封口并冷藏保存。地表水样品每次采集后也立即密封冷藏。同时利用自动气象观测仪器记录气温、降水、相对湿度、大气压等气象要素。分析时,植物水由LI-2100 全自动真空冷凝抽提系统(北京理加联合科技有限公司)提取。δ2H和δ18O测定在西北师范大学同位素实验室进行,每个水样和同位素标准样品连续进样6次。表1 采样点基本信息 通过对2016年10月至2020年9月降水稳定同位素分析,确定祁连山水线(LMWL)为:δ² H = (7.78±0.05)δ¹ ⁸ O+ (10.97±0.52) (R² =0.97, n=863, p图5 气象水文过程对祁连山北坡降水稳定同位素海拔效应的影响。(a)降水稳定同位素海拔效应的月变化,图中连线表示海拔梯度及误差的月变化。(b)降水中循环水比例及相对湿度的月变化。(c)降水量和气温的月平均变化。(d)雨滴蒸发残留率的月变化。石羊河上游位于青藏高原北部的祁连山北坡,降水除受当地气象水文过程影响外,还受到平流水汽的影响。祁连山北坡当地大气降水线(LMWL)为:δ2H =(7.78±0.05)δ18O +(10.97±0.52)(R2 = 0.97,n = 863,p 0.05),表明夏半年当地大气降水线的斜率小于冬半年。祁连山北坡降水稳定同位素的海拔效应在各季节的变化顺序为冬季秋季春季夏季,表明海拔效应受当地气象水文过程的显著影响。研究区水汽主要来源于四个方向:西部、东北部、东南部和高原南部。来自东北和东南方向的水分具有较短的传输路径和较慢的速度,而来自西北和西南方向的水分具有较长的迁移路径和较快的速度。降水中稳定同位素的海拔效应变化在很大程度上取决于水分方向和气团特征,表现为四种不同的情况:1、平流水分垂直于山脉,气团迁移速度较慢,加剧了海拔效应。2、当平流水分(主要来源)与山脉方向平行,气团移动距离长且速度快时,海拔效应变得不那么明显。3、尽管平流水分占主导地位,但相当一部分地表蒸发水会削弱观察到的海拔效应。4、主要来源是平流水分,表现为沿斜坡向下的反向气流,在研究区域引入了反海拔现象。
  • PNAS文献-跨区域走航数据揭示大气污染物‘城市热岛效应’
    PNAS August 10, 2021 118 (32) e2026653118 https://doi.org/10.1073/pnas.2026653118https://www.pnas.org/content/118/32/e2026653118除了工业排放,我们所使用的日常生活使用的挥发性化学产品(VCP:volatile chemicalproducts,例如香水、化妆品,洗涤剂等日常家庭用品),也是城区大气挥发性化学污染物的重要来源之一。实际上,已经有文献报道,在美国大城市的城区中,日用VCP所产生的挥发性有机物可以占到光化学前体污染物差不多一半的比重。在本文研究中,科学家利用搭配有TOFWERK PTR-TOF质谱仪的移动实验室在美国和欧洲的多个城市,更加系统性的研究了VCP与交通源以及市区人口密度之间的相互关系。科学家们除了在美国和欧洲各进行了数千公里的走航监测之外,还在纽约市区部署了一台TOFWERK PTR-TOF飞行时间质谱仪进行长期测量,以期获得市区详细的VOCs通量数据。利用走航监测数据,科学家们清楚的展示了在上千公里尺度上,各城市周边区域内人为VOCs浓度呈显著提升,换而言之,大气污染物的‘城市热岛效应’。其中代表性的污染物不仅仅来自于市区常见的交通源(如苯和其他芳香烃)和日用品指标物D5-硅氧烷(常见的护肤品添加剂),同时还有单萜类物质。后者一般来自于植被排放,同时也是日用品中的常规香味添加剂。令人感到意外的是,纽约市区所产生的人为来源单萜类总量与一座同等占地面积的森林相当。最后,基于走航和市区定点监测的VOCs数据,并结合WRF-Chem空气质量模型,科学家们给出了上述日用化学品(VCP)对于城区臭氧生成的贡献比例。众所周知,臭氧在发达国家和国内大型城市中形成的污染事件比例近年来在持续上升。对于业务部门,了解并控制臭氧前体物的来源和它们的贡献比例是精确防控臭氧污染的重要前提。本文中给出的结论是:日用化学品相关VOCs对文中的欧美大城市臭氧贡献比例超过一半!文中使用中的TOFWERK PTR-TOF质谱仪的分析优势如下: 长距离走航检测中的仪器易用性和仪器性能稳定性 对多种物种的半定量能力 集成在仪器内部的自动标零和标定装置,保证了数据高准确率,在多台仪器的相互比较中均表现良好TOFWERK的应用科学家们贡献了本文中欧洲境内的测量数据,同时在国内也积累了一万公里以上的连续走航数据。如果您对TOFWERK仪器在走航检测应用的适用性,和欧洲和国内的走航数据感兴趣,请与我们联系。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制