铵离子

仪器信息网铵离子专题为您整合铵离子相关的最新文章,在铵离子专题,您不仅可以免费浏览铵离子的资讯, 同时您还可以浏览铵离子的相关资料、解决方案,参与社区铵离子话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

铵离子相关的耗材

  • 德国MN 铵离子检测试纸 91315
    铵检测试纸 铵离子测定条 德国原装进口MN91315检测范围:0-10-25-50-100-200-400mg/l检测参数:铵离子产品型号:91315 产品产地:德国包装规格:100条/盒+试剂有效期:2年半 包装清单: 1个装100根测试条的铝筒2 瓶 铵-1 1 个有 5 ml 刻度线的测试管 安全警示:铵-1 包含 28% 氢氧化钠溶液。可引起灼伤。勿让儿童触及,不慎接触眼睛,立即用大量水冲洗并做医学处理。穿防护服,防护手套,防护眼罩。若感不适,立即就医。每根测试条含3.5 mg 汞碘化钾。接触皮肤有强毒。 应用方法: 1. 用待测样品清洗测试管,并加待测样品至刻度处。 2. 加10滴 铵-1 (氢氧化钠溶液)小心摇动,混匀。 3. 取测试所需数目测试条,用后立即盖紧盖子,不要触及测试条的测试区域。4. 将测试条浸入准备好的待测液中5秒,比较颜色,有铵存在时变棕色。 未用测试条呈黄色属正常,并不表明测试条上试剂已变质。依特定方法处理用过的测试条(有毒废物处置法) 干扰: 用于测试物体表面,饮用水,工业废水中铵。测试对象无太高的硬度(钙,镁),铁或硫化物。保存: 储存:避光防潮,30° C以下干燥保存。
  • 万通 铵/氨离子选择电极套件 | 6.1255.000
    用于 NH 选择性电极 6.0506.100 的备用模块套件 (铵/氨离子选择电极套件)订货号:6.1255.000规格型号:Replacement Kit for NH3-selective Electrode组成部分:备用膜组件(3 个)、测量电解质溶液(50 mL)
  • 德国MN试纸,货号铵氮测试条/铵粒子检测试纸
    产品编号:91315产品名称:铵测试条/铵粒子测试条/铵氮测试纸/氨氮测试纸包装清单: 1个装100根测试条的铝筒2 瓶 铵-1 1 个有 5 ml 刻度线的测试管 安全警示:铵-1 包含 28% 氢氧化钠溶液。可引起灼伤。勿让儿童触及,不慎接触眼睛,立即用大量水冲洗并做医学处理。穿防护服,防护手套,防护眼罩。若感不适,立即就医。每根测试条含3.5 mg 汞碘化钾。接触皮肤有强毒。 应用方法: 1. 用待测样品清洗测试管,并加待测样品至刻度处。 2. 加10滴 铵-1 (氢氧化钠溶液)小心摇动,混匀。 3. 取测试所需数目测试条,用后立即盖紧盖子,不要触及测试条的测试区域。4. 将测试条浸入准备好的待测液中5秒,比较颜色,有铵存在时变棕色。 未用测试条呈黄色属正常,并不表明测试条上试剂已变质。依特定方法处理用过的测试条(有毒废物处置法) 干扰: 用于测试物体表面,饮用水,工业废水中铵。测试对象无太高的硬度(钙,镁),铁或硫化物。 保存: 避光防潮,30° C以下干燥保存。

铵离子相关的仪器

  • 仪器简介:NH4D sc铵离子分析仪使用离子选择电极法测量铵离子,使用pHD参比电极和温度传感器测量钾离子。NH4D sc铵离子传感器使用离子选择电极来直接检测曝气池中的铵根离子来确定氨氮的浓度。为了获得更好的稳定性,可以使用pHD(差分pH)电极做为参比电极。在测量过程中最显著的干扰可能来自钾离子(K+),。NH4D sc铵离子传感器通过使用一体式的钾离子选择电极来修正氨氮的值进行补偿的。使用CARTRICAL技术可以进一步减少干扰。CARTRICAL单独对每个电极进行校准,并且可以在三个传感器之间相互校准。可应用在监测污水处理厂的硝化处理和曝气池以及工业过程水中的NH4-N值。技术参数:量程:0.2~1000 mg/L NH4-N准确度:测量值的5% ± 0.2 mg/L (有标准溶液)检测限:0.2 mg/L响应时间:不到2分钟 (T90)样品温度:0 ~ 40° C (32 ~ 104° F)样品:pH 5 ~ 9传感器的浸没深度:最大为0.3~3.0 m (1~10 ft.)样品压力:最大为0.3 bar (4.4 psi)存储温度:传感器: -20 ~ 60° C (-4 ~ 140° F)传感器柱体: 5 ~ 40° C (41 ~104° F)校准:传感器柱体, 经过校准 (传感器的代码中含有代码形式的出厂校准)认证:符合CE传感器的结构:316不锈钢,两端为Ryton® 尺寸:48 x 361 mm (1.9 x 14.2 in.)电缆长度:标准长度: 10 m (33 ft.)重量:1.3 kg (2.9 lbs.)保修期:2 年主要特点:传感器可以对钾离子引起的干扰进行动态的补偿。传感器可以对温度进行动态的补偿。简单的内置矩阵校正。可选配的清洗装置,降低维护量。现场无需制备样品可以与sc 控制器平台连接
    留言咨询
  • 离子选择性电极(ISE)简介Thermo Scientific Orion 是全球研制出第一支离子电极 - 钙离子电极的制造商,公司发展40 年来已开发30 多种具有专利技术的离子电极,为众多行业广泛使用,成为同业中最著名的离子电极制造商。Orion 的许多离子电极分析方法已被众多国家的政府组织列为相关行业中的标准方法,例如:牙膏中氟化物的测定(国家牙膏标准GB 8372-2008)。当今采用离子电极从事物质研究分析的科研机构中有70%以上使用的都是Thermo Scientific Orion 离子电极,Thermo Scientific Orion 离子电极是您进行离子分析最可信赖的首选品牌。离子测量常识离子测量前,要尽可能先查阅相关的技术文献,选择正确的离子测量方法和离子浓度测量仪与电极由于各种溶液的成份不一样,离子价态也不一样,其温度系数也不一样,故分析仪要做到对任何溶液都做出温度补偿那是办不到的,在进行离子浓度的精确测量时,需要将离子标准液和样品温度调节到同一温度离子浓度的测量,需要配合相应的离子强度调节剂和标准液离子选择性电极(ISE)测量方法直接测量法用于测量大量样品。仅需一台仪表即可测量所有样品。先用一系列标准液对电极进行校正,再通过样品与标准液中电极电位的比较测出样品中的离子浓度。所有溶液中均需添加离子强度调节剂,保证样品和标准液具有相同的离子强度。已知加量法通常用于测量固体溶解样品、高粘度样品、小体积或高浓度样品,可减小样品因为背景复杂或温度变化对测量造成的影响,但不适合测量稀释的或低浓度的样品。当存在复杂络合物时,也可测量某种离子的总浓度。Orion仪表具有已知加量法曲线,可以直接计算结果。减量法用于测量无离子选择电极可用的离子的浓度。将电极浸入能与样品反应的标准液中,且标准液中含有电极能响应的离子。该法适合测量小体积的样品、稳定标准液不易获得的样品、粘稠或高浓度样品。该法不适合测量稀释低浓度的样品,同时必须知道标准液与样品之间的反应系数。滴定法一种定量分析技术,是在测量过程中不断加入滴定剂与样品中待测离子进行反应,通过电极确定滴定终点。由于此法不受浊度或色度的影响,所以测量结果比直接测量的结果精度高10倍,但这种方法较耗时。离子选择电极(ISE)的应用方案离子选择性电极是一种简单、迅速、能用于有色和混浊溶液的非破坏性分析工具,一般不需进行化学分离,不要求复杂的仪器,可以分辨不同离子的存在形式,能测量少到几微升的样品,所以十分适用于野外分析和现场自动连续监测。与其他分析方法相比,它在阴离子分析方面特别具有竞争能力。电极对活度产生响应这一点也有特殊意义,使它不但可用作络合物化学和动力学的研究工具,而且通过电极的微型化已被用于直接观察体液甚至细胞内某些重要离子的活度变化。离子选择性电极的分析对象十分广泛,它已成功地应用于环境监测、水质和土壤分析、临床化验、海洋考察、工业流程控制以及地质、冶金、农业、食品和药物分析等领域。地表水电导率测量溶解氧(DO)测量铵离子(NH4+)测量氟离子(F-)测量氧化还原电位(ORP)测量氰根离子(CN-)测量银/ 硫离子(Ag+/S2-)测量硝酸根离子(NO3-)测量铜离子(Cu2+)测量盐度测量食品饮料牛奶碘离子(I-)测量牛奶氯离子(Cl-)测量婴儿配方奶粉奶酪罐头食品葡萄酒/ 啤酒牛奶钾离子(K+)测量葡萄酒/啤酒果汁葡萄酒/ 啤酒氨气(NH3)测量果汁牛奶钙离子(Ca2+)测量果汁葡萄酒/ 啤酒二氧化碳(CO2)测量碳酸饮料碳酸饮料钠离子(Na+ )测量罐头食品薯片葡萄酒/ 啤酒溶解氧(DO)测量零食食品盐份含量的测量(以NaCl 计)婴儿食品硝酸根离子(NO3-)测量土豆其他化肥硝酸根离子(NO3-)测量石灰岩反应堆冷却剂硼离子(BF4-)测量香烟氰根离子(CN-)测量化肥钾离子(K+)测量长石长石钠离子(Na+)测量纸浆液木屑银/ 硫离子(Ag+/S2-)测量纸浆液空气和烟气氨气(NH3)测量空气和烟气氟离子(F-)测量空气颗粒硝酸根离子(NO3-)测量废水及污水氧化还原电位(ORP)测量生物耗氧量(BOD)测量铵离子(NH4+)测量硫离子(S2-)测量硝酸根离子(NO3-)测量残余氯(Cl2)测量氰根离子(CN-)测量海水/ 盐溶液pH/ 溶解氧(DO)测量氰根离子(CN-)测量土壤溶液pH 测量氯离子(Cl-)测量钾离子(K+)测量溴离子(Br-)测量硝酸根离子(NO3-)测量医药美国药典标准大输液电导率测量非处方(O.T.C)消毒液碘离子(I-)测量日化蔗糖生产钙离子(Ca2+)测量吸水纤维/ 卫生巾钠离子(Na+)测量牙膏 / 牙线氟离子(F-)测量口腔清洁液/ 漱口水隐性眼镜保护液盐度测量生物植物组织氰根离子(CN-)测量溴离子(Br-)测量钠离子(Na+)测量碘离子(I-)测量细菌培养二氧化碳(CO2)测量饲料和植物生物样品氨气(NH3)测量养鱼池血浆生物体液的尿素半导体与电镀酸性电镀液铜离子(Cu2+)测量半导体工业用的硅元素半导体工业用的硅元素硼离子(BF4-)测量酸性铜电镀液氯离子(Cl-)测量氟硼酸盐电镀槽镉离子(Cd2+)测量电镀液氰根离子(CN-)测量氰电镀液银/ 硫离子(Ag+/S2-)测量酸洗电镀液硝酸根离子(NO3-)测量离子种类电极型号测量范围温度范围填充液标准液离子强度调节剂固体膜半电池离子电极SCN-(硫氰根)**9458BN258100 - 0.29 ppm0 -50℃900002(内)900003(外)参阅电极手册940011塑料膜半电池离子电极BF4-(氟硼酸)**9305BN286800 - 0.6 ppm0 -40℃900002(内)稀释的930711(外)参阅电极手册930711表面活性剂电极**9342BN2滴定终点显示0 -40℃900002(内)810007(外)6542010.5 M季铵盐滴定剂654203NH4+**(铵)931801817000 - 0.01 ppm0 -50℃900002(内)900018(外)951007 1000ppm N--ClO4-**(高氯酸)938101899500 - 0.7 ppm0 -40℃900002(内)稀释的930711(外)参阅电极手册930711高性能气敏电极NH3(氨)9512HPBNWP117000 - 0.01 ppm0 -50℃951209951006 0.1MNH4Cl951011气敏电极NH3(氨)9512BNWP117000 - 0.01 ppm0 -50℃951202951006 0.1 M NH4Cl951211CO2(二氧化碳)9502BNWP1440 - 4.4 ppm0 -50℃9502029502071000 ppm CaCO3950210ionplus® 塑料膜复合离子电极Ca2+(钙)9720BNWP140100 - 0.02 ppm0 -40℃900061923206100 ppm CaCO3932011NO3-(硝酸根)9707BNWP114000 - 0.1 ppm as N0 -40℃900046930707 100ppmN930711K+(钾)9719BNWP139000 - 0.04 ppm0 -40℃900065921906 0.1MKCl931911ionplus® 固体膜复合离子电极Br-(溴)9635BNWP179900 - 0.40 ppm0 -80℃900063943506 0.1 M NaBr940011Cd2+(镉)9648BNWP111200 - 0.01 ppm0 -80℃900061参阅电极手册940011Cl-(氯)9617BNWP135500 - 1.8 ppm0 -80℃900062941707 100 ppm Cl-940011Cl2(氯气)9770BNWP120 - 0.01 ppm0 -50℃不需要977007100 ppm Cl2977010 碘试剂977011 酸试剂Cu2+(铜)9629BNWP16350 - 6.4×10-4 ppm0 -80℃900063942906 0.1 M Cu(NO3)2940011CN-(氰)9606BNWP1260 - 0.2 ppm0 -80℃900062参阅电极手册951011F-(氟)9609BNWP1饱和到0.02 ppm0 -80℃900061940907 100 ppm F-940909I-(碘)9653BNWP1127000 - 5×10-3 ppm0 -80℃900063945306 0.1 M Nal940011Pb2+(铅)9682BNWP120700 - 0.2 ppm0 -80℃900062948206 0.1 M Pb(CIO4)2参阅电极手册Ag+/ S2-(银/ 硫)9616BNWP1Ag+ : 107900 - 0.01 ppmS2- : 32100 - 0.003 ppm0 - 80℃900062(Ag+/S2-)900067(Ag+)900061(S2-)参阅电极手册Ag+ : 940011S2- : 941609ROSS® 复合钠离子电极Na+(钠)8611BNWP1饱和到0.02 ppm0 -100℃900010841108 1000ppm Na+941107 100 ppm Na+841111低钠离子电极Na+(低浓度钠)8411BN800500U 参比电极饱和到5 ppb(可搭配流通池测量纯水至更低浓度范围,欲了解详情请联系我们)0 - 100℃900012941107 100 ppm Na+941105 10 ppm Na+841111注 释1). BNC 防水接口 2). BNC 接口 * 需与900100 参比电极配合使用 ** 需与900200 参比电极配合使用 8). 只有电极膜套,需要与93 系列电极杆配合使用(9300BNWP)
    留言咨询
  • 简介 XAT-200系列过程自动监测仪是利用滴定法、比色法等对工艺流程中的目标成分进行定量分析的装置。通过内置微电脑可以对样品进行全自动稀释、滴定、比色等分析操作。测量单元模块可以任意组合,满足不同领域的各种需要。/sites/default/files/%E4%B9%B3%E5%88%B6%E5%93%81.pdfXAT-200-Fe用于铁离子测定,测量方法采用TPTZ吸光光度法。典型应用工业过程水中铁离子含量的连续监测,自来水地表水铁离子的连续监测特点 ●一体化设计,简化管线连接●模块单元设计,结构灵活,可自由组合●TPTZ吸光光度法●触摸屏显示,直观简单的操作方式●内置CF卡,强大数据处理功能,可自动备份●自诊断警报功能●数据存储,自动备份功能●自动稀释,自动清洗功能检测原理 采用TPTZ法,将定量水样导入反应槽,加入盐酸反应并加热,粒子状铁以及胶态铁在高温高压条件下完全分解,待冷却后加入氯化羟铵、醋酸铵和TPTZ试剂,铁和显色试剂TPTZ反应使水样呈淡蓝色。测量595nm波长下的吸光度,计算铁的浓度值。技术参数测量范围:0~0.5mg/L测量通道:1通道准 确 度:±5%FS重 复 性:±5%FS 以内测量周期:60 ~ 999min一次 (可任意设定)样品条件: 样品消耗量:约50mL/1次 样品温度:10~40℃ PH:5~9 SS:小于20mg/L 颗粒直径:小于20μm清洗?稀释水:压力:0.05~0.15 MPa 流速:0.2~1L/min 温度:15~35℃ 水质:去离子水 (用小于0.1mS/m的纯水) 消耗量:约850mL/1次载 气:压力:0.4~0.7MPa 消耗量:10NL/min 温度:10~40℃ 无油,无尘,无冷凝排 水:pH约为1 开放的大气环境,无向上坡度。 反应后残余试剂、液体、清洗水等,请做适当处理后排放。模拟输出:DC 4~20mA (1路)负载:600Ω打印输出:热敏打印机触电信号输出:仪器报警信号,测量值异常信号,电源切断信号触点容量:DC 24V 1A AC 125V 0.3A 运行模式:自动检测,手动操作显示及按键:触摸屏式涂 装 色:Mussel N8.5电 源:AC 220V±10% 50/60Hz能 耗:约800VA重 量:约120kg 环境条件:温度:10~40℃湿度:80%RH以下,无冷凝周围无腐蚀性气体安装环境:室内安装
    留言咨询

铵离子相关的方案

  • 水泥铵离子测定仪粉灰中铵离子含量测定方法
    根据国家标准GBT39701-2020《粉煤灰中铵离子含量的限值及检验方法》中的蒸滴定法研发的一种仪器是测定粉灰中铵离子含量的必被仪器。本仪器的测定原理是通过蒸馏装置,将粉煤灰中的氨气用硫酸溶液吸收,然后用甲基红亚甲基蓝混合指示剂,氢氧化钠标准滴定溶液滴定,从而计算出粉煤灰中的铵离子含量。
  • 离子色谱法测定草铵磷中的氯离子和硫酸盐
    草铵膦为两性离子,但酸性明显强于碱性,若不进行前处理,则草铵膦亦可在抑制电导中检出。本方法使用阳离子交换树脂将草铵膦保留,待测阴离子进入溶液进行测定。
  • 离子色谱一非抑制电导法同时测定铵盐、四乙基铵、甲基三乙基铵
    建立了离子色谱非抑制电导法同B,l分离测定铵根与两种季铵盐四乙基铵、甲基三乙基铵的方法。分别实验了在亲水性和疏水性阳离子交换色谱柱上三种铵类的分离效果,研究了使用不同淋洗液和流速情况下离子的分离情况,结果表明使用sH Ca1i。n101型疏水性阳离子色谱柱,淋洗液采用甲烷磺酸(5‘ 0mmo1/I'),其中加人乙腈(7%),于0,8mI'/min的流速条件下,三种铵类物质分离良好,其中结构极为相似的两种季铵盐四乙基铵和甲基三乙基铵分离度达到1,5以上,分离时间短,3种物质在13min内实现完全分离。采用国产离f色谱仪非抑制电导法检测,无需使用抑制器,成本低,操作简便可行。检测结果的灵敏度高,线性范围铵根为0,o~50mg/L,四乙基铵和甲基三乙基铵为5~500mg/I',相关系数均高于0999,相对标准偏差均在3%以内,平均加标回收率在98.5%~101.2%。

铵离子相关的论坛

  • 离子色谱做铵根离子

    我用[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]做铵根离子,ICS-2500,只加水的,阳离子柱,洗脱液浓度用15mM,铵根离子线性只能做到0-2ug/ml,再往上做只能成二次曲线了,我觉得是有问题或者铵就做不高呢?各位有做过铵的大侠你们线性可以做到多少呀?要注意什么呢?希望大侠给予指点,谢谢呀

  • 选择电极测铵根离子

    在做离子选择电极检测水质中铵离子,发现在铵离子浓度为10-4到10-5 mol/L时,两者点位差(30 mV左右)比高浓度(10-3到10-4,10-2到10-3)的要小很多(50 mV)。并且铵离子浓度为10-4到10-5 mol/L时,电位差很不稳定。请问有做过相关领域研究的知道是怎么回事吗?

铵离子相关的资料

铵离子相关的资讯

  • 高纯试剂中杂质检测专题——工业甲醇中铵离子的测定
    01 引言 离子色谱法测定甲醇中铵离子 监测甲醇中铵离子含量在煤基合成甲醇工艺中具有重要作用。在煤基合成甲醇过程中,会产生一系列杂质气体 ,如 CO 、NH3 以及有机硫化物、氮的氧化物、煤焦油等,而铵离子会引起合成过程中的催化剂中毒失效,致催化剂效率严重下降;同时铵离子含量较高时会降低低温甲醇洗脱硫效率、对工艺设备有严重影响。因此,通过控制甲醇中铵离子的含量 ,可以防止催化剂中毒,提高转化率,降低成本。工艺控制中工业用甲醇中铵离子含量不得大于0.05mg/L.制定工业用甲醇中铵离子测定方法,是为工业甲醇的杂质检测提供一个试验方法,对指导甲醇为原料的相关生产过程的检测具有重要意义。目前甲醇中NH4+的测定都是采用离子色谱法,2022年3月1日开始实施国标《工业用甲醇中铵离子的测定离子色谱法》,下面小编分享下甲醇中NH4测定的离子色谱法。02 相关标准 GB/T 40395-2021《工业用甲醇中铵离子的测定离子色谱法》03 皖仪科技应对方案 皖仪仪器设备 试剂耗材 甲醇:色谱纯;铵根离子:ρ=1000mg/L;一次性注射器(0.5-2mL);有机系针式过滤器(0.22μm) 测试结果 标曲线性测试NH4+标曲重叠谱图NH4+线性说明:由于所有胺类物质一次线性范围均较窄,本次按照标准要求配置的标准曲线系列梯度范围较宽,因此,标准曲线采用二次曲线拟合,本次测试铵离子线性相关系数为R2=0.99996,线性良好。------ 重复性测试 ------ NH4+0.05mg/L连续3针测试谱图NH4+0.2mg/L连续3针测试谱图NH4+2.0mg/L连续3针测试谱图 ------ 重复性结果 ------ 说明:根据谱图及测试结果可见,所有组分定量重复性均小于1%,定性重复性均小于0.2%,测试重复性良好。------ 检出限 ------ 注:标准中规定,在进样体积为50μL下,测定下限为0.01mg/L,本测试以NH4+0.05mg/L进样,考察其峰高,取测试最大噪声,以3倍信噪比对应峰高为检出限。------ 测试结果 ------ 经计算,本次测试 NH4+检出限为 0.434μg/L,小于标准要求的 0.01mg/L。04 总结 结果表明 本文采用离子色谱法,对甲醇中 NH4+进行测定,准确度高,灵敏性好,精密度好,该法可用于甲醇中 NH4+的测定。05 注意事项 — END —扫描二维码 |
  • 中关村材料试验技术联盟立项《多钒酸铵分析方法 第1部分:五氧化二钒含量测定 过硫酸铵氧化硫酸亚铁铵滴定法》等9项团体标准
    经中国材料与试验标准化委员会(以下简称:CSTM标准化委员会)标准化领域委员会审查,CSTM标准化委员会批准(具体标准如下,详细公告内容请至CSTM官网查看),特此公告。序号标准名称标准立项号所属委员会1多钒酸铵分析方法 第1部分:五氧化二钒含量测定 过硫酸铵氧化硫酸亚铁铵滴定法CSTM LX 2000 01429.1—2024FC202多钒酸铵分析方法 第2部分:硅含量测定 电感耦合等离子体原子发射光谱法CSTM LX 2000 01429.2—2024FC203多钒酸铵分析方法 第3部分:铁、磷 硫含量测定 电感耦合等离子体原子发射光谱法CSTM LX 2000 01429.3—2024FC204多钒酸铵分析方法 第4部分:氧化钾、氧化钠含量测定 电感耦合等离子体原子发射光谱法CSTM LX 2000 01429.4—2024FC205多钒酸铵分析方法 第5部分:烧得率的测定 高温煅烧法CSTM LX 2000 01429.5—2024FC206民用大型客机 热固性液体垫片材料 热循环稳定性测试方法CSTM LX 6600 01430—2024FC667泵组碳足迹核算与碳标签评价规范CSTM LX 9500 01431—2024FC958零碳建造评价规范CSTM LX 9500 01432—2024FC959水质 急性毒性现场快速监测 发光细菌法CSTM LX 9803 01433—2024FC98/TC03联系方式如有单位或个人愿意参与该标准项目的工作,请与项目牵头单位联系。CSTM标准化委员会秘书处联系方式联系人:陈鸣,范小芬办公电话:010-62187521手机:13011072266,13426028810邮箱:chenming@ncschina.com,fanxiaofen@ncschina.com通讯地址:北京市海淀区高梁桥斜街13号钢研集团新材料大楼1020邮编:100081
  • 离子色谱与离子选择电极结合的巨大潜力
    环境指标测定河流、湖泊和其他水体中铵离子(NH4+)浓度有两种基本方法。铵离子浓度是一个重要的环境指标,因为高浓度的铵(通常由工业污染或从农田中冲洗出来的过量肥料引起)会导致有毒有害的藻华。第一种选择是使用离子色谱法分析水样,通常与简单的电导检测器结合使用。第二种选择是使用电位测定法分析样品,在电位测定法中,离子选择电极(ISE)上的铵离子产生电压。离子选择电极通常由一个玻璃碳电极组成,该电极覆盖在一个膜上,膜上含有一个优先与特定离子结合的分子,称为离子载体,当遇到该离子时,离子选择电极可以产生电压。正如所料,这两种选择各有优缺点。带有电导检测的离子色谱法快速简便,但不如电位法灵敏,难以测定低浓度的铵离子。但离子选择电极电位滴定法可能会受到水样中其他离子的干扰。尽管离子载体(如无活性菌素)优先与铵离子结合,但它也会对水中的其他离子(尤其是钾离子和钠离子)产生反应,从而导致铵离子浓度的测量不准确。流动池因此,由斯德哥尔摩KTH皇家理工学院的玛丽亚库特罗(Maria Cuartero)领导的瑞典和葡萄牙研究团队决定尝试将这两种选择结合起来。他们希望这种组合型的仪器具有电位滴定法的灵敏度,并能够区分离子色谱法中的不同阳离子。为了将它们结合起来,库特罗和她的同事们创造了一个流动池,其中有三个离子选择电极的空间,然后将其简单地耦合到离子色谱柱上。来自色谱柱的洗脱液首先流经电导检测器,然后流经流动池,在流动池中它可以与离子交换膜相互作用。研究者们自己制作了这个模型。像往常一样,这些离子交换电极是基于玻碳电极,但研究人员用碳纳米管覆盖了这一点,以增强离子电荷向可检测电压的转化。在此基础上,他们涂覆了一种膜混合物,该混合物由聚合物基质、增塑剂、阳离子交换剂和溶解在四氢呋喃中的离子载体组成。最初,库特罗和她的团队将三个相同的离子交换电极插入流动细胞,每个电极都以非活性蛋白作为离子载体。这种设置提供了最可靠的测量,因为可以比较三个离子选择电极的响应。作为组合系统的首次测试,他们尝试使用它来分析一种特殊制备的锂、钾、钠和铵阳离子溶液。除了使他们能够优化各种分离参数外,这些试验还证实,所有四种阳离子都可以通过离子色谱法进行清晰分离,从而可以通过电导检测器和流动池中的离子交换检测器进行检测。多离子测定当溶液中所有阳离子的浓度相同时,它们从电导检测器中产生相似的响应,在得到的色谱图中显示出四个大小相似的峰。但是,由于非活性蛋白对铵离子的反应最好,因此离子交换电极对铵离子的反应比其他阳离子更强,产生的峰值要小得多。然而,离子选择电极仍然检测到了其他阳离子,尤其是钾,这表明如果单独使用流动池,它会高估铵离子浓度。正如研究人员在《ACS测量科学》(ACS Measurement Science Au)的一篇论文中所报告的那样,这些测试也证实了离子选择电极比电导检测器更灵敏,能够检测微摩尔浓度下的铵离子。最后,库特罗和她的团队表明,这种组合与实际水样的效果一样好,离子选择电极能够区分铵离子,并准确测定瑞典、西班牙和葡萄牙10个环境水样中的铵离子浓度。但这可能只是一个开始,因为有多种方法可以改善这种组合。首先,库特罗和她的团队表明,通过简单地插入含有优先与不同离子结合的离子载体的离子,电位流动池可以同时测量多个离子。此外,流动池应该很容易缩小,因为它是基于电极的,可能允许组合系统安装在单个芯片上。作者简介——乔恩埃文斯(Jon Evans)乔恩埃文斯是一位科学作家、编辑和作家。他为《新科学家》、《化学世界》和《今日材料》等出版物撰写了广泛的科学主题。他的最新著作《科学中的伟大思想》(2020)由约翰默里出版社出版。他还是一家名为JES Editical的编辑出版公司的创始人,该公司为科技型公司和组织制作广泛的书面材料,包括杂志、技术简报和新闻稿。JES社论最近出版了一本名为《实验室之谈:分析》的新杂志,刊登了对分析领域鼓舞人心的科学家的采访。符斌 供稿
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制