缺陷检测

仪器信息网缺陷检测专题为您提供2024年最新缺陷检测价格报价、厂家品牌的相关信息, 包括缺陷检测参数、型号等,不管是国产,还是进口品牌的缺陷检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合缺陷检测相关的耗材配件、试剂标物,还有缺陷检测相关的最新资讯、资料,以及缺陷检测相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

缺陷检测相关的仪器

  • 钢研纳克钢管视觉表面缺陷自动检测系统:由高速CCD相机系统、同步成像光源系统、存储及图形分析服务器系统、景深自动调节的检测平台系统及软件等组成,可实现二维+三维表面缺陷连续自动检测、分类评级和记录。可以快速且有效检测裂纹、凹坑、折叠、压痕、结疤等各类缺陷,能够适应于复杂的现代钢铁工业生产环境,能够完美替代目视检测,达到无人化生产的水平。 图1 钢管视觉表检系统 图2 CCD高速相机系统1.特点独特二维+三维成像技术:二维+三维集成成像,不仅能准确检测开口缺陷深度,而且深度很浅的细小缺陷也能有效检测。二维、三维结合技术解决了目前三维检测系统只能检出有一定深度缺陷、无法检测表面深度较浅但危害性较大的缺陷的问题。相机景深自动调整技术:能够对不同规格的工件进行自动调整,实现大景深变化背景下的高清成像。卷积神经网络缺陷算法:基于深度学习的表面缺陷检测算法,能够在复杂背景下有效地减少计算时间快速的采集缺陷特征,具有领先的缺陷检出率及分类准确率。2.主要功能在线缺陷实时检测:系统在线检测折叠、凹坑、裂纹等钢管外表面常见自然缺陷缺陷高速识别:快速分析获取缺陷数量、大小、位置(在长度、宽度方向上位置)、类型等信息,显示宽度缺陷模式缺陷分类统计:可按缺陷种类、长度、深度、位置、面积、等进行分类及合格率统计。实时图像拍照:实时过钢图像以及每根钢管记录的图像的“回放”功能,可进行多个终端显示图像回放。机器自学习:系统检出的缺陷和人工核对后,进行对应缺陷的样本训练,形成机器自学习,提高同类缺陷的识别准确率3.检测效果图3 图软件主界面图4 系统分析界面图5 缺陷样本自动标注常见缺陷 划伤 辊印 结疤 裂纹图6 检测到的常见表面缺陷目前该产品已在钢管生产线投入使用,解决了长期困扰客户的表面缺陷实时检测的难题。详情可咨询钢研纳克无损检测,电话: 手机:,E-mail:
    留言咨询
  • 【药瓶包装缺陷检测】基本说明  药瓶包装外观缺陷检测系统主要针对口服液玻璃药瓶、塑料瓶及塑料容器进行快速、可靠的检测,项目有飞边、污渍、缺料、瓶口圆度、杂质物、孔洞、薄壁区域检测等,医药包装的检测方法除人工检测外便是更智能化自动化视觉检测设备,引用机器视觉检测,不仅可以提高药品的检测效率和准确性,更为企业降低了人工成本。药瓶机器视觉缺陷检测在制药过程中主要运用药品的生产、包装、封盒/封口、贴标、喷码、装箱等。  【药瓶包装缺陷检测】产品功能  不良处理缺陷检测、异物缺陷检测、瓶体尺寸缺陷检测、瓶液位判断、瓶身轧盖外观检、测贴标缺陷检测  【药瓶包装缺陷检测】产品特点  1.操作简单:快速建模,向导设置,直观的用户界面  2.检测精度高:可针对不同区域设置不同的精度等X  3.误报率低:检测误报率低  4.检测速度:X快速度20000pcs/小时(检测不同的产品速度不同)  5.不良存档:检测到的缺陷及不良图片存档到制定文件夹,可供操作人员针对不良追溯。  【药瓶包装缺陷检测】适用范围  药瓶包装外观缺陷检测系统可应用于口服液玻璃瓶体、塑料瓶及塑料容器、饮料瓶等瓶体外观缺陷在线检测。  【药瓶包装缺陷检测】产品参数  检测速度:250瓶/分钟--500瓶/分钟(可调)  检测项目:(玻璃屑、金属屑、纤维、黑点、白点)、液位、轧盖、瓶盖表面印刷等  电 压:AC3~380V 50HZ  设备容量:14KW  工作台高度:980mm  适用范围:20ml~60ml口服液  【药瓶包装缺陷检测】企业介绍  杭州国辰机器人科技有限公司(浙江智能机器人省级重点企业研究院,简称“浙江智能机器人研究院”)成立于2015年7月,位于杭州钱塘江畔的萧山国家经济技术开发区内,是一家以机器人核心关键技术开发与应用、机器人自动化系统集成、机器人教育以及机器人多元化产业发展,并重点致力于智能服务机器人研发与产品化的企业实体。国辰服务机器人产品可应用于小区,门岗,酒店,景区,讲解,营业厅,厂房,仓库,机房,实验室等多种场景,可提供智能机器人,服务机器人,巡检机器人,喷涂机器人,迎宾机器人,管家机器人,酒店机器人,景区机器人,讲解机器人,仓库机器人,布匹缺陷视觉检测,agv叉车,无人搬运机器人,导游机器人以及营业厅机器人等多种智能服务机器人产品。
    留言咨询
  • 缺陷检测 400-860-5168转5895
    PULSAR L系列及PULSAR H系列是应用于电子、半导体工业领域的缺陷检测设备如WLP、PLP、晶圆制造前端工艺等,可实现从低分辨率到高分辨率的缺陷检测、分类、定位测量等功能。产品特点自主设计开发,拥有完全自主知识产权定位测量功能及缺陷检测功能高分辨率高数据率和高灵敏度图像处理系统高速并行的图像处理系统多功能可扩展的应用软件 产品参数
    留言咨询

缺陷检测相关的方案

缺陷检测相关的论坛

  • 【原创大赛】SGS解读:焊缝超声波检测中缺陷定性方法研究

    【原创大赛】SGS解读:焊缝超声波检测中缺陷定性方法研究

    [align=center][b]SGS解读:焊缝超声波检测中缺陷定性方法研究[/b][/align][align=center]作者:牟永田 季伟[/align][b]摘要:[/b]在焊缝超声检测中如何准确区分和判定点状缺陷和线型缺陷、如何判定缺陷的性质对于有效控制焊接质量和提升质量管理水平有着有效的帮助。一旦一个信号被认为是缺陷显示,我们可以通过信号形状、尺寸、动态波形、缺陷在焊缝中的位置来预判缺陷的类型和解释缺陷的性质。[b]关键词:[/b]回波信号;波幅;环绕扫查;旋转扫查[b]前言:[/b]在焊缝A型扫描超声检测执行的诸多标准中,只针对缺陷回波信号幅度做了验收的要求,都没有针对指示长度大小对点状缺陷或线型缺陷做出明确的区分说明。以NB/T47013-2015为例,附录H中回波动态波形对点反射体和各种大平面反射体的波形模式做了简单的说明,但由于缺陷对超声波的反射特性不仅与缺陷的走向、几何形状、超声波传播方向上的厚度、缺陷表面的粗糙度、缺陷的种类和性质等有关,而且与检测人员工作经验和产品的制作工艺过程有关。定性结果的准确性往往受检测人员的主观因素影响,不同检测人员对同一缺陷的评定结果可能会产生较大的偏差。因此,利用波形模式的不同区分点状缺陷和线性缺陷并进行定性很难推广应用。如何准确判断检测过程中的缺陷性质一直是一个难点。诸多的国内外标准中多以反射信号的高低和大小来判定其危害的大小,然而实际经验证明某些线型缺陷的回波信号幅度及时没有超出标准规定的验收极限,其危害却远远大于超出验收标准的点状缺陷。因此,在焊缝超声检测中如何准确区分和判定点状缺陷和线型缺陷、如何判定缺陷的性质对于有效控制焊接质量和提升质量管理水平有着有效的帮助。下面我们就简单介绍一下如何根据反射信号对缺陷做出解释和定性。多个信号经常来自多个小面或多个缺陷,如裂纹、气孔、或夹渣处产生。裂纹的反射信号通常比气孔、夹渣高(尺寸、灵敏度、声程都相同),当探头旋转时,信号将增高或降低。如果探头围绕缺陷旋转,裂纹的信号将降低,气孔或夹渣的信号则可能不变,因为气孔或夹渣是体积型缺陷件。先前提到的缺陷信号位置对于决定缺陷类型很重要,以下是焊缝中常见缺陷的定性方法。[b]1根部缺陷1.1未焊透[/b]来自焊缝两侧的高波幅的角反射信号,旋转扫查时信号迅速减小,显示是在根部的深度,宽度和根部间隙宽度一样,且不重叠。如图I所示:[align=center][img=,596,137]http://ng1.17img.cn/bbsfiles/images/2018/07/201807021603192123_8351_2883703_3.jpg!w596x137.jpg[/img][/align][align=center]图I[/align][b]1.2根部未熔合[/b]焊缝有缺陷的那侧有高波幅的信号,在旋转扫查时迅速降低,位于构件的底部。(有许多来自焊缝根部焊道的信号也是如此,特别是使用小角度斜探头时,如45°探头)如图II所示:[align=center][img=,596,137]http://ng1.17img.cn/bbsfiles/images/2018/07/201807021603368043_5929_2883703_3.jpg!w596x137.jpg[/img][/align][align=center]图II[/align]在另一边观察来自根部焊道的信号,在移动探头时观察信号幅度的变化,两边是不同的。未熔合声束的声程略大于正常的底波反射路程。由于垂直定向,根部未熔合的尖端不可能从这边观察到。[b]1.3根部裂纹[/b]不规则的裂纹和方向,通常可以在焊缝两侧看见高波幅的多个端角反射。如果裂纹有垂直高度,在用斜探头扫查缺陷深度时,会看见有移动特征的信号。由于裂纹是不规则的,信号会随着探头的转动或高或低。根部焊趾裂纹位于焊根趾部,中心裂纹则位于焊根中心。如图III所示:[align=center][/align][align=center][img=,690,215]http://ng1.17img.cn/bbsfiles/images/2018/07/201807021604096306_1402_2883703_3.jpg!w690x215.jpg[/img][/align][align=center][img=,394,299]http://ng1.17img.cn/bbsfiles/images/2018/07/201807021604235393_1659_2883703_3.jpg!w394x299.jpg[/img][/align][align=center]图III[/align][b]1.4根部咬边[/b]缺陷信号振幅大小取决于咬边的严重程度,即很可能是相对低的信号,也可能是很高的信号。然而,与咬边回波一起出现的还有来自根部焊道的信号(见图IV)。如果咬边仅是像显示在图中的焊缝一侧的那样,从另一面检测根部区域,很可能通常只能观察到正常的根部焊道的反射。[align=center][img=,617,147]http://ng1.17img.cn/bbsfiles/images/2018/07/201807021604484705_7372_2883703_3.jpg!w617x147.jpg[/img][/align][align=center]图IV[/align][b]1.5过熔透[/b]焊缝两侧根部焊道的信号超过正常的声束路程长度且位置交叉,更斜的探头(如35°或45°)有最好的效果。如果焊缝磨平,0°探头应该有最好的效果。如图V所示:[align=center][img=,617,147]http://ng1.17img.cn/bbsfiles/images/2018/07/201807021605115383_9416_2883703_3.jpg!w617x147.jpg[/img][/align][align=center]图V[/align][b]1.6根部凹陷[/b]焊缝两侧的信号幅度低,绘制声束路径,发现其小于板材厚度,信号无交叉,这与过熔透的情况恰好相反。[b]2焊缝区的缺陷2.1坡口未熔合[/b]在全跨距“a”位置和半跨距“c”位置得到高波幅信号,来自“b”位置和“d”位置(当探头声束不垂直于缺陷,更低的波幅信号将从“a”和“c”位置出现)则得到低波幅信号或无信号(取决于缺陷的方向)。横向扫查测量缺陷长度的尺寸是,波幅应保持不变。旋转或者环绕扫查时,波高迅速降低。层间未熔合(位于焊道之间)的反射信号与上述相似,可能在焊缝中的任何地方,当探头声束与缺陷的主平面垂直时,反射波最强。如图VI所示:[align=center][img=,690,228]http://ng1.17img.cn/bbsfiles/images/2018/07/201807021606024193_2555_2883703_3.jpg!w690x228.jpg[/img][/align][align=center]图VI[/align][b]2.2夹渣[/b]由于是体积型缺陷,可以从所有能检查的位置和方向检测到。信号包含多个次波和一个粗糙的波峰。移动探头(当后沿升高时,信号的前沿下降,反之亦然)时信号明显滚动。理论上可以被任何斜探头检测到。如图VII所示:[align=center][/align][align=center][img=,617,137]http://ng1.17img.cn/bbsfiles/images/2018/07/201807021606360293_7967_2883703_3.jpg!w617x137.jpg[/img][/align][align=center]图VII[/align][b]2.3簇状气孔或大量的小的夹杂[/b]由于也是体积型缺陷,要从所有能检测的位置和方向检测。由于占有较宽的时机线上的多个信号的衰减,所以信号很低。环绕扫查时信号不变。如图VIII所示:[align=center][img=,617,137]http://ng1.17img.cn/bbsfiles/images/2018/07/201807021607355763_4632_2883703_3.jpg!w617x137.jpg[/img][/align][align=center]图VIII[/align][b]2.4裂纹[/b]裂纹可以出现在焊趾、热影响区或焊缝中心线上,也可能出现在根部。来自这些位置的裂纹信号与根部的一样(见前述根部裂纹的解释)。裂纹的方向对信号的幅度和宽度有影响。如果裂纹的平面垂直于声束,那么会出现一个高而窄的信号,可以看见一组信号。如果裂纹的平面与声束有一个夹角,那么会出现一个低的波幅,也可以看见一组信号(形状与群孔很相似)。旋转扫查时信号会忽高忽低,环绕扫查时信号将消失。虽然许许多多的无损检测前辈们经过不断的努力,总结出了许多有价值的经验,并做了大量的解剖试验来验证,但是在实际检测中超声检测的定性仍然存在相当大的困难。这主要是由于缺陷对超声波的反射取决于缺陷的取向、形状、相对声波传播方向的长度和厚度、缺陷表面粗糙度、缺陷内含物以及缺陷的种类和性质等等。在超声检测时所获取的声波信号是一种综合响应。根据动态波形判定缺陷性质只是一种通用的方法,有时还要具体分析焊缝的工艺流程或是借助其他检测方法辅助判断。[b]参考文献:[/b]【1】:国防科技工业无损检测人员资格鉴定与认证培训教材,编审委员会编。超声检测。北京:机械工业出版社,2005.【2】:NDT全国特种设备无损检测人员资格考核统编教材,中国特种设备检验协会组织编写。超声检测。北京:中国劳动社会保障出版社,2008。【3】:美国无损检测学会。美国无损检测手册(超声卷)。世界图书出版公司,1996。【4】:中华人民共和国能源行业标准,全国锅炉压力容器标准化技术委员会主编。承压设备无损检测。北京:新华出版社,2015。

缺陷检测相关的耗材

  • LCD驱动芯片检测系统配件
    LCD驱动芯片检测系统配件是一套LDI(LCD Driver IC)自动视觉检测系统,采用超快实时自动聚焦技术(Real-time Auto Foucs),实时聚焦LCD驱动芯片的表面,快速发现LCD Driver IC缺陷。LCD驱动芯片检测系统配件特色可在LCD驱动芯片表面上实时聚焦,对LDI tray上的不同器件提供公差补偿,更为清晰地获得景深图像。具有超快变焦技术可获得高精度聚焦的彩色图像,采用彩色相机替代传统的单色相机,能够获得暗花纹区图像(Dark pattern Area)。提供三种照明方式更好地探测缺陷.LCD驱动芯片检测系统配件和LCD驱动芯片自动视觉检测系统由孚光精仪进口销售,孚光精仪是中国领先的进口光学精密仪器旗舰型服务商!精通光学,服务科学,欢迎垂询。
  • 安培检测器SHE-8
    分析离解度较低、难以用电导检测器检测的PK>7的离子。具有直流安培、脉冲安培、积分安培三种检测方式,普遍适用于氰根、碘离子、硫离子、糖类等的检测。尤其是对糖类的检测,传统方法存在选择性差、灵敏度低、与色谱梯度淋洗不兼容、线性范围窄等缺陷,使用安培检测器可完美解决以上问题,简便快捷、分离效果好、无需衍生、灵敏度高。安培检测器检测特有四电位波型技术;电极清洗彻底,重现性好,电极寿命长;符合国家标准要求,被美国分析化学协会等国际组织广泛认可。以上产品信息仅供参考,详细参数请咨询本店客服或技术人员
  • 美国Hygiena 海净纳环境李斯特菌检测棒
    Insite Listeria环境李斯特快检拭子李斯特菌的环境表面筛选试验货号:ILC0550(50次检测) ILC100(100次检测)该测试试剂盒的性能由AOAC研究所进行了审查,并发现其性能符合制造商的规格。AOAC研究所已经验证了该检测拭子对环境表面(塑料、陶瓷、不锈钢)李斯特菌属的检测。说明/预期用途:Insite Listeria环境李斯特快检拭子是一种李斯特菌种筛选试验,用于清洗后食品加工环境的环境监测。培养基的颜色从黄色/琥珀色变化到灰色/黑色被认为是李斯特菌菌属的假定阳性。原理:Insite Listeria环境李斯特快检拭子含有抗生素、生长增强剂和变色化合物的专有配方。抗生素抑制大多数非李斯特菌微生物,而生长增强剂提供恢复营养,以支持亚致死损伤李斯特菌的生长。指标化合物利用李斯特菌产生的β-葡萄糖苷酶将肉汤由黄色变为黑色。 所需材料:可提供37±1℃的培养箱使用方法:1.采集样品时,请务必采用无菌技术。请勿触摸拭子或拭子内部,紧握拭子管,旋转并将拭子顶部从管中拉出。拭子管的内部若有冷凝液属于正常现象。棉签头是预先润湿的,便于尽可能多地采集样本。对于典型的平坦表面,应充分涂抹 10 x 10 cm (4 x 4 in.) 的标准区域。对于不规则表面,请确保每次测试所使用涂抹方法的一致性并涂抹足够大的区域,以采集具有代表性的样本。2.在擦拭完所需的测试区域后,将拭子放回拭子管中旋转拧紧。提示:用胶带或自封膜包裹柱接口处,避免意外溢出。3.激活拭子:紧握拭子管并用拇指和食指通过前后弯曲球阀将 Snap-Valve 阀折断。挤压球阀3-4次,将球阀内的液体沿着拭子杆向下全部排出。4.挤压试管3次,轻捏试管底,然后摇晃3秒。这将有助于从拭子中释放细胞并取代气泡。5.在37 ± 1°C下孵育24-48小时。观察介质颜色的变化,并参考下面的结果说明。在样品孵育48小时之前,结果不能被认为是阴性的。结果说明:▘ 当样本中存在李斯特菌时,培养基会变成灰色/黑色。请参见第2页上的彩色图表。▘ 48小时后培养基颜色无变化,表明样品中李斯特菌种类为阴性。 ▘ 灰色/黑色的变化表明了李斯特菌的种类。 类李斯特菌:某些细菌的数量很高,如肠球菌,会使介质变黑。在环境中检测这些“类似李斯特菌”的微生物可以表明,需要改善清洁和卫生设施,样品现场的条件可能有利于李斯特菌的生长。当测试地板和排水沟等高度污染的表面时,可以预期的假定阳性率更高。为了验证假定阳性样本中是否存在李斯特菌,Hygiena建议用更具体的方法检测Insite装置的培养培养基,如PCR、ELISA或 lateral flow。确认:假定的阳性样本可以通过适当的参考方法来确认,例:▘ 美国FDA细菌学分析手册(BAM)▘ 美国农业部FSIS微生物实验室指南(MLG)▘ 加拿大卫生部的分析方法纲要 ▘ 国际标准化组织(ISO)假定的阳性样本也可以通过Hygiena的BAX® 系统PCR检测对李斯特菌属或单核增生李斯特菌属进行确认。任何确认结果都应按照适当的规定进行处理。储存条件及有效期: ▘ 冷藏保存(2 - 8 ℃)  ▘ 拭子的保质期为 12个月。请检查标签上的有效期。废品处置:处置前应进行消毒。拭子可以通过高压灭菌、焚烧灭菌或将未密封的拭子浸泡在20%漂白剂中1小时进行消毒。然后,它们就可以被放在垃圾桶里了。或者,拭子可以丢弃在生物危害废物处置设施中。安全注意事项:当按照本说明中的标准实验室规范和程序使用拭子时,不会造成任何健康风险。使用过的拭子并应按照良好实验室规范和健康和安全法规进行安全处置。▘ Insite Listeria环境李斯特快检拭子可用于清洗后的生产表面和环境表面。▘ 某一种李斯特菌(单核增生李斯特菌,或“单核乳杆菌”)是一种人类病原体。假定对李斯特菌呈阳性的样本应被假定为可能含有单核增生李斯特菌,并进行相应的处理。免疫功能低下的个体和孕妇特别容易暴露于单核乳杆菌,不应允许在检测附近进行检测。 Hygiena 的法律责任:与任何培养基一样,InSite的结果并不构成对使用这些设备进行测试的食品、饮料产品或工艺的质量的保证。Hygiena 公司对用户或其他任何人由于使用本拭子而造成的直接或间接的、偶然或从属发生的任何损失或损伤,均不承担责任。若证实此产品存在缺陷,Hygiena 公司的唯一责任是更换产品或酌情退还货款。若发现疑似缺陷请于 5 天内及时通知 Hygiena 公司并将产品退还Hygiena 公司。有关退货授权号码,请联系客户服务部。联系方式: 如需更多信息,请登录 www.hygiena.com 查询或以下列方式联系我们: Insite Listeria环境李斯特快检拭子李斯特菌的环境表面筛选试验货号:ILC0550(50次检测) ILC100(100次检测)

缺陷检测相关的资料

缺陷检测相关的资讯

  • 晶圆表面缺陷检测方法综述【上】
    摘要晶圆表面缺陷检测在半导体制造中对控制产品质量起着重要作用,已成为计算机视觉领域的研究热点。然而,现有综述文献中对晶圆缺陷检测方法的归纳和总结不够透彻,缺乏对各种技术优缺点的客观分析和评价,不利于该研究领域的发展。本文系统分析了近年来国内外学者在晶圆表面缺陷检测领域的研究进展。首先,介绍了晶圆表面缺陷模式的分类及其成因。根据特征提取方法的不同,目前主流的方法分为三类:基于图像信号处理的方法、基于机器学习的方法和基于深度学习的方法。此外,还简要介绍了代表性算法的核心思想。然后,对每种方法的创新性进行了比较分析,并讨论了它们的局限性。最后,总结了当前晶圆表面缺陷检测任务中存在的问题和挑战,以及该领域未来的研究趋势以及新的研究思路。1.引言硅晶圆用于制造半导体芯片。所需的图案是通过光刻等工艺在晶圆上形成的,是半导体芯片制造过程中非常重要的载体。在制造过程中,由于环境和工艺参数等因素的影响,晶圆表面会产生缺陷,从而影响晶圆生产的良率。晶圆表面缺陷的准确检测,可以加速制造过程中异常故障的识别以及制造工艺的调整,提高生产效率,降低废品率。晶圆表面缺陷的早期检测往往由经验丰富的检测人员手动进行,存在效率低、精度差、成本高、主观性强等问题,不足以满足现代工业化产品的要求。目前,基于机器视觉的缺陷检测方法[1]在晶圆检测领域已经取代了人工检测。传统的基于机器视觉的缺陷检测方法往往采用手动特征提取,效率低下。基于计算机视觉的检测方法[2]的出现,特别是卷积神经网络等神经网络的出现,解决了数据预处理、特征表示和提取以及模型学习策略的局限性。神经网络以其高效率、高精度、低成本、客观性强等特点,迅速发展,在半导体晶圆表面缺陷检测领域得到广泛应用。近年来,随着智能终端和无线通信设施等电子集成电路的发展,以及摩尔定律的推广,在全球对芯片的需求增加的同时,光刻工艺的精度也有所提高。随着技术的进步,工艺精度已达到10纳米以下[5]。因此,对每个工艺步骤的良率提出了更高的要求,对晶圆制造中的缺陷检测技术提出了更大的挑战。本文主要总结了晶圆表面缺陷检测算法的相关研究,包括传统的图像处理、机器学习和深度学习。根据算法的特点,对相关文献进行了总结和整理,对晶圆缺陷检测领域面临的问题和挑战进行了展望和未来发展。本文旨在帮助快速了解晶圆表面缺陷检测领域的相关方法和技能。2. 晶圆表面缺陷模式在实际生产中,晶圆上的缺陷种类繁多,形状不均匀,增加了晶圆缺陷检测的难度。在晶圆缺陷的类型中,无图案晶圆缺陷和图案化晶圆缺陷是晶圆缺陷的两种主要形式。这两类缺陷是芯片故障的主要原因。无图案晶圆缺陷多发生在晶圆生产的预光刻阶段,即由机器故障引起的晶圆缺陷。划痕缺陷如图1a所示,颗粒污染缺陷如图1b所示。图案化晶圆缺陷多见于晶圆生产的中间工序。曝光时间、显影时间和烘烤后时间不当会导致光刻线条出现缺陷。螺旋激励线圈和叉形电极的微纳制造过程中晶圆表面产生的缺陷如图2所示。开路缺陷如图2 a所示,短路缺陷如图2 b所示,线路污染缺陷如图2 c所示,咬合缺陷如图2d所示。图1.(a)无图案晶圆的划痕缺陷;(b)无图案晶圆中的颗粒污染。图2.(a)开路缺陷,(b)短路缺陷,(c)线路污染,以及(d)图案化晶圆缺陷图中的咬合缺陷。由于上述晶圆缺陷的存在,在对晶圆上所有芯片进行功能完整性测试时,可能会发生芯片故障。芯片工程师用不同的颜色标记测试结果,以区分芯片的位置。在不同操作过程的影响下,晶圆上会产生相应的特定空间图案。晶圆图像数据,即晶圆图,由此生成。正如Hansen等在1997年指出的那样,缺陷芯片通常具有聚集现象或表现出一些系统模式,而这种缺陷模式通常包含有关工艺条件的必要信息。晶圆图不仅可以反映芯片的完整性,还可以准确描述缺陷数据对应的空间位置信息。晶圆图可能在整个晶圆上表现出空间依赖性,芯片工程师通常可以追踪缺陷的原因并根据缺陷类型解决问题。Mirza等将晶圆图缺陷模式分为一般类型和局部类型,即全局随机缺陷和局部缺陷。晶圆图缺陷模式图如图3所示,局部缺陷如图3 a所示,全局随机缺陷如图3b所示。全局随机缺陷是由不确定因素产生的,不确定因素是没有特定聚类现象的不可控因素,例如环境中的灰尘颗粒。只有通过长期的渐进式改进或昂贵的设备大修计划,才能减少全局随机缺陷。局部缺陷是系统固有的,在晶圆生产过程中受到可控因素的影响,如工艺参数、设备问题和操作不当。它们反复出现在晶圆上,并表现出一定程度的聚集。识别和分类局部缺陷,定位设备异常和不适当的工艺参数,对提高晶圆生产良率起着至关重要的作用。图3.(a)局部缺陷模式(b)全局缺陷模式。对于面积大、特征尺寸小、密度低、集成度低的晶圆图案,可以用电子显微镜观察光刻路径,并可直接进行痕量检测。随着芯片电路集成度的显著提高,进行芯片级检测变得越来越困难。这是因为随着集成度的提高,芯片上的元件变得更小、更复杂、更密集,从而导致更多的潜在缺陷。这些缺陷很难通过常规的检测方法进行检测和修复,需要更复杂、更先进的检测技术和工具。晶圆图研究是晶圆缺陷检测的热点。天津大学刘凤珍研究了光刻设备异常引起的晶圆图缺陷。针对晶圆实际生产过程中的缺陷,我们通过设备实验对光刻胶、晶圆粉尘颗粒、晶圆环、划痕、球形、线性等缺陷进行了深入研究,旨在找到缺陷原因,提高生产率。为了确定晶圆模式失效的原因,吴明菊等人从实际制造中收集了811,457张真实晶圆图,创建了WM-811K晶圆图数据集,这是目前应用最广泛的晶圆图。半导体领域专家为该数据集中大约 20% 的晶圆图谱注释了八种缺陷模式类型。八种类型的晶圆图缺陷模式如图4所示。本综述中引用的大多数文章都基于该数据集进行了测试。图4.八种类型的晶圆映射缺陷模式类型:(a)中心、(b)甜甜圈、(c)边缘位置、(d)边缘环、(e)局部、(f)接近满、(g)随机和(h)划痕。3. 基于图像信号处理的晶圆表面缺陷检测图像信号处理是将图像信号转换为数字信号,再通过计算机技术进行处理,实现图像变换、增强和检测。晶圆检测领域常用的有小波变换(WT)、空间滤波(spatial filtering)和模板匹配(template matching)。本节主要介绍这三种算法在晶圆表面缺陷检测中的应用。图像处理算法的比较如表1所示。表 1.图像处理算法的比较。模型算法创新局限小波变换 图像可以分解为多种分辨率,并呈现为具有不同空间频率的局部子图像。防谷物。阈值的选择依赖性很强,适应性差。空间滤波基于空间卷积,去除高频噪声,进行边缘增强。性能取决于阈值参数。模板匹配模板匹配算法抗噪能力强,计算速度快。对特征对象大小敏感。3.1. 小波变换小波变换(WT)是一种信号时频分析和处理技术。首先,通过滤波器将图像信号分解为不同的频率子带,进行小波分解 然后,通过计算小波系数的平均值、标准差或其他统计度量,分析每个系数以检测任何异常或缺陷。异常或缺陷可能表现为小波系数的突然变化或异常值。根据分析结果,使用预定义的阈值来确定信号中的缺陷和异常,并通过识别缺陷所在的时间和频率子带来确定缺陷的位置。小波分解原理图如图5所示,其中L表示低频信息,H表示高频信息。每次对图像进行分解时,图像都会分解为四个频段:LL、LH、HL 和 HH。下层分解重复上层LL带上的分解。小波变换在晶圆缺陷特征的边界处理和多尺度边缘检测中具有良好的性能。图5.小波分解示意图。Yeh等提出了一种基于二维小波变换(2DWT)的方法,该方法通过修正小波变换模量(WTMS)计算尺度系数之间的比值,用于晶圆缺陷像素的定位。通过选择合适的小波基和支撑长度,可以使用少量测试数据实现晶圆缺陷的准确检测。图像预处理阶段耗费大量时间,严重影响检测速度。Wen-Ren Yang等提出了一种基于短时离散小波变换的晶圆微裂纹在线检测系统。无需对晶圆图像进行预处理。通过向晶圆表面发射连续脉冲激光束,通过空间探针阵列采集反射信号,并通过离散小波变换进行分析,以确定微裂纹的反射特性。在加工的情况下,也可以对微裂纹有更好的检测效果。多晶太阳能硅片表面存在大量随机晶片颗粒,导致晶圆传感图像纹理不均匀。针对这一问题,Kim Y等提出了一种基于小波变换的表面检测方法,用于检测太阳能硅片缺陷。为了更好地区分缺陷边缘和晶粒边缘,使用两个连续分解层次的小波细节子图的能量差作为权重,以增强每个分解层次中提出的判别特征。实验结果表明,该方法对指纹和污渍有较好的检测效果,但对边缘锋利的严重微裂纹缺陷无效,不能适用于所有缺陷。3.2. 空间过滤空间滤波是一种成熟的图像增强技术,它是通过直接对灰度值施加空间卷积来实现的。图像处理中的主要作用是图像去噪,分为平滑滤镜和锐化滤镜,广泛应用于缺陷检测领域。图6显示了图像中中值滤波器和均值滤波器在增加噪声后的去噪效果。图6.滤波去噪效果图:(a)原始图像,(b)中值滤波去噪,(c)均值滤光片去噪。Ohshige等提出了一种基于空间频率滤波技术的表面缺陷检测系统。该方法可以有效地检测晶圆上的亚微米缺陷或异物颗粒。晶圆制造中随机缺陷的影响。C.H. Wang提出了一种基于空间滤波、熵模糊c均值和谱聚类的晶圆缺陷检测方法,该方法利用空间滤波对缺陷区域进行去噪和提取,通过熵模糊c均值和谱聚类获得缺陷区域。结合均值和谱聚类的混合算法用于缺陷分类。它解决了传统统计方法无法提取具有有意义的分类的缺陷模式的问题。针对晶圆中的成簇缺陷,Chen SH等开发了一种基于中值滤波和聚类方法的软件工具,所提算法有效地检测了缺陷成簇。通常,空间过滤器的性能与参数高度相关,并且通常很难选择其值。3.3. 模板匹配模板匹配检测是通过计算模板图像与被测图像之间的相似度来实现的,以检测被测图像与模板图像之间的差异区域。Han H等从晶圆图像本身获取的模板混入晶圆制造工艺的设计布局方案中,利用物理空间与像素空间的映射,设计了一种结合现有圆模板匹配检测新方法的晶圆图像检测技术。刘希峰结合SURF图像配准算法,实现了测试晶圆与标准晶圆图案的空间定位匹配。测试图像与标准图像之间的特征点匹配结果如图7所示。将模式识别的轮廓提取技术应用于晶圆缺陷检测。Khalaj等提出了一种新技术,该技术使用高分辨率光谱估计算法提取晶圆缺陷特征并将其与实际图像进行比较,以检测周期性2D信号或图像中不规则和缺陷的位置。图7.测试图像与标准图像之间的特征点匹配结果。下接:晶圆表面缺陷检测方法综述【下】
  • 晶圆表面缺陷检测方法综述【下】
    上接:晶圆表面缺陷检测方法综述【上】4. 基于机器学习的晶圆表面缺陷检测机器学习主要是将一个具体的问题抽象成一个数学模型,通过数学方法求解模型,求解该问题,然后评估该模型对该问题的影响。根据训练数据的特点,分为监督学习、无监督学习和半监督学习。本文主要讨论这三种机器学习方法在晶圆表面缺陷检测中的应用。机器学习模型比较如表2所示。表 2.机器学习算法的比较。分类算法创新局限监督学习KNN系列对异常数据不敏感,准确率高。复杂度高,计算强度高。决策树-Radon应用Radon以形成新的缺陷特征。过拟合非常熟练。SVMSVM 可对多变量、多模态和不可分割的数据点进行高效分类。它对多个样本不友好,内核函数难以定位。无监督学习多层感知器聚类算法采用多层感知器增强特征提取能力。取决于激活函数的选择。DBSCAN可以根据缺陷模式特征有选择地去除异常值。样本密度不均匀或样本过大,收敛时间长,聚类效果差。SOM高维数据可以映射到低维空间,保持高维空间的结构。目标函数不容易确定。半监督学习用于增强标记的半监督框架将监督集成学习与无监督SOM相结合,构建了半监督模型。培训既费时又费时。半监督增量建模框架通过主动学习和标记样本来增强模型性能,从而提高模型性能。性能取决于标记的数据量。4.1. 监督学习监督学习是一种学习模型,它基于该模型对所需的新数据样本进行预测。监督学习是目前晶圆表面缺陷检测中广泛使用的机器学习算法,在目标检测领域具有较高的鲁棒性。Yuan,T等提出了一种基于k-最近邻(KNN)的噪声去除技术,该技术利用k-最近邻算法将全局缺陷和局部缺陷分离,提供晶圆信息中所有聚合的局部缺陷信息,通过相似聚类技术将缺陷分类为簇,并利用聚类缺陷的参数化模型识别缺陷簇的空间模式。Piao M等提出了一种基于决策树的晶圆缺陷模式识别方法。利用Radon变换提取缺陷模式特征,采用相关性分析法测度特征之间的相关性,将缺陷特征划分为特征子集,每个特征子集根据C4.5机制构建决策树。对决策树置信度求和,并选择总体置信度最高的类别。决策树在特定类别的晶圆缺陷检测中表现出更好的性能,但投影的最大值、最小值、平均值和标准差不足以代表晶圆缺陷的所有空间信息,因此边缘缺陷检测性能较差。支持向量机(SVM)在监督学习中也是缺陷检测的成熟应用。当样本不平衡时,k-最近邻算法分类效果较差,计算量大。决策树也有类似的问题,容易出现过度拟合。支持向量机在小样本和高维特征的分类中仍然具有良好的性能,并且支持向量机的计算复杂度不依赖于输入空间的维度,并且多类支持向量机对过拟合问题具有鲁棒性,因此常被用作分类器。R. Baly等使用支持向量机(SVM)分类器将1150张晶圆图像分为高良率和低良率两类,然后通过对比实验证明,相对于决策树,k-最近邻(KNN)、偏最小二乘回归(PLS回归)和广义回归神经网络(GRNN),非线性支持向量机模型优于上述四种晶圆分类方法。多类支持向量机在晶圆缺陷模式分类中具有更好的分类精度。L. Xie等提出了一种基于支持向量机算法的晶圆缺陷图案检测方案。采用线性核、高斯核和多项式核进行选择性测试,通过交叉验证选择测试误差最小的核进行下一步的支持向量机训练。支持向量机方法可以处理图像平移或旋转引起的误报问题。与神经网络相比,支持向量机不需要大量的训练样本,因此不需要花费大量时间训练数据样本进行分类。为复合或多样化数据集提供更强大的性能。4.2. 无监督学习在监督学习中,研究人员需要提前将缺陷样本类型分类为训练的先验知识。在实际工业生产中,存在大量未知缺陷,缺陷特征模糊不清,研究者难以通过经验进行判断和分类。在工艺开发的早期阶段,样品注释也受到限制。针对这些问题,无监督学习开辟了新的解决方案,不需要大量的人力来标记数据样本,并根据样本之间的特征关系进行聚类。当添加新的缺陷模式时,无监督学习也具有优势。近年来,无监督学习已成为工业缺陷检测的重要研究方向之一。晶圆图案上的缺陷图案分类不均匀,特征不规则,无监督聚类算法对这种情况具有很强的鲁棒性,广泛用于检测复杂的晶圆缺陷图案。由于簇状缺陷(如划痕、污渍或局部失效模式)导致难以检测,黄振提出了一种解决该问题的新方法。提出了一种利用自监督多层感知器检测缺陷并标记所有缺陷芯片的自动晶圆缺陷聚类算法(k-means聚类)。Jin C H等提出了一种基于密度的噪声应用空间聚类(DBSCAN)的晶圆图案检测与分类框架,该框架根据缺陷图案特征选择性地去除异常值,然后提取的缺陷特征可以同时完成异常点和缺陷图案的检测。Yuan, T等提出了一种多步晶圆分析方法,该方法基于相似聚类技术提供不同精度的聚类结果,根据局部缺陷模式的空间位置识别出种混合型缺陷模式。利用位置信息来区分缺陷簇有一定的局限性,当多个簇彼此靠近或重叠时,分类效果会受到影响。Di Palma,F等采用无监督自组织映射(SOM)和自适应共振理论(ART1)作为晶圆分类器,对1种不同类别的晶圆进行了模拟数据集测试。SOM 和 ART1 都依靠神经元之间的竞争来逐步优化网络以进行无监督分类。由于ART是通过“AND”逻辑推送到参考向量的,因此在处理大量数据集时,计算次数增加,无法获得缺陷类别的实际数量。调整网络标识阈值不会带来任何改进。SOM算法可以将高维输入数据映射到低维空间,同时保持输入数据在高维空间中的拓扑结构。首先,确定神经元的类别和数量,并通过几次对比实验确定其他参数。确定参数后,经过几个学习周期后,数据达到渐近值,并且在模拟数据集和真实数据集上都表现良好。4.3. 半监督学习半监督学习是一种结合了监督学习和无监督学习的机器学习方法。半监督学习可以使用少量的标记数据和大量的未标记数据来解决问题。基于集成的半监督学习过程如图 8 所示。避免了完全标记样品的成本消耗和错误标记。半监督学习已成为近年来的研究热点。图8.基于集成的半监督学习监督学习通常能获得良好的识别结果,但依赖于样本标记的准确性。晶圆数据样本可能存在以下问题。首先是晶圆样品数据需要专业人员手动标记。手动打标过程是主观的,一些混合缺陷模式可能会被错误标记。二是某些缺陷模式的样本不足。第三,一些缺陷模式一开始就没有被标记出来。因此,无监督学习方法无法发挥其性能。针对这一问题,Katherine Shu-Min Li等人提出了一种基于集成的半监督框架,以实现缺陷模式的自动分类。首先,在标记数据上训练监督集成学习模型,然后通过该模型训练未标记的数据。最后,利用无监督学习算法对无法正确分类的样本进行处理,以达到增强的标记效果,提高晶圆缺陷图案分类的准确性。Yuting Kong和Dong Ni提出了一种用于晶圆图分析的半监督增量建模框架。利用梯形网络改进的半监督增量模型和SVAE模型对晶圆图进行分类,然后通过主动学习和伪标注提高模型性能。实验表明,它比CNN模型具有更好的性能。5. 基于深度学习的晶圆表面缺陷检测近年来,随着深度学习算法的发展、GPU算力的提高以及卷积神经网络的出现,计算机视觉领域得到了定性的发展,在表面缺陷检测领域也得到了广泛的应用。在深度学习之前,相关人员需要具备广泛的特征映射和特征描述知识,才能手动绘制特征。深度学习使多层神经网络能够通过抽象层自动提取和学习目标特征,并从图像中检测目标对象。Cheng KCC等分别使用机器学习算法和深度学习算法进行晶圆缺陷检测。他们使用逻辑回归、支持向量机(SVM)、自适应提升决策树(ADBT)和深度神经网络来检测晶圆缺陷。实验证明,深度神经网络的平均准确率优于上述机器学习算法,基于深度学习的晶圆检测算法具有更好的性能。根据不同的应用场景和任务需求,将深度学习模型分为分类网络、检测网络和分割网络。本节讨论创新并比较每个深度学习网络模型的性能。5.1. 分类网络分类网络是较老的深度学习算法之一。分类网络通过卷积、池化等一系列操作,提取输入图像中目标物体的特征信息,然后通过全连接层,根据预设的标签类别进行分类。网络模型如图 9 所示。近年来,出现了许多针对特定问题的分类网络。在晶圆缺陷检测领域,聚焦缺陷特征,增强特征提取能力,推动了晶圆检测的发展。图 9.分类网络模型结构图在晶圆制造过程中,几种不同类型的缺陷耦合在晶圆中,称为混合缺陷。这些类型的缺陷复杂多变且随机性强,已成为半导体公司面临的主要挑战。针对这一问题,Wang J等提出了一种用于晶圆缺陷分类的混合DPR(MDPR)可变形卷积网络(DC-Net)。他们设计了可变形卷积的多标签输出和一热编码机制层,将采样区域聚焦在缺陷特征区域,有效提取缺陷特征,对混合缺陷进行分类,输出单个缺陷,提高混合缺陷的分类精度。Kyeong和Kim为混合缺陷模式的晶圆图像中的每种缺陷设计了单独的分类模型,并通过组合分类器网络检测了晶圆的缺陷模式。作者使用MPL、SVM和CNN组合分类器测试了六种不同模式的晶圆映射数据库,只有作者提出的算法被正确分类。Takeshi Nakazawa和Deepak V. Kulkarni使用CNN对晶圆缺陷图案进行分类。他们使用合成生成的晶圆图像训练和验证了他们的CNN模型。此外,提出了一种利用模拟生成数据的方法,以解决制造中真实缺陷类别数据不平衡的问题,并达到合理的分类精度。这有效解决了晶圆数据采集困难、可用样品少的问题。分类网络模型对比如表3所示。表3. 分类网络模型比较算法创新Acc直流网络采样区域集中在缺陷特征区域,该区域对混合缺陷具有非常强的鲁棒性。93.2%基于CNN的组合分类器针对每个缺陷单独设计分类器,对新缺陷模式适应性强。97.4%基于CNN的分类检索方法可以生成模拟数据集来解释数据不平衡。98.2%5.2. 目标检测网络目标检测网络不仅可以对目标物体进行分类,还可以识别其位置。目标检测网络主要分为两种类型。第一种类型是两级网络,如图10所示。基于区域提案网络生成候选框,然后对候选框进行分类和回归。第二类是一级网络,如图11所示,即端到端目标检测,直接生成目标对象的分类和回归信息,而不生成候选框。相对而言,两级网络检测精度更高,单级网络检测速度更快。检测网络模型的比较如表4所示。图 10.两级检测网络模型结构示意图图 11.一级检测网络模型结构示意图表4. 检测网络模型比较算法创新AccApPCACAE基于二维主成分分析的级联辊类型自动编码。97.27%\YOLOv3-GANGAN增强了缺陷模式的多样性,提高了YOLOv3的通用性。\88.72%YOLOv4更新了骨干网络,增强了 CutMix 和 Mosaic 数据。94.0%75.8%Yu J等提出了一种基于二维主成分分析的卷积自编码器的深度神经网络PCACAE,并设计了一种新的卷积核来提取晶圆缺陷特征。产品自动编码器级联,进一步提高特征提取的性能。针对晶圆数据采集困难、公开数据集少等问题,Ssu-Han Chen等首次采用生成对抗网络和目标检测算法YOLOv3相结合的方法,对小样本中的晶圆缺陷进行检测。GAN增强了缺陷的多样性,提高了YOLOv3的泛化能力。Prashant P. SHINDE等提出使用先进的YOLOv4来检测和定位晶圆缺陷。与YOLOv3相比,骨干提取网络从Darknet-19改进为Darknet-53,并利用mish激活函数使网络鲁棒性。粘性增强,检测能力大大提高,复杂晶圆缺陷模式的检测定位性能更加高效。5.3. 分段网络分割网络对输入图像中的感兴趣区域进行像素级分割。大部分的分割网络都是基于编码器和解码器的结构,如图12所示是分割网络模型结构示意图。通过编码器和解码器,提高了对目标物体特征的提取能力,加强了后续分类网络对图像的分析和理解。在晶圆表面缺陷检测中具有良好的应用前景。图 12.分割网络模型结构示意图。Takeshi Nakazawa等提出了一种深度卷积编码器-解码器神经网络结构,用于晶圆缺陷图案的异常检测和分割。作者设计了基于FCN、U-Net和SegNet的三种编码器-解码器晶圆缺陷模式分割网络,对晶圆局部缺陷模型进行分割。晶圆中的全局随机缺陷通常会导致提取的特征出现噪声。分割后,忽略了全局缺陷对局部缺陷的影响,而有关缺陷聚类的更多信息有助于进一步分析其原因。针对晶圆缺陷像素类别不平衡和样本不足的问题,Han Hui等设计了一种基于U-net网络的改进分割系统。在原有UNet网络的基础上,加入RPN网络,获取缺陷区域建议,然后输入到单元网络进行分割。所设计的两级网络对晶圆缺陷具有准确的分割效果。Subhrajit Nag等人提出了一种新的网络结构 WaferSegClassNet,采用解码器-编码器架构。编码器通过一系列卷积块提取更好的多尺度局部细节,并使用解码器进行分类和生成。分割掩模是第一个可以同时进行分类和分割的晶圆缺陷检测模型,对混合晶圆缺陷具有良好的分割和分类效果。分段网络模型比较如表5所示。表 5.分割网络模型比较算法创新AccFCN将全连接层替换为卷积层以输出 2D 热图。97.8%SegNe结合编码器-解码器和像素级分类层。99.0%U-net将每个编码器层中的特征图复制并裁剪到相应的解码器层。98.9%WaferSegClassNet使用共享编码器同时进行分类和分割。98.2%第6章 结论与展望随着电子信息技术的不断发展和光刻技术的不断完善,晶圆表面缺陷检测在半导体行业中占有重要地位,越来越受到该领域学者的关注。本文对晶圆表面缺陷检测相关的图像信号处理、机器学习和深度学习等方面的研究进行了分析和总结。早期主要采用图像信号处理方法,其中小波变换方法和空间滤波方法应用较多。机器学习在晶圆缺陷检测方面非常强大。k-最近邻(KNN)、决策树(Decision Tree)、支持向量机(SVM)等算法在该领域得到广泛应用,并取得了良好的效果。深度学习以其强大的特征提取能力为晶圆检测领域注入了活力。最新的集成电路制造技术已经发展到4 nm,预测表明它将继续朝着更小的规模发展。然而,随着这些趋势的出现,晶圆上表面缺陷的复杂性也将增加,对模型的可靠性和鲁棒性提出了更严格的挑战。因此,对这些缺陷的分析和处理对于确保集成电路的高质量制造变得越来越重要。虽然在晶圆表面缺陷分析领域取得了一些成果,但仍存在许多问题和挑战。1、晶圆缺陷的公开数据集很少。由于晶圆生产和贴标成本高昂,高质量的公开数据集很少,为数不多的数据集不足以支撑训练。可以考虑创建一个合成晶圆缺陷数据库,并在现有数据集上进行数据增强,为神经网络提供更准确、更全面的数据样本。由于梯度特征中缺陷类型的多功能性,可以使用迁移学习来解决此类问题,主要是为了解决迁移学习中的负迁移和模型不适用性等问题。目前尚不存在灵活高效的迁移模型。利用迁移学习解决晶圆表面缺陷检测中几个样品的问题,是未来研究的难题。2、在晶圆制造过程中,不断产生新的缺陷,缺陷样本的数量和类型不断积累。使用增量学习可以提高网络模型对新缺陷的识别准确率和保持旧缺陷分类的能力。也可作为扩展样本法的研究方向。3、随着技术进步的飞速发展,芯片特征尺寸越来越小、越来越复杂,导致晶圆中存在多种缺陷类型,缺陷相互折叠,导致缺陷特征不均匀、不明显。增加检测难度。多步骤、多方法混合模型已成为检测混合缺陷的主流方法。如何优化深度网络模型的性能,保持较高的检测效率,是一个亟待进一步解决的问题。4、在晶圆制造过程中,不同用途的晶圆图案会产生不同的缺陷。目前,在单个数据集上训练的网络模型不足以识别所有晶圆中用于不同目的的缺陷。如何设计一个通用的网络模型来检测所有缺陷,从而避免为所有晶圆缺陷数据集单独设计训练模型造成的资源浪费,是未来值得思考的方向。5、缺陷检测模型大多为离线模型,无法满足工业生产的实时性要求。为了解决这个问题,需要建立一个自主学习模型系统,使模型能够快速学习和适应新的生产环境,从而实现更高效、更准确的缺陷检测。原文链接:Electronics | Free Full-Text | Review of Wafer Surface Defect Detection Methods (mdpi.com)
  • 【综述】碳化硅中的缺陷检测技术
    摘要随着对性能优于硅基器件的碳化硅(SiC)功率器件的需求不断增长,碳化硅制造工艺的高成本和低良率是尚待解决的最紧迫问题。研究表明,SiC器件的性能很大程度上受到晶体生长过程中形成的所谓杀手缺陷(影响良率的缺陷)的影响。在改进降低缺陷密度的生长技术的同时,能够识别和定位缺陷的生长后检测技术已成为制造过程的关键必要条件。在这篇综述文章中,我们对碳化硅缺陷检测技术以及缺陷对碳化硅器件的影响进行了展望。本文还讨论了改进现有检测技术和降低缺陷密度的方法的潜在解决方案,这些解决方案有利于高质量SiC器件的大规模生产。前言由于电力电子市场的快速增长,碳化硅(SiC,一种宽禁带半导体)成为开发用于电动汽车、航空航天和功率转换器的下一代功率器件的有前途的候选者。与由硅或砷化镓(GaAs)制成的传统器件相比,基于碳化硅的电力电子器件具有多项优势。表1显示了SiC、Si、GaAs以及其他宽禁带材料(如GaN和金刚石)的物理性能的比较。由于具有宽禁带(4H-SiC为~3.26eV),基于SiC器件可以在更高的电场和更高的温度下工作,并且比基于Si的电力电子器件具有更好的可靠性。SiC还具有优异的导热性(约为Si的三倍),这使得SiC器件具有更高的功率密度封装,具有更好的散热性。与硅基功率器件相比,其优异的饱和电子速度(约为硅的两倍)允许更高的工作频率和更低的开关损耗。SiC优异的物理特性使其非常有前途地用于开发各种电子设备,例如具有高阻断电压和低导通电阻的功率MOSFET,以及可以承受大击穿场和小反向漏电流的肖特基势垒二极管(SBD)。性质Si3C-SiC4H-SiCGaAsGaN金刚石带隙能量(eV)1.12.23.261.433.455.45击穿场(106Vcm−1)0.31.33.20.43.05.7导热系数(Wcm−1K−1)1.54.94.90.461.322饱和电子速度(107cms−1)1.02.22.01.02.22.7电子迁移率(cm2V−1s−1)150010001140850012502200熔点(°C)142028302830124025004000表1电力电子用宽禁带半导体与传统半导体材料的物理特性(室温值)对比提高碳化硅晶圆质量对制造商来说很重要,因为它直接决定了碳化硅器件的性能,从而决定了生产成本。然而,低缺陷密度的SiC晶圆的生长仍然非常具有挑战性。最近,碳化硅晶圆制造的发展已经完成了从100mm(4英寸)到150mm(6英寸)晶圆的艰难过渡。SiC需要在高温环境中生长,同时具有高刚性和化学稳定性,这导致生长的SiC晶片中存在高密度的晶体和表面缺陷,导致衬底和随后制造的外延层质量差。图1总结了SiC中的各种缺陷以及这些缺陷的工艺步骤,下一节将进一步讨论。图1SiC生长过程示意图及各步骤引起的各种缺陷各种类型的缺陷会导致设备性能不同程度的劣化,甚至可能导致设备完全失效。为了提高良率和性能,在设备制造之前检测缺陷的技术变得非常重要。因此,快速、高精度、无损的检测技术在碳化硅生产线中发挥着重要作用。在本文中,我们将说明每种类型的缺陷及其对设备性能的影响。我们还对不同检测技术的优缺点进行了深入的讨论。这篇综述文章中的分析不仅概述了可用于SiC的各种缺陷检测技术,还帮助研究人员在工业应用中在这些技术中做出明智的选择(图2)。表2列出了图2中检测技术和缺陷的首字母缩写。图2可用于碳化硅的缺陷检测技术表2检测技术和缺陷的首字母缩写见图SEM:扫描电子显微镜OM:光学显微镜BPD:基面位错DIC:微分干涉对比PL:光致发光TED:螺纹刃位错OCT:光学相干断层扫描CL:阴极发光TSD:螺纹位错XRT:X射线形貌术拉曼:拉曼光谱SF:堆垛层错碳化硅的缺陷碳化硅晶圆中的缺陷通常分为两大类:(1)晶圆内的晶体缺陷和(2)晶圆表面处或附近的表面缺陷。正如我们在本节中进一步讨论的那样,晶体学缺陷包括基面位错(BPDs)、堆垛层错(SFs)、螺纹刃位错(TEDs)、螺纹位错(TSDs)、微管和晶界等,横截面示意图如图3(a)所示。SiC的外延层生长参数对晶圆的质量至关重要。生长过程中的晶体缺陷和污染可能会延伸到外延层和晶圆表面,形成各种表面缺陷,包括胡萝卜缺陷、多型夹杂物、划痕等,甚至转化为产生其他缺陷,从而对器件性能产生不利影响。图3SiC晶圆中出现的各种缺陷。(a)碳化硅缺陷的横截面示意图和(b)TEDs和TSDs、(c)BPDs、(d)微管、(e)SFs、(f)胡萝卜缺陷、(g)多型夹杂物、(h)划痕的图像生长在4°偏角4H-SiC衬底上的SiC外延层是当今用于各种器件应用的最常见的晶片类型。在4°偏角4H-SiC衬底上生长的SiC外延层是当今各种器件应用中最常用的晶圆类型。众所周知,大多数缺陷的取向与生长方向平行,因此,SiC在SiC衬底上以4°偏角外延生长不仅保留了下面的4H-SiC晶体,而且使缺陷具有可预测的取向。此外,可以从单个晶圆上切成薄片的晶圆总数增加。然而,较低的偏角可能会产生其他类型的缺陷,如3C夹杂物和向内生长的SFs。在接下来的小节中,我们将讨论每种缺陷类型的详细信息。晶体缺陷螺纹刃位错(TEDs)、螺纹位错(TSDs)SiC中的位错是电子设备劣化和失效的主要来源。螺纹刃位错(TSDs)和螺纹位错(TEDs)都沿生长轴运行,Burgers向量分别为和1/3。TSDs和TEDs都可以从衬底延伸到晶圆表面,并带来小的凹坑状表面特征,如图3b所示。通常,TEDs的密度约为8000-10,0001/cm2,几乎是TSDs的10倍。扩展的TSDs,即TSDs从衬底延伸到外延层,可能在SiC外延生长过程中转化为基底平面上的其他缺陷,并沿生长轴传播。Harada等人表明,在SiC外延生长过程中,TSDs被转化为基底平面上的堆垛层错(SFs)或胡萝卜缺陷,而外延层中的TEDs则被证明是在外延生长过程中从基底继承的BPDs转化而来的。基面位错(BPDs)另一种类型的位错是基面位错(BPDs),它位于SiC晶体的平面上,Burgers矢量为1/3。BPDs很少出现在SiC晶圆表面。它们通常集中在衬底上,密度为15001/cm2,而它们在外延层中的密度仅为约101/cm2。Kamei等人报道,BPDs的密度随着SiC衬底厚度的增加而降低。BPDs在使用光致发光(PL)检测时显示出线形特征,如图3c所示。在SiC外延生长过程中,扩展的BPDs可能转化为SFs或TEDs。微管在SiC中观察到的常见位错是所谓的微管,它是沿生长轴传播的空心螺纹位错,具有较大的Burgers矢量分量。微管的直径范围从几分之一微米到几十微米。微管在SiC晶片表面显示出大的坑状表面特征。从微管发出的螺旋,表现为螺旋位错。通常,微管的密度约为0.1–11/cm2,并且在商业晶片中持续下降。堆垛层错(SFs)堆垛层错(SFs)是SiC基底平面中堆垛顺序混乱的缺陷。SFs可能通过继承衬底中的SFs而出现在外延层内部,或者与扩展BPDs和扩展TSDs的变换有关。通常,SFs的密度低于每平方厘米1个,并且通过使用PL检测显示出三角形特征,如图3e所示。然而,在SiC中可以形成各种类型的SFs,例如Shockley型SFs和Frank型SFs等,因为晶面之间只要有少量的堆叠能量无序可能导致堆叠顺序的相当大的不规则性。点缺陷点缺陷是由单个晶格点或几个晶格点的空位或间隙形成的,它没有空间扩展。点缺陷可能发生在每个生产过程中,特别是在离子注入中。然而,它们很难被检测到,并且点缺陷与其他缺陷的转换之间的相互关系也是相当的复杂,这超出了本文综述的范围。其他晶体缺陷除了上述各小节所述的缺陷外,还存在一些其他类型的缺陷。晶界是两种不同的SiC晶体类型在相交时晶格失配引起的明显边界。六边形空洞是一种晶体缺陷,在SiC晶片内有一个六边形空腔,它已被证明是导致高压SiC器件失效的微管缺陷的来源之一。颗粒夹杂物是由生长过程中下落的颗粒引起的,通过适当的清洁、仔细的泵送操作和气流程序的控制,它们的密度可以大大降低。表面缺陷胡萝卜缺陷通常,表面缺陷是由扩展的晶体缺陷和污染形成的。胡萝卜缺陷是一种堆垛层错复合体,其长度表示两端的TSD和SFs在基底平面上的位置。基底断层以Frank部分位错终止,胡萝卜缺陷的大小与棱柱形层错有关。这些特征的组合形成了胡萝卜缺陷的表面形貌,其外观类似于胡萝卜的形状,密度小于每平方厘米1个,如图3f所示。胡萝卜缺陷很容易在抛光划痕、TSD或基材缺陷处形成。多型夹杂物多型夹杂物,通常称为三角形缺陷,是一种3C-SiC多型夹杂物,沿基底平面方向延伸至SiC外延层表面,如图3g所示。它可能是由外延生长过程中SiC外延层表面上的下坠颗粒产生的。颗粒嵌入外延层并干扰生长过程,产生了3C-SiC多型夹杂物,该夹杂物显示出锐角三角形表面特征,颗粒位于三角形区域的顶点。许多研究还将多型夹杂物的起源归因于表面划痕、微管和生长过程的不当参数。划痕划痕是在生产过程中形成的SiC晶片表面的机械损伤,如图3h所示。裸SiC衬底上的划痕可能会干扰外延层的生长,在外延层内产生一排高密度位错,称为划痕,或者划痕可能成为胡萝卜缺陷形成的基础。因此,正确抛光SiC晶圆至关重要,因为当这些划痕出现在器件的有源区时,会对器件性能产生重大影响。其他表面缺陷台阶聚束是SiC外延生长过程中形成的表面缺陷,在SiC外延层表面产生钝角三角形或梯形特征。还有许多其他的表面缺陷,如表面凹坑、凹凸和污点。这些缺陷通常是由未优化的生长工艺和不完全去除抛光损伤造成的,从而对器件性能造成重大不利影响。检测技术量化SiC衬底质量是外延层沉积和器件制造之前必不可少的一步。外延层形成后,应再次进行晶圆检查,以确保缺陷的位置已知,并且其数量在控制之下。检测技术可分为表面检测和亚表面检测,这取决于它们能够有效地提取样品表面上方或下方的结构信息。正如我们在本节中进一步讨论的那样,为了准确识别表面缺陷的类型,通常使用KOH(氢氧化钾)通过在光学显微镜下将其蚀刻成可见尺寸来可视化表面缺陷。然而,这是一种破坏性的方法,不能用于在线大规模生产。对于在线检测,需要高分辨率的无损表面检测技术。常见的表面检测技术包括扫描电子显微镜(SEM)、原子力显微镜(AFM)、光学显微镜(OM)和共聚焦微分干涉对比显微镜(CDIC)等。对于亚表面检测,常用的技术包括光致发光(PL)、X射线形貌术(XRT)、镜面投影电子显微镜(MPJ)、光学相干断层扫描(OCT)和拉曼光谱等。在这篇综述中,我们将碳化硅检测技术分为光学方法和非光学方法,并在以下各节中对每种技术进行讨论。非光学缺陷检测技术非光学检测技术,即不涉及任何光学探测的技术,如KOH蚀刻和TEM,已被广泛用于表征SiC晶圆的质量。这些方法在检测SiC晶圆上的缺陷方面相对成熟和精确。然而,这些方法会对样品造成不可逆转的损坏,因此不适合在生产线中使用。虽然存在其他非破坏性的检测方法,如SEM、CL、AFM和MPJ,但这些方法的通量较低,只能用作评估工具。接下来,我们简要介绍上述非光学技术的原理。还讨论了每种技术的优缺点。透射电子显微镜(TEM)透射电子显微镜(TEM)可用于以纳米级分辨率观察样品的亚表面结构。透射电镜利用入射到碳化硅样品上的加速电子束。具有超短波长和高能量的电子穿过样品表面,从亚表面结构弹性散射。SiC中的晶体缺陷,如BPDs、TSDs和SFs,可以通过TEM观察。扫描透射电子显微镜(STEM)是一种透射电子显微镜,可以通过高角度环形暗场成像(HAADF)获得原子级分辨率。通过TEM和HAADF-STEM获得的图像如图4a所示。TEM图像清晰地显示了梯形SF和部分位错,而HAADF-STEM图像则显示了在3C-SiC中观察到的三种SFs。这些SFs由1、2或3个断层原子层组成,用黄色箭头表示。虽然透射电镜是一种有用的缺陷检测工具,但它一次只能提供一个横截面视图,因此如果需要检测整个碳化硅晶圆,则需要花费大量时间。此外,透射电镜的机理要求样品必须非常薄,厚度小于1μm,这使得样品的制备相当复杂和耗时。总体而言,透射电镜用于了解缺陷的基本晶体学,但它不是大规模或在线检测的实用工具。图4不同的缺陷检测方法和获得的缺陷图像。(a)SFs的TEM和HAADF图像;(b)KOH蚀刻后的光学显微照片图像;(c)带和不带SF的PL光谱,而插图显示了波长为480nm的单色micro-PL映射;(d)室温下SF的真彩CLSEM图像;(e)各种缺陷的拉曼光谱;(f)微管相关缺陷204cm−1峰的微拉曼强度图KOH蚀刻KOH蚀刻是另一种非光学技术,用于检测多种缺陷,例如微管、TSDs、TEDs、BDPs和晶界。KOH蚀刻后形成的图案取决于蚀刻持续时间和蚀刻剂温度等实验条件。当将约500°C的熔融KOH添加到SiC样品中时,在约5min内,SiC样品在有缺陷区域和无缺陷区域之间表现出选择性蚀刻。冷却并去除SiC样品中的KOH后,存在许多具有不同形貌的蚀刻坑,这些蚀刻坑与不同类型的缺陷有关。如图4b所示,位错产生的大型六边形蚀刻凹坑对应于微管,中型凹坑对应于TSDs,小型凹坑对应于TEDs。KOH刻蚀的优点是可以一次性检测SiC样品表面下的所有缺陷,制备SiC样品容易,成本低。然而,KOH蚀刻是一个不可逆的过程,会对样品造成永久性损坏。在KOH蚀刻后,需要对样品进行进一步抛光以获得光滑的表面。镜面投影电子显微镜(MPJ)镜面投影电子显微镜(MPJ)是另一种很有前途的表面下检测技术,它允许开发能够检测纳米级缺陷的高通量检测系统。由于MPJ反映了SiC晶圆上表面的等电位图像,因此带电缺陷引起的电位畸变分布在比实际缺陷尺寸更宽的区域上。因此,即使工具的空间分辨率为微米级,也可以检测纳米级缺陷。来自电子枪的电子束穿过聚焦系统,均匀而正常地照射到SiC晶圆上。值得注意的是,碳化硅晶圆受到紫外光的照射,因此激发的电子被碳化硅晶圆中存在的缺陷捕获。此外,SiC晶圆带负电,几乎等于电子束的加速电压,使入射电子束在到达晶圆表面之前减速并反射。这种现象类似于镜子对光的反射,因此反射的电子束被称为“镜面电子”。当入射电子束照射到携带缺陷的SiC晶片时,缺陷的带负电状态会改变等电位表面,导致反射电子束的不均匀性。MPJ是一种无损检测技术,能够对SiC晶圆上的静电势形貌进行高灵敏度成像。Isshiki等人使用MPJ在KOH蚀刻后清楚地识别BPDs、TSDs和TEDs。Hasegawa等人展示了使用MPJ检查的BPDs、划痕、SFs、TSDs和TEDs的图像,并讨论了潜在划痕与台阶聚束之间的关系。原子力显微镜(AFM)原子力显微镜(AFM)通常用于测量SiC晶圆的表面粗糙度,并在原子尺度上显示出分辨率。AFM与其他表面检测方法的主要区别在于,它不会受到光束衍射极限或透镜像差的影响。AFM利用悬臂上的探针尖端与SiC晶圆表面之间的相互作用力来测量悬臂的挠度,然后将其转化为与表面缺陷特征外观成正比的电信号。AFM可以形成表面缺陷的三维图像,但仅限于解析表面的拓扑结构,而且耗时长,因此通量低。扫描电子显微镜(SEM)扫描电子显微镜(SEM)是另一种广泛用于碳化硅晶圆缺陷分析的非光学技术。SEM具有纳米量级的高空间分辨率。加速器产生的聚焦电子束扫描SiC晶圆表面,与SiC原子相互作用,产生二次电子、背散射电子和X射线等各种类型的信号。输出信号对应的SEM图像显示了表面缺陷的特征外观,有助于理解SiC晶体的结构信息。但是,SEM仅限于表面检测,不提供有关亚表面缺陷的任何信息。阴极发光(CL)阴极发光(CL)光谱利用聚焦电子束来探测固体中的电子跃迁,从而发射特征光。CL设备通常带有SEM,因为电子束源是这两种技术的共同特征。加速电子束撞击碳化硅晶圆并产生激发电子。激发电子的辐射复合发射波长在可见光谱中的光子。通过结合结构信息和功能分析,CL给出了样品的完整描述,并直接将样品的形状、大小、结晶度或成分与其光学特性相关联。Maximenko等人显示了SFs在室温下的全彩CL图像,如图4d所示。不同波长对应的SFs种类明显,CL发现了一种常见的单层Shockley型堆垛层错,其蓝色发射在~422nm,TSD在~540nm处。虽然SEM和CL由于电子束源而具有高分辨率,但高能电子束可能会对样品表面造成损伤。基于光学的缺陷检测技术为了在不损失检测精度的情况下实现高吞吐量的在线批量生产,基于光学的检测方法很有前途,因为它们可以保存样品,并且大多数可以提供快速扫描能力。表面检测方法可以列为OM、OCT和DIC,而拉曼、XRT和PL是表面下检测方法。在本节中,我们将介绍每种检测方法的原理,这些方法如何应用于检测缺陷,以及每种方法的优缺点。光学显微镜(OM)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制