苯唑草酮

仪器信息网苯唑草酮专题为您整合苯唑草酮相关的最新文章,在苯唑草酮专题,您不仅可以免费浏览苯唑草酮的资讯, 同时您还可以浏览苯唑草酮的相关资料、解决方案,参与社区苯唑草酮话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

苯唑草酮相关的耗材

  • 绿百草科技专业提供分析苯并咪唑杀菌剂的色谱柱Kromasil C18
    绿百草科技专业提供分析苯并咪唑杀菌剂的色谱柱Kromasil C18,货号为100-5-C18 4.0 × 150 关键词:Kromasil C18色谱柱,100-5-C18 4.0 × 150,苯并咪唑杀菌剂,绿百草科技 绿百草科技专业提供Kromasil C18色谱柱。货号为100-5-C18 4.0 × 150的Kromasil C18色谱柱可用来分析苯并咪唑杀菌剂。流动相为甲醇/水=50/50;检测温度是55℃。绿百草科技可提供详细的操作条件和谱图。 需要详细的信息请和绿百草科技联系:010-51659766 登录网站获得更多产品信息: www.greenherbs.com.cn
  • Benson 有机酸分离色谱柱-北京绿百草科技
    Benson 有机酸分离色谱柱-北京绿百草科技 &bull USP L17; BP-OA, 8%交联度的磺化苯乙烯-二乙烯基苯树脂;pH值0-14;应用于电导率检测器、UV检测器和RI检测器; 水或稀酸做流动相 应用:生物液体,饮料,食品,工业化学品和发酵过程 了解更多详情请登陆绿百草网站:www.greenherbs.com.cn,TEL:010-51659766
  • 呋喃唑酮残留 化学发光检测 试剂盒
    【概述】硝基呋喃类药物因有非常好的抗菌作用和药动力学的特性, 曾被广泛应用,作为禽类、水产和猪促生长的添加剂。但在长时 间的实验研究过程中发现,硝基呋喃类药物和代谢物均可以使实 验动物发生癌变和基因突变,正因为如此才导致此类药物禁止在 治疗和饲料中使用。呋喃唑酮在 1995 年被禁用。 由于硝基呋喃类药物在体内很快就能被代谢,而在组织中结 合的代谢产物则能存留较长的一段时间,所以在分析此类药物的 残留时经常要分析其代谢后的产物,管理部门就以检测代谢产物 为手段达到检测硝基呋喃类残留的目的。呋喃唑酮代谢产物 AOZ; 呋喃它酮代谢产物 AMOZ;呋喃妥因代谢产物 AHD;硝基糠腙 (呋喃西林)代谢产物 SEM。【检测原理】 试剂盒采用竞争法进行检测,温育结束后,加磁场沉淀,去 掉上清液,用清洗液清洗沉淀复合物,并吸干废液,除去未与磁 性微粒结合的物质,再将反应杯送入测量室中。仪器自动泵入两 种激发液,使复合物产生化学发光信号,通过光电倍增器测量发 光强度。仪器自动通过工作曲线计算得出检测结果。 【适用范围】 可定性、定量检测组织样品中呋喃唑酮代谢物的残留量。【适用范围】 可定性、定量检测组织样品中呋喃唑酮代谢物的残留量。【试剂盒性能参数】 检测限: 组织——0.1 ?g/kg【检测方法】 1.试剂盒为即用型,不能分开使用。 2.使用本试剂盒前请仔细阅读试剂说明书以及全自动化学发光 免疫分析仪的使用说明书,按照相关要求进行测定操作。试剂使 用时,测定仪会自动搅拌磁性微粒,使其处于悬浮状态,如果想 快速进行检测,上机前请手动摇匀磁性微粒。试剂的相关信息可 以自动读取,一次读取相关信息即存入测定仪器,不需反复读取。 3.定标:通过测定高、低值校准品,将预先定义的主曲线上的每 个定标点调整(重新定标)为一个新的、仪器特异的测量水平, 即工作曲线。 4.定标频率:每天进行一次定标,更换不同批号试剂或者激发液 需要重新定标。 【注意事项】 1.使用前请详细阅读说明书,并将试剂水平摇匀。 2.请按照储存方法保存试剂,避免冷冻,冷冻后的试剂质量会发 生变化,请勿使用。 3.避免试剂接触皮肤、眼睛和粘膜,一旦接触,应立即用清水冲 洗接触部位。4.不同试剂盒中各组分不能互换。 【储存条件及有效期】 1.试剂盒于 2~8℃避光未拆封状态下竖直保存,禁止冷冻。 2.有效期为 12 个月,在 2~8℃环境下保存时,稳定性可持续至所 标示的日期;开瓶后低温避光(2~8℃)可保存 1 个月。

苯唑草酮相关的仪器

  • 左乐恒温油槽 400-860-5168转3950
    左乐恒温油槽GY-3020产品介绍: “左乐”品牌GY系列高温油槽是一款高温加热源,在槽内进行高温实验。适用于化工中试反应,高温蒸馏,半导体工业等。GY系列高温油槽弥补了国内同类产品的不足之处,价格又极大的低于进口产品,是理想的选择。左乐恒温油槽GY-3020主要特征:● 内置最新一代温度控制程序,确保设备运行稳定。● 微机智能控制系统,升温迅速,温度稳定,操作简便。● 水油两用:最高温可达 300℃。● LED双窗口分别数显温度测量值及温度设定值,触摸按键操作方便。● 内置排水阀,人性化设计,方便维护。● 可 【选配】 液晶显示屏,美观大方。● 可 【选配】 冷水循环装置,通入自来水实现体系内部快速降温,适合于高温下放热反应的温度控制。左乐恒温油槽GY-3020技术参数:型号温度范围(℃)温度波动度(℃)工作槽开口(mm)槽深度(mm)循环方式槽容积(L)价格(元)GY-300550~3000.1150×180150内循环55280GY-301050~3000.1240×180150内循环106680GY-301550~3000.1240×180200内循环157800GY-3020A50~3000.1310×280150内循环209200GY-3020B50~3000.1240×180300内循环209320GY-302850~3000.1240×180400内循环2815600GY-3030A50~3000.1290×350200内循环3012680GY-3030B50~3000.1310×280230内循环3014300GY-303550~3000.1380×400150内循环3516800GY-304050~3000.1380×400200内循环4018360GY-3050A50~3000.1380×400250内循环5020800GY-3050B50~3000.1310×350300内循环5022360
    留言咨询
  • 左乐恒温水槽油槽SC-6 400-860-5168转3950
    左乐恒温水槽油槽SC-6产品介绍: “左乐”品牌SC系列恒温油槽是针对科研、生物、物理、医药、化工等部门对恒温精度要求较高而研制的低温实验仪器,具有使槽内温度与均匀、智能控温等特点.亦可作为普通温度计及其它温度测量仪表制造中的定标用途。恒温水槽油槽SC-6主要特征:●内置新一代温度控制程序,设备运行稳定。●微机智能控制系统,升温迅速,温度稳定,操作简便。●水油两用:室温~100℃、室温~200℃。●LED双窗口分别数显温度测量值及温度设定值,数显分辨率0.01℃或0.1℃,操作方便。●可内外循环,内循环保证温度均匀恒定,循环泵可把槽内被加热液体外引去加热或恒温机外实验器。●高精度恒温油槽适合于电子检测,化工反应,高温蒸馏,半导体工业等。●人性化设计,方便维护。●可【选配】 液晶显示屏,美观大方。左乐恒温水槽油槽SC-6参数温度范围:室温~99.99℃温度波动度:±0.05℃工作槽容积:240×150×150 mm3槽深度:150 mm循环泵流量:内循环工作槽开口:180×140mm2
    留言咨询
  • 左乐SC-15恒温水槽 400-860-5168转3950
    左乐SC-15恒温水槽产品介绍: “左乐”品牌SC系列恒温油槽是针对科研、生物、物理、医药、化工等部门对恒温精度要求较高而研制的低温实验仪器,具有使槽内温度与均匀、智能控温更精确等特点.亦可作为普通温度计及其它温度测量仪表制造中的定标用途。左乐SC-15恒温水槽主要特征:●内置最新一代温度控制程序,确保设备运行稳定。●微机智能控制系统,升温迅速,温度稳定,操作简便。●水油两用:室温~100℃、室温~200℃。●LED双窗口分别数显温度测量值及温度设定值,数显分辨率0.01℃或0.1℃,触摸按键操作方便。●可内外循环,内循环保证温度均匀恒定,循环泵可把槽内被加热液体外引去加热或恒温机外实验器。●高精度恒温油槽适合于电子检测,化工反应,高温蒸馏,半导体工业等。●内置排水阀,人性化设计,方便维护。●可【选配】 液晶显示屏,美观大方。●可【选配】冷水循环装置,通入自来水实现体系内部快速降温,适合于高温下放热反应的温度控制。左乐SC-15恒温水槽技术参数:型号温度范围(℃)温度波动度(℃)工作槽容积(mm3)槽深度(mm)循环泵流量(L/min)工作槽开口(mm2)价格(元)SC-5A室温~95±0.05240×150×150150内循环180×1401700SC-15室温~100±0.05280×250×2002004235×1602500SC-15A室温~200±0.2280×250×200200内循环235×1604600SC-15B室温~200±0.2280×250×2002004235×1605200SC-25室温~100±0.05280×250×3003004235×1603600SC-25A室温~200±0.2280×250×300300内循环235×1605680SC-30室温~100±0.05400×330×2302306310×2804500SC-30A室温~200±0.2400×330×230230内循环310×2806280ZC-10室温~100±0.1280×190×2002006180×1602400ZC-18Q室温~100±0.05320×275×2002006250×2303700
    留言咨询

苯唑草酮相关的试剂

苯唑草酮相关的方案

苯唑草酮相关的论坛

  • 日本修改异恶唑草酮、甲咪唑烟酸、丁氟消草、腈苯唑等农药部分基准值(2012年)

    下記農薬について、食品中の残留基準を設定・イソキサフルトール(Isoxaflutole,异恶唑草酮,用途:除草剤)・イマザピック(Imazamethapyr,甲基咪草烟; 甲咪唑烟酸,用途:除草剤)※・エタルフルラリン(Ethalfluraline,丁氟消草,用途:除草剤)・フェンブコナゾール(Fenbuconazole,腈苯唑,用途:殺菌剤)・フロニカミド(FLONICAMID,氟啶虫酰胺,用途:殺虫剤)・ぺノキススラム(Penoxsulam,五氟磺草胺,用途:除草剤)・マンジプロパミド(Mandipropamid,双炔酰菌胺,用途:殺菌剤)※今回基準値を設定するイマザピックはイマザピックアンモニウム塩として暫定基準が設定されていたため、イマザピックアンモニウム塩として経過措置を設定しているが、各種試験はイマザピックを用いて実施されていること、海外における基準値はイマザピックの残留量を考慮して設定されていることから、今後は告示においては、イマザピックアンモニウム塩は「イマザピック」とする。・フェンブコナゾール:かき等6食品・フロニカミド:小豆等27食品・ぺノキススラム:ぶどう等5食品・マンジプロパミド:だいこん類(ラディッシュを含む。)の葉等7食品・イソキサフルトール:米(玄米をいう。)等7食品・イマザピック:豚の筋肉等17食品・エタルフルラリン:きゅうり(ガーキンを含む。)等9食品・フロニカミド:羊の筋肉等15食品・イソキサフルトール:とうもろこし等19食品・イマザピック:牛の脂肪等9食品・フェンブコナゾール:みかん等10食品・フロニカミド:クレソン等32食品・マンジプロパミド:はくさい等20食品≪施行・適用期日≫ 平成24年6月14日 ※ただし、下記の農薬等ごとに掲げる食品に係る残留基準値については、  平成24年12月14日から適用。 ◆イソキサフルトール  米、小麦、大麦、ライ麦、とうもろこし、そば、その他の穀類、  その他のスパイス、豚の肝臓、その他の陸棲哺乳類に属する動物の肝臓、  乳、鶏の卵及びその他の家きんの卵 ◆イマザピック  豚の筋肉、豚の脂肪、豚の肝臓、豚の腎臓、豚の食用部分及び乳 ◆エタルフルラリン   きゅうり、かぼちゃ、しろうり、すいか、メロン類果実、まくわうり、  その他のうり科野菜、えだまめ及びべにばなの種子

  • 除草剂:氨唑草酮 介绍

    氨唑草酮(BAY314666)是拜耳公司1988年发现的三唑啉酮类除草剂,1999年在英国布莱顿世界植保大会上推出。氨唑草酮为光合作用抑制剂,敏感植物的典型症状为褪绿、停止生长、组织枯黄直至最终死亡,与其它光合作用的抑制剂(如三嗪类除草剂)有交互抗性,主要通过根系和叶面吸收。具有内吸活性,通过抑制敏感植物的光合作用,干扰正常的电子传递。通常使用三到四周就能产生效果。http://ng1.17img.cn/bbsfiles/images/2017/04/201704222147_01_1623180_3.jpeg氨唑草酮欧洲专利EP0370293,已于2009年11月3日到期;美国专利US5194085,已于2010年5月15日到期。氨唑草酮的适用对象主要为甘蔗、玉米和草坪。它可以有效防治玉米和甘蔗上的主要一年生阔叶杂草和禾本科杂草。在玉米上,氨唑草酮对苘麻、藜、野苋、宾州苍耳和甘薯属等具有优秀防效,此外对甘蔗上的泽漆、甘薯属、车前臂形草和刺蒺藜草等也有很好的防效。甘蔗玉米在我国种植面积较大,因此氨唑草酮在我国的应用市场也比较广阔。氨唑草酮的最大优点是有抗旱和非毒性特性,应用更灵活,能降低工作量,减少整修,降低杀菌剂、杀虫剂和植物生长调节剂的使用。除草时间长,对地下水安全,对后茬作物安全,用量仅为莠去津的1/2—1/3,也因此成为了高毒农药莠去津等的最佳替代产品。与莠去津相比,氨唑草酮原药成本较高。另据业内人士透露,该产品在玉米作物中使用尚存安全性问题,因此目前国内市场上并无氨唑草酮产品的销售。

苯唑草酮相关的资料

苯唑草酮相关的资讯

  • 内有福利!农药界三酮类除草剂领军产品-硝磺草酮实现连续化合成
    6月16日晚7点,由中国农药工业协会和康宁反应器技术有限公司联合举办的“绿色创新合成、分离技术在农药产业转型升级中的应用”技术交流会,将在中国农药工业协会官方微信公众号直播大厅举行。欢迎您关注“康宁反应器技术“公众号点击阅读原文了解详情并报名参会!背景硝磺草酮(通用名:mesotrione;商品名:Callisto)是先正达成功开发的HPPD抑制剂类除草剂中的领军产品。硝磺草酮结构式硝磺草酮的常规合成方法是1,3-环己二酮和2-硝基-4-甲磺酰苯甲酰氯酯化后再重排反应制得。前人对该合成工艺做了很多优化工作,但大都是基于釜式基础上的改进。浙江工业大学的研究人员基于前人的研究基础上成功地开发了全连续酯化-重排合成硝磺草酮的工艺,并实现了丙酮氰醇的无害化处理,总收率为90.5% ,纯度 99% 。该工艺实现了多步安全连续化反应,提高了酯化反应速度(20s vs.釜式3h)和总收率(较釜式提高3.9%)。本文将为您简单介绍相关内容。研究过程一. 从反应机理出发,分解研究内容从下图的反应机理可以推测:初始物料1,3-环己二酮经历酯化、重排后得到最终产物。图1. 反应机理作者重现了釜式工艺,也验证并认可上述反应机理。基于此,研究人员分步研究了酯化反应和重排反应连续化的可行性。二. 溶剂研究前人研究的釜式工艺中,大多溶剂不能完全溶解反应物或中间体。为了避免由于体系存在固体堵塞反应通道,作者首先对溶剂做了优化,重点研究了烯醇酯在各种溶剂中的溶解度以及不同溶剂对重排反应的效果和影响。经研究发现烯醇酯在乙腈中的溶解较高,且乙腈条件下酯化和重排的分离产率较高,因此选择乙腈作为连续流反应溶剂。三. 酯化反应连续化研究1. 酯化反应阶段釜式工艺问题:不安全,反应放热剧烈,有安全风险;时间长,反应物未完全溶解在溶剂中,且需要缓慢加入三乙胺,反应时间长(3 h);副反应,反应过程中产生不稳定中间体,易发生副反应;收率低,反应物转化率、收率较低。2. 连续流工艺,非常适合中间体不稳定的反应,具有以下优势:反应安全,传热效率提高,可以迅速移走反应过程中的热量,提高反应安全性;时间变短,精准控制物料,物料混合效率高,反应时间可大大缩短;减少副反应,可以精确控制反应温度,减少或消除副反应;收率提高,通过优化反应条件,使反应完全高效,提高收率。3. 连续酯化工艺流程图2.酯化连续流工艺如上图作者将2-硝基-4-甲磺酰苯甲酰氯溶解在乙腈中配成一股物料,在乙腈中加入1,3- 环己二酮和三乙胺配成另外一股物料,进行预冷/预热后,通过一个三通混合,注入管式反应器。在水浴中进行延迟循环后,将反应液收集在 -20 °C 的预冷容器中,用过量的乙腈搅拌淬灭反应。作者优化了反应条件,发现在酯化反应中停留时间是影响收率的关键因素,时间过长产物发生副反应的可能性增大,三乙胺需要过量。最终确定了反应温度为20℃,反应时间20 s。分离收率99%,纯度98.6%。四. 重排反应连续流工艺的研究1. 重排反应阶段釜式工艺的主要问题是酯化反应产物烯醇酯易发生副反应,由于釜式工艺温度很难精准控制导致副反应的发生。2. 连续流工艺可以精确控制反应条件,最大程度上减少副反应的发生。并且其相对密封的反应体系也有助于解决当前工业生产中的毒性试剂接触性安全问题。3. 连续重排反应工艺流程图3.重排连续流工艺如上图作者将烯醇酯、乙腈溶液和乙腈、三乙胺、丙酮氰醇溶液,经过管道进行预冷/预热后,通过T形接头注入管式反应器。在水浴中经过延迟反应,将反应液收集到-20 °C 的预冷容器中,用过量的乙腈搅拌淬灭反应。作者同样做了条件的优化,该重排过程中反应温度对收率的影响较大,最终选择反应温度为25 °C,停留时间为252min,收率为91.3% ,纯度为99.3% 五. 全连续工艺图4.全连续流程如图4所示,为了充分发挥连续流动反应的技术优势,研究人员设计了全连续流动酯化重排制备硝磺草酮的工艺。由于丙酮氰醇有毒性,需要进行处理以降低对环境的影响。研究者参考文献选用次氯酸钠和丙酮氰醇反应。次氯酸钠溶液,经预冷/预热管道泵入带有反应混合物的管式反应器,40 °C下反应30min。酯化-重排和丙酮氰醇淬灭3步反应温度分别为20 °C、25 °C 和40 °C,停留时间分别为20s,252min,30min。表1.釜式工艺和连续流工艺对比综上采用连续流工艺发现:酯化反应时间和总反应时间显著减少。纯度和分离收率都有所提高。此外,还增加了丙酮氰醇的无害化处理。研究结果研究人员开发了一种连续合成硝磺草酮的新工艺;该方法提高了反应效率,减少了酯化后处理操作,降低了成本,减少了连续流工艺中重排副产物;此外,采用连续流工艺可以强化传热,避免操作人员过多接触丙酮氰醇,提高了工艺安全性;该工艺酯化收率为99% ,重排反应收率为91.3% ,纯度分别为98.6% 和99.3% 。酯化连续重排合成硝磺草酮的分离收率为90.5% ,纯度 99%。参考文献:Journal of Flow Chemistry 12, 197–205 (2022)编者语全连续合成一直是近几年农药先进工艺研究非常热门的话题,但是实现全连续的工业化生产的例子却凤毛麟角。康宁反应器无缝放大的特性有利于连续化生产的快速实现。同时连续化生产技术是一项综合的科学技术,离不开连续化合成、分离、提纯等生产工艺技术、PAT分析技术、专业技术培训等各个方面的进步与发展。更离不开企业在相关技术的投入与支持。为了让更多的农药企业了解连续合成工艺和分离技术的应用与进展,6月16日晚7点我们特邀浙江工业大学化学工程设计研究所所长姚克俭教授与康宁AFR项目经理周太炎先生,在线畅谈农药绿色工艺研究和自动化分离技术等话题!欢迎您点击阅读原文或拨打400-812-1766联系康宁反应器技术了解详情。
  • 噻苯达唑化学发光检测新方法开发方案
    噻苯达唑化学发光检测新方法开发方案一、实验目的旨在开发一种利用钴修饰黑磷纳米片(Co@BPNs)激活高铁酸盐(VI)高级氧化过程(AOP)的化学发光(CL)检测平台,以实现对噻苯达唑(TBZ)的高效、灵敏、选择性检测。通过生成高产率的活性氧(ROS),该系统能够有效分解TBZ,并产生强烈的CL信号,从而实现环境样品中TBZ的检测。二、实验使用的仪器设备和耗材试剂1. 仪器设备(1). 超微弱化学发光分析仪:BPCL-2-TGG(2). 透射电子显微镜(3). 荧光光谱仪(4). X射线光电子能谱仪(5). X射线衍射仪(6). 拉曼光谱仪(7). 电子顺磁共振光谱仪(8). 紫外-可见分光光度计(9). 红外光谱仪(10). 核磁共振波谱仪(11). Zeta电位仪(12). 高效液相色谱-飞行时间质谱仪2. 耗材试剂(1). 红磷、碘、锡(2). 氯化钴、乙醇、N-甲基-2-吡咯烷酮(NMP)(3). 硝基四氮唑蓝氯化物(NBT)、1,3-二苯基异苯并呋喃(DPBF)(4). 对苯醌(PBQ)、氢氧化钠(NaOH)、硫脲、L-组氨酸(L-His)、抗坏血酸(AA)。三、实验过程1. Co@BPNs的制备(1). 材料准备:将2 mL NMP试剂和10 mg块状BP研磨成均匀粉末,转移到150 mL圆底烧瓶中。加入5 mg氯化钴和98 mL NMP,超声处理20分钟,形成表面均匀分布的Co-BP块状材料。(2). 氮气通入:向溶液中通入氮气30分钟,以去除氧气。(3). 微波加热反应:加入100 mg NaOH,进行微波加热反应(1小时,140°C,375 W)。(4). 冷却和离心:自然冷却后,离心收集上层悬浮液,进一步离心得到Co@BPNs沉淀,真空干燥后储存。2. 化学发光实验(1). CL反应系统:在石英池中加入800 μL Co@BPNs溶液(0.05 mg/mL)和TBZ溶液(0.01 mg/mL),然后注入200 μL FeO4² ⁻ 溶液(10⁻ ³ mol/L)触发CL反应。(2). 数据记录:记录CL发射,PMT电压为0.8 kV,数据采集间隔为0.01秒,实验温度为20°C。每个数据点重复测量三次。3. 表征和分析(1). 结构表征:通过TEM、HRTEM、XRD、拉曼光谱、EDS、XPS和FT-IR等手段对Co@BPNs的结构和组成进行表征。(2). ROS生成研究:使用EPR和化学探针法研究Co@BPNs-FeO4² ⁻ 体系中ROS的生成。(3). CL响应评估:通过CL强度-时间曲线和线性关系图评估TBZ浓度对CL响应的影响。(4). 抗干扰能力评估:考察不同阳离子、阴离子和农药对CL信号的干扰。四、实验结果与讨论1. Co@BPNs的表征(1). TEM和HRTEM表征:TEM图像显示,Co@BPNs呈层状形态,分布均匀,尺寸约为17 nm(图1A)。HRTEM图像表明,Co@BPNs具有高度晶体结构,晶格间距为0.334和0.256 nm,分别对应于Co氧化物和BP的晶面(图1B)。(2). XRD和拉曼光谱:XRD和拉曼光谱进一步确认了Co@BPNs中钴的存在和分布(图1C, 1D)。(3). XPS和FT-IR分析:XPS和FT-IR分析显示,Co@BPNs表面具有多种氧功能团,这些功能团在CL反应中起重要作用(图1E, 1F, 1G)。图1. (A) Co@BPNs的TEM图像、尺寸分布直方图及钴的分布;(B) Co@BPNs的HRTEM图像;(C) Co@BPNs的XRD图谱;(D) Co@BPNs和未修饰BPNs的拉曼光谱;高分辨率XPS光谱:(E) P 2p峰,(F) Co 2p峰,(G) O 1s峰。2. 化学发光特性(1). CL光谱:Co@BPNs-FeO4² ⁻ 体系在引入TBZ后CL信号显著增强,表明Co@BPNs和FeO4² ⁻ 对CL发光的协同作用(图2A)。(2). 捕获剂实验:不同捕获剂对Co@BPNs-FeO4² ⁻ 和Co@BPNs-TBZ-FeO4² ⁻ 体系CL强度的影响表明,AA、L-His、EthOH、PBQ、硫脲对CL信号有不同程度的抑制作用(图2B)。(3). ROS生成验证:EPR光谱研究显示,Co@BPNs-TBZ-FeO4² ⁻ 体系中生成了大量1O2(图2C)。化学捕获实验表明,DPBF在Co@BPNs-FeO4² ⁻ 体系和Co@BPNs-TBZ-FeO4² ⁻ 体系中吸收光谱变化显著(图2D)。(4). 结构变化研究:1H NMR和FT-IR光谱分析显示,TBZ在加入Co@BPNs前后的结构变化明显(图2E, 2F)。图4. (A) Co@BPNs-TBZ-FeO4² ⁻ 体系的化学发光光谱。 (B) 不同捕获剂(AA、L-His、EthOH、PBQ、硫脲)对Co@BPNs-FeO4² ⁻ 和Co@BPNs-TBZ-FeO4² ⁻ 体系化学发光强度的影响。 (C) Co@BPNs-TBZ-FeO4² ⁻ 体系中1O2生成的EPR光谱研究。 (D) 1O2的化学捕获测定:410 nm处DPBF的紫外吸收光谱以及在Co@BPNs-FeO4² ⁻ 体系和Co@BPNs-TBZ-FeO4² ⁻ 体系中的DPBF吸收光谱。 (E) 加入Co@BPNs前后的TBZ的1H NMR光谱。 (F) 加入Co@BPNs前后的TBZ的FTIR光谱。3. 方法性能评估不同浓度TBZ下Co@BPNs-TBZ-FeO4² ⁻ 体系的CL强度-时间曲线显示,TBZ浓度越高,CL信号越强(图3A)。在1.43 × 10⁻ ³ -1.43 μg/mL范围内,CL强度与TBZ浓度的线性关系良好(图2B)。多种阳离子、阴离子和其他农药对Co@BPNs-TBZ-FeO4² ⁻ 体系的CL响应几乎没有干扰,表明该体系具有良好的选择性和抗干扰能力(图5C)。图3. (A) 不同浓度TBZ下Co@BPNs-TBZ-FeO42&minus 体系的化学发光强度-时间曲线。(B) 在1.43 × 10&minus 3-1.43 μg/mL范围内,化学发光强度与TBZ浓度之间的线性关系。(C) 各种阳离子、阴离子和农药(浓度分别为10&minus 5 M, 10&minus 5 M 和10&minus 4 mg/mL)对Co@BPNs-TBZ-FeO4² ⁻ 体系化学发光强度的响应。五、结论本方案开发的基于Co@BPNs激活高铁酸盐(VI)的化学发光检测方法,可实现噻苯达唑的高效、灵敏、选择性检测。该平台通过生成高产率的活性氧,选择性氧化TBZ,产生强CL信号。实验结果表明,该方法具有良好的抗干扰能力和高检测灵敏度,在环境样品中噻苯达唑的检测中具有广泛应用前景。*因学识有限,难免有所疏漏和谬误,恳请批评指正*资料出处:免责声明:1.本文所有内容仅供行业学习交流,不构成任何建议,无商业用途。2.我们尊重原创和版权,如有疏忽误引用您的版权内容,请及时联系,我们将在第一时间侵删处理!
  • Aliben发布Aliben-TF-2030烟草探测质谱仪新品
    Aliben-TF-2030烟草探测质谱仪我司的车载式质谱仪采用适用工业现场和野外使用的坚固仪器外壳,整体重量小于45公斤。具有优异的灵敏度和测量精度,适用于烟草特定目标物质的动态在线检测。仪器可匹配不同的采样装置,满足大部分日常测试需求。仪器配有分析软件可以快速采集数据。1、技术规格1)电源:90-250 VAC,50/60 Hz, 2、技术特点1)满足车载使用,具备一定的抗震能力2)分析速度快3)可以用一台仪器测量数百种气体并实现同时测量。4)适于各种工业和野外现场使用5)可以测量从ppb到%的全部浓度范围6)多种进样口和进样方式可供选择7)具有适用于烟草霉变状态的判别模型,可用于烟草霉变状态的快速直接判定8)可用于紧密堆积的烟草直接探测3、本产品(Aliben-TF-2030烟草探测质谱仪)属于特定行业产品,目前只接受定制,价格根据客户定制要求在一定范围内浮动,具体详情请咨询: 成都艾立本科技有限公司 地 址:四川省成都市彭州工业开发区五贤路453号4栋1-2层 电 话:028-83821196 传 真:028-83821196 邮 箱:yang@aliben.cn 网 址:http://www.aliben.cn/创新点:我司的车载式质谱仪采用适用工业现场和野外使用的坚固仪器外壳,整体重量小于45公斤。具有优异的灵敏度和测量精度,适用于烟草特定目标物质的动态在线检测。仪器可匹配不同的采样装置,满足大部分日常测试需求。仪器配有分析软件可以快速采集数据。 Aliben-TF-2030烟草探测质谱仪
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制