平面固态检测

仪器信息网平面固态检测专题为您提供2024年最新平面固态检测价格报价、厂家品牌的相关信息, 包括平面固态检测参数、型号等,不管是国产,还是进口品牌的平面固态检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合平面固态检测相关的耗材配件、试剂标物,还有平面固态检测相关的最新资讯、资料,以及平面固态检测相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

平面固态检测相关的仪器

  • 布鲁克公司直接留言,请将以下链接拷贝到浏览器地址栏(强力推荐) 通过测量固态脂肪含量来确定脂肪结晶度是脂肪工业实验室中应用的一种重要分析方法。从1970年开始, 布鲁克公司和他的用户一起致力于使用NMR的方法来确定固态脂肪含量以及进行其它小核磁应用方面的研究。The minispec 团队通过六代minispec 的发展已经基本满足了用户的需求。最新的一代产品——mq系列,作为质量控制和质量保障的分析工具已经第二次获得了权威的R&D100奖。 Bruker的SFC校准样品最初的固态脂肪标样伴随着第一代the minispec 的出现同时发展起来。布鲁克光谱公司(德国)有一系列最新的保管良好的SFC校准的标准样品。这些样品用于校准相关的SFC分析仪,然后用来计算用户样品的固态脂肪含量。The minispec 需要定期校正,通过三个认证的标准样品产生准确的SFC值,然后样品根据布鲁克的建议方法或采用官方的SFC方法进行处理。官方的 SFC 方法1993年在第一版美国油脂化学家协会标准方法中发表了关于使用低分辨率NMR进行SFC测定的方法(AOCS Official Method Cd 16b-93)。布鲁克公司全面支持NMR协会及其它们的工作。 AOCS的官方方法◆1999年修订的AOCS Cd 16b-93 直接测量◆1999年修订的AOCS Cd 16-81;间接测量 温控方法: 一系列相对平行方法使用两种不同的温控序列来测量脂肪样品。假如样品数量受到一定限制就很有必要依据这个系列方法,否则就要使用更快的平行方法。通过这两种温控序列方法获得的SFC值是不同的,由于一个直接放入40℃的回火浴中的脂肪样品和一个通过一个逐级升温到达40℃的样品,它们有不相同的加热史。 直接和间接测量方法的对比两种用来SFC的测量的脉冲NMR方法:直接法和间接法。直接法测量包含固体和液体组分的信号,而间接方法只测量液体信号,然后和一个完全溶解的样品产生的信号进行比较。 应用和软件◆熟悉的 Windows程序 (9x /NT 相兼容)◆用户所需的专业的SFC软件界面◆符合GLP/CE要求◆自动进行仪器校验◆终端通过网卡与计算机连接 ◆样品信息的输入、输出和准备样品的数据库/数据表 ◆指导用户顺利测量的信息库 ◆快速的仪器诊断和符合GLP的数据采集库 ◆结果的实时统计分析
    留言咨询
  • 提高生物分子 NMR 敏感度世界上第一个商用固态 DNP-NMR 系统Bruker 的 263 和 395 GHz DNP-NMR 光谱仪是世界上首批商用固态 DNP-NMR 系统。这两款光谱仪扩大了 DNP 固态 NMR 实验的范围,具备无与伦比的敏感度,适用于激动人心的新应用领域。 多种样品的信号可从 20 增强到 80 并且持续进行系统优化,以实现更高的 DNP 效率。新型高功率回旋管系统在 263 GHz 和 395 GHz 下产生微波,功能强大、安全且易于使用,适合长期开展不受时间限制的 DNP 实验。在约 100 K 的低温下开展的实验受益于创新的低温 MAS 探头,使样品可直接在
    留言咨询
  • 纳米孔分子检测仪技术参数一、工作原理及应用领域电解质溶液中的待测分子在电压作用下穿过纳米尺度的孔道时,会引起离子电流的变化,通过记录和解析特征电流信号对待测分子进行识别。纳米孔单分子检测技术具有高灵敏度和高分辨率,可实时检测单分子层面的变化,且无需标记和扩增,在基因组学、蛋白质组学、病原体检测、临床诊断和环境监测等多个领域都展现出巨大的应用潜力。 二、固态纳米孔技术2.1电解质溶液中的待测分子在电压作用下穿过纳米尺度的孔道时,会引起离子电流的变化,通过记录和解析特征电流信号对待测分子进行识别2.2提供1-100 nm孔径可定制、灵敏低噪的具孔氮化硅薄膜2.3 技术优势1)平台型技术,通过定制纳米孔的尺寸,可适用于基因测序、蛋白质分析、病原微生物检测等不同应用场景2)高灵敏度和分辨率,能够检测到单分子水平的变化3)经济耐用,固态纳米孔制备成本低,机械强度高,可反复使用,适用更广泛的溶液环境 三、生物大分子检测仪3.1采用USB3.0接口,不仅实现了稳压供电,还保证了高速实时数据和指令传输。3.2通过工程创新和功能优化,提供了比市面同类产品更强的性能。3.3我们致力于为每一位参与研究的专家学者提供极致的性价比,让纳米孔检测技术变得触手可及3.4更低价、更便捷的检测设备,拓展更丰富的应用场景3.5特征参数 1)数据和指令延迟: 0.1 s2)带宽(可选配):20 kHz-200 kHz3)施加电压范围:±1000 mV @10mV4)采样频率(可选配):200 kHz-2 MHz5)噪音水平:相同滤波频率和采样率下低于现有产品 四、配套检测软件采用多语言兼容架构,在确保数据显示准确性和实时性的同时,集成了强大的数字信号处理和多模态大数据分析工具,并支持abf等多种格式文件读取,为用户提供了高效便捷的友好型一站式示波和数据分析平台。4.1 软件特色功能1)过孔、踢孔、堵孔等事件自动识别、批量截图输出2)AI聚类、模式识别、监督式识别等3)事件特征一键提取成Excel导出4)多组数据特征统计对比分析 五、固态纳米孔芯片1)1-100nm孔径可定制的固态纳米孔产品2)孔径可控、稳定耐用、灵敏低噪3)提供基于Axon 200b或自研检测设备的测样和数据分析服务4)TB级吞吐量自有服务器集群,确保数据处理高效稳定 5)多模态算法模型,多组数据集、多维特征一目了然6)高质量物理仿真模型,支持复杂应用场景精准预测7)当疾定制分析,软件需求响应敏捷,满足各类研究需要 六、低丰度蛋白检测1)固态纳米孔技术可以同时对多种蛋白进行检出,检出限低至飞摩级别,检测时间短,设备和单次检测均远低于现有解决方案2)固态纳米孔技术可以对不同病原体核酸进行即时精准检出,设备小型便捷,操作简单,成本低廉3)尺寸极小的固态纳米孔可以提高光刻掩摸的精度,从而制作出更小、更复杂的半导体器件
    留言咨询

平面固态检测相关的方案

平面固态检测相关的论坛

平面固态检测相关的耗材

  • 固态发酵食醋中对羟基苯甲酸酯类 色谱检测预处理方法包
    色谱法检测调味品中对羟基苯甲酸酯类防腐剂样品预处理专用方法包 - 固态发酵食醋检测专用本方法包综合采用固相萃取(SPE)+QuEChERS技术,从固态发酵食醋中同时分离、提取和净化对羟基苯甲酸酯类(甲酯、乙酯、丙酯、丁酯)防腐剂,以用于气相色谱技术或液相色谱技术对这些防腐剂含量的测定
  • 固态热解石墨平台,10/包
    每批石墨管都经过质量检测以确保其满足严格的污染、灵敏度、精确度、电阻和使用寿命等性能指标要求。 当您进行常规分析,并且希望低背景样品能获得最佳检测限时可使用间隔管。这同样适用于测定有机溶剂或易扩散到整个石墨管因而可能降低精度的低粘度样品。 Omega 平台管易于使用,同时具备优异的原子化效果:该集成平台可确保完美的热效应,产生高密度原子云,以便获得良好的信噪比和最佳检测限。 固态热解平台与石墨管的结合可提供比旧方法更好的一致性,并提供最佳的平台效应。这确保了在分析具有高背景或高干扰的样品时获得最佳性能。需要操作员有更高的操作技巧才能获得最佳结果。 高纯石墨减少痕量杂质的杂散吸收并且提高信噪比。 每一根管都经过手工检测其结果的重现性和可靠性 可减少重复检测而提高效率
  • 固态电极的抛光套件 6.2802.000
    固态电极的抛光套件订货号: 6.2802.000抛光套件,含1张抛光布以及大约2克氧化铝粉(粒径0.3微米)

平面固态检测相关的资料

平面固态检测相关的资讯

  • 从实验室到生产线:固态光源技术在生物成像与工业检测中的性能提升
    从实验室到生产线:固态光源技术在生物成像与工业检测中的性能提升生物医学成像和工业计量的照明系统规格通常集中在光谱、空间和时间的光输出特性上。Lumencor的技术支持总监Iain Johnson和我们分享了固态光源阵列——LED、发光管和激光器组合成的固态光引擎如何实现规格定制,以满足特定应用的照明要求。固态光引擎是一个集中控制的固态光源阵列,其输出合并到一个共同的光学传输系统中(图1)。光源的输出可以并行激活以产生白光(图2),或在需要分离的波长时,也可按顺序进行激活(图3、图4)。光源本身可以采用一种固态照明技术,即LED、光导管或半导体激光器,也可以对这些光源技术进行组合。这可以根据zui终用户的应用对亮度、角度分布和辐照度的要求进行定制。根据这一定义,光引擎输出的光谱分布可以通过加法组合,而这与传统的宽光谱照明设备(电弧放电和白炽灯)形成鲜明对比。传统的照明设备产生的光谱分布在物理上是不变的,只能通过选择性的阻挡和衰减来调整。从工程学的角度来看,固态光源的第二个主要优点是,它的输出可以在强度(图2、图4)和时间(图4、图5)方面进行精确控制。因此,光谱输出单元件的差异很小(图2),这使得光引擎应用于不同成像系统时,所获得的数据质量能保持一致。图1.固态光引擎及其输出光谱的概念图。四个固态光源的输出被合并入一个共同的光路,并通过光导耦合进入纤维及或者图像扫描仪。在实际操作中,光源可以是2-21个,具体数量取决于应用要求。光源可以是LED、光导管或半导体激光器其中的一种或组合。它们的输出可以经过滤波(F)以细化光谱。输出光的一部分会被分离出来,并导向参考光电二极管(rPD),以提供控制反馈。在大多数生物医学成像应用中,不需要持续照明,甚至在某些情况下,会起到反效果,影响实验数据。通常情况下,照明与相机曝光会同步进行。这里有两个重点:首先是光源间的切换速度,其次是脉冲间隔的复现性。相比和机械滤光轮耦合的白光照明器(约50ms的切换时间),光引擎可以做到小于1ms的光源间切换(图4),缩短了获取多色图像Z轴堆叠或者玻片扫描所需的时间。脉冲间的积分不变形(图5)是决定延时图像序列保真度的关键因素。每个脉冲的积分量化了在延时序列中每次曝光所需的照度。脉冲之间的照度差异越小,样品动态行为的敏感度就越能增加,这在图像帧到帧的变化间可以体现。图2.28台SOLA V-nIR光引擎(Lumencor, Inc., Beaverton OR)的光谱输出曲线叠加。光引擎的总光输出由光谱曲线所包围的区域来量化。所有28台光引擎的平均输出功率为4558mW,标准差(n=28)为91mW,相当于2%的方差系数(CV)。图3.SPECTRA光引擎(Lumencor, Inc., Beaverton OR)的光谱输出,包括LED、发光管或激光器。发光二极管和光导管的波长规格(nm)代表了中心波长(CWL)/半高全宽(FWHM),已经通过内置的滤光片来改进光源输出。功率(mW)是在光导(连接到显微镜或光学扫描仪)的远端测量得到的。集成三种不同类型的固态光源,可以在整个可见光和近红外波段内提供均匀的功率输出。图4.由TTL触发,AURA光引擎(Lumencor, Inc., Beaverton OR)交替输出485nm(约0.5ms宽)和560nm(约3ms宽)的脉冲(示波器记录)。图中显示了两条叠加的示波器轨迹,其中485nm的强度通过RS232串行命令从100%调整到55%,而560nm的强度保持不变。485nm和560nm的脉冲时间间隔为0.25ms。图5.模拟光电二极管(APD)检测来自一台5光源的AURA光引擎(Lumencor, Inc., Beaverton OR)发出的5ms光脉冲。图中展示了10个脉冲序列,代表了每次数据采集中记录的150个连续脉冲。计算了150个脉冲序列中每个脉冲的积分光输出。对于555/28 nm输出,150个脉冲的方差系数(CV)在555/28 nm脉冲串中为0.23%,在635/22 nm脉冲序列中为0.20%。其他三个源通道的CV值相似(0.15-0.25%)。除了光谱带宽(图3)以外,固态LED、光导管和激光器之间的主要区别在于其光输出的角度分布;LED和激光器之前的zui大区别如表1所示。对于宽场显微镜应用,LED光源配置为科勒照明产生的均匀照明,辐照度范围为1-100mW/mm2。然而,单分子定位显微镜(SMLM)需要更高的辐照度,通过链接到显微镜临界落射照明器(critical epilluminator)的CELESTA光引擎(Lumencor, Inc., Beaverton OR),可以在样品表明提供10^4mW/mm2的辐照度(图6)。临界照明的使用是由科勒照明在光学上的低效率所决定的,因为科勒照明并没有覆盖整个光源表面或者发射光的全部角度分布。在临界照明中,光源被直接成像到样品平面上,这种方法更为高效,但对光源输出中的任何空间不均匀性也更为敏感。临界落射照明器的作用是均匀化任何空间上的不均匀性,以产生与典型scmos相机传感器尺寸(~200mm2)相匹配的高辐照度照明场。Light SourcePower(mW)①light guide②Light Guide Cross SectionArea(mm2)NA③Etendue (mm2 sr)④LED500Liquid light guideCircle,3mm dia7.070.302.00Laser800multimode fiberSquare, 0.4*0.4mm0.160.220.02表1. 光源比较①输出功率是在指定光导的远端测量的②使用光导将光源输出耦合到显微镜或光学扫描仪③光导的数值孔径④光通量积决定了光学检测系统有效利用光源输出的能力。当光源的光通量积与光学系统的光通量积紧密匹配时,可以获得zui佳性能。sr=球面弧度。 针对光驱动生物技术以及工业应用,优化光源的选择性需要全面考虑仪器的光谱、空间和时间要求,这些正是需要照明光源来支持的。通常一种技术尽可以满足其中的部分要求,所以zui佳策略即是混合多种技术来满足全部需求。复杂的光引擎可以提供这样一种集成的方法来混合光源,并克服任何给定技术的基本限制,例如,在荧光分析中,LED在500-600nm的光中由于臭名昭著的“绿色间隙”功率和亮度往往无法满足;或者相对于毫秒级的切换时间,任何弧光灯的开/关不稳定性;又或者广谱光源进行多路复用研究时,谱宽也带来了限制。如今各种固态光源各有优劣,只有仔细评估它们的优点与局限性,才能为光驱动生命和材料科学应用的广泛领域找到zui合适的照面解决方案。图6.使用CELESTA光引擎(Lumencor, Inc., Beaverton OR),通过一根直径800um的光纤耦合到安装在尼康Ti/Ti2显微镜的临界落射照明器上,并产生均匀的荧光玻璃成像。使用尼康60/1.4 NA Plan Apo物镜和Andor的 Zyla 5.5 (2560 x 2160 pixels) scmos相机进行图像捕捉。图表显示了相机沿着标记为红色的对角线所记录的灰度值。右上角的插图展示了使用尼康10X/0.3 NA Plan Apo物镜成像的同一样品。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 国内首个拥有自主知识产权固态纳米孔基因检测仪工程样机苏州问世
    11月21日,苏州丽纳芯生物科技有限公司第四代固态纳米孔基因检测仪工程样机发布会在花桥国际创新港举行。据悉,这是国内首个拥有自主知识产权固态纳米孔基因检测仪样机,作为生命科学研究工具及精准医疗进步的基石。丽纳芯首席技术官朱博士讲解新一代检测仪随着半导体工艺技术的飞速发展, 小型化、高速度、大通量的固态纳米孔基因检测芯片的制作已经实现,并使得检测芯片的大规模生产成为可能。近年来在业内被充分公认,低成本、规模化是固态纳米孔测序仪领域未来的发展方向,丽纳芯作为苏州昆山高科技领军人才科技公司,拥有纳米孔芯片的核心工艺、生产技术。据悉,丽纳芯作为中国首个固态纳米孔基因检测仪开创者,在2022年12月发布了国内首个自主研发第四代固态纳米孔基因检测Lsmart-SP1原理样机。2023年3月发布了搭载Lsmart-SP1专有纳米孔芯片 Cell-231 以及配套试剂,研制了第二代Cell -241芯片,作为生命科学研究工具已应用到动物、植物、微生物、环境、人类以及临床等研究中。日前发布的Lsmart-SP1工程样机所对应的目标产品是一款Ipad 大小手持式纳米孔基因检测仪,无需扩增,便可以直接读取结果出具报告,将其应用于生命科学研究工具包括动物、植物、微生物、环境、人类、临床等研究以及临床医学包括肿瘤早筛、伴随诊断、病原微生物检测、疾病预后分析、基因测序等。一经商业化,可打破基因测序仪被国外垄断的局面,成为我国第一台高通量、高集成可广泛应用于生命科学研究及临床医学的固态纳米孔基因检测仪。丽纳芯CEO谭博士表示:“丽纳芯开创了中国固态纳米孔基因检测高通量、集成化、低成本、小型化、移动式、超快速、检测灵敏性代入‘单分子识别’时代。丽纳芯作为国内第一个固态纳米孔基因检测商业化敢为人先的团队,还有很长的路要走。固态纳米孔基因检测仪首先作为生命科学研究的工具,在动物、微生物、植物、环境、人类、临床研究等发挥着高精尖的作用,其次在临床医疗领域包括有精准预防、早期筛查、精准诊断、癌症早筛、病原微生物快速检测,临检快速报告等发挥巨大优势。”在发布会上,丽纳芯首席技术官朱博士对新一代检测仪工程样机的原理、系统构成、检测过程以及检测数据进行了讲解和展示,丽纳芯也共享阶段性数据。该样机能够以“基于电压反馈控制”方式,自动化地完成检测全过程。从现场演示情况来看,整个过程除加入待测样本之外,无需其他人工操作,具有非常高的自动化程度。中国乃至全球,生命经济成为新的经济增长引擎,而生命经济的核心就是基因测序技术,国家级人群基因组学研究是精准医学的基石,直接影响到一个国家在生物医药领域的核心竞争力。第一个人类的基因组,从1990年到2003年,由2000名科学家历时13年,花费38亿美金才完成,图谱中包含了人类染色体的近30亿个碱基对的核苷酸序列,由于高度重复的DNA块组成,当时技术的局限,这份图谱仍留下了约8%的空白区,这部分的测序难度非常大。1975年至今,基因测序技术已经发展到第四代,测序时间从13年缩短到5小时,测序金额从38亿美金降低到1000元人民币,自国际人类基因组计划之后,各国纷纷推出国家级大规模人群基因组测序项目。以英国为例,2012年12月,英国启动10万人基因组计划,历时5年半的时间才完成7万多例全基因组测序。谭博士表示:“二代每台每天能完成60例个人全基因组测序,未来实现国家级大规模人群基因组测序,只需数百元、几小时、高集成、高通量即可完成人类全基因组测序应该不是梦想”。据了解,丽纳芯制定了三步走战略规划,第一步在已推出样机的框架基础上,研发团队进一步的优化开孔电流噪声,电流稳定性,数据分析算法,流体芯片开孔率等问题,将用一年左右的时间,即在2024年7月左右,推出面向生命科学研究市场的国内首款固态纳米孔基因检测仪产品。在此基础之上,再用两1-2年左右的时间,推出面向临床医学市场的高通量、高集成的检测仪,立足于清晰的技术路线,经过后续优化,仪器最终检测准确率可达到99%以上。突破将人类全基因组测序成本降低至百元人民币左右,数小时内完成大规模检测全过程的目标。
  • 破记录,纯硅全固态电池!华人科学家孟颖、陈政Science​最新成果!
    硅负极商业化应用的瓶颈硅负极具有极高的理论比容量(>3500 mAh/g)、较低的充放电电压平台(0.5 V vs. Li+/Li)以及非常丰富的自然储量等优势,被认为是下一代高能量密度锂离子电池最具发展潜力的负极材料之一。然而,在实际应用中,硅负极面临着一个迄今尚未解决的技术瓶颈,即较差的循环稳定性。特别是硅基全电池,其循环性能往往不超过100圈,这主要归功于硅负极的本征缺陷:1)硅负极在嵌锂和脱锂过程中会发生较大的体积变化(300%),极易导致硅颗粒的破裂和粉化,以及与集流体的剥离;2)由于Li-Si 合金的高反应性,会导致固体电解质界面膜(solid electrolyte interphase, SEI)的不断破裂和重新生成,造成电解液和活性锂的持续消耗,最终造成硅负极的容量快速衰减。针对硅负极存在的问题和挑战,科学家们开发了许多先进的改性策略来缓解容量衰减,如纳米结构设计、探索新型聚合物粘结剂、电解液改性、不同的预锂化策略和硅/石墨复合等等。尽管这些策略均在一定程度上提高了硅负极的循环性能,但是没有一种策略能够同时解决上述所有问题,硅负极的商业化应用之路仍然任重道远。突破瓶颈,新型微硅全固态电池稳定循环500次,容量保持率高达80%2021年9月24日,加州大学圣地亚哥分校的华人美女科学家孟颖(Ying Shirley Meng)教授团队提出了一种全新的方案可以一次性解决硅负极面临的上述问题,即通过使用硫化物固态电解质以及不含碳的99.9 wt.%微硅(μSi)阳极的组合,组装了一种高性能的纯硅阳极全固态电池(ASSB)。所制备的全电池不仅能够在高面电流密度(5 mA cm-2)和宽温度范围内(-20 ℃到80℃)稳定运行,还可以提供高达 11 mAh cm-2 (2890 mAh g-1) 的面积容量。研究表明,该电池可以在5 mA cm-2的电流密度下稳定循环 500 次,容量保持率高达 80% ,且平均库伦效率高达99.9% ,是迄今为止报道的微硅全电池的最佳性能。如此优异的性能主要归因于微硅阳极和硫化物电解质之间理想的界面特性以及锂硅合金独特的化学机械行为,从而彻底解决了硅负极存在的连续的界面生长和不可逆的锂损失等问题。上述研究成果以“Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes”为题,发表在国际顶级期刊《Science》上。文章的第一作者是加州大学圣地亚哥分校的Darren H. S. Tan博士,通讯作者是孟颖(Ying Shirley Meng)教授和Zheng Chen教授。值得注意的是,早在2017年,Darren H. S. Tan、ERIK A. WU、ZHENG CHEN 和Ying Shirley Meng便共同创立了一家专注于全固态电池技术的初创公司 UNIGRID Battery。其中,Darren H. S. Tan为公司的CEO,ERIK A. WU担任公司的CTO,ZHENG CHEN 和Ying Shirley Meng教授担任公司的技术顾问。目前,该公司已经获得文章所开发的技术的使用权。微硅全固态电池的设计思路和创新之处1)选择基于硫化物的固态电解质(SSE)可以保证优异的界面特性。由于硅负极的稳定性问题主要来自阳极与液体电解质的界面,因此作者选择使用SSE,因为它能够形成稳定且钝化的 SEI。同时,与传统的液态电池结构不同,SSE 不渗透多孔 μSi 电极(图 1),且将SSE 和 μSi 电极之间的界面接触面积减少到二维(2D)平面。在 μSi 锂化后,尽管体积膨胀,但二维平面仍被保留,从而防止了新的SEI界面产生。2)制备出由99.9 wt% μSi 和0.1%PVDF组成的纯硅阳极,去除阳极中碳导电添加剂,可以减少SSE的分解和不必要的副反应。碳的消除显着减少了与固体电解质的界面接触(和不需要的副反应),避免了液体电解质通常发生的连续容量损失。同时,如图 1 所示,负极 μSi 颗粒保持彼此直接的离子 (Li+) 和电子 (e-) 接触,确保了 Li+ 的快速扩散和 e- 在整个电极中的传输,不受任何电子绝缘成分(如 SEI 或电解质)的阻碍。鉴于此,作者使用由 99.9 wt% μSi 组成的 μSi 电极、硫化物SSE和锂镍钴锰氧化物 (NCM811)组装了一种纯硅μSi||SSE|| NCM811全固态电池。在锂化过程中,在 μSi 和 SSE 之间形成钝化 SEI,然后在界面附近对 μSi 颗粒进行锂化。然后,高反应性的 Li-Si 与其附近的 Si 颗粒发生反应。反应在整个电极中传播,形成致密的 Li-Si 层。值得注意的是,得益于 Li-Si 和 μSi 颗粒之间的直接离子和电子接触,在 μSi 锂化过程中,Li-Si 的形成可以在整个电极中传播(图 1)。而且,这个过程是高度可逆的,不需要任何过量的锂。图 1.ASSB 全电池中 99.9 wt% μSi 电极的示意图。无碳纯硅阳极减少了SSE的分解,Si-SSE界面的钝化阻止了不必要的副反应为了证明消除阳极中碳的重要性,以及 Si-SSE 界面的钝化性质,研究人员制备了两种有20wt%碳添加剂和无碳添加剂的硅阳极,并表征和量化了 SSE 分解产生的 SEI 产物。CV曲线显示,不含碳的电池表现出大约 3.5 V 的初始电压平台,这是 μSi||NCM811 全电池的典型特征(图2A)。然而,含 20 wt % 碳的电池却在2.5 V 处出现电压平台,这说明在达到 3.5 V 以上的锂化电位前发生了SSE 电化学分解。XRD表征同样证实,在使用碳的电池中,大部分原始 SSE 的衍射信号不再存在(图2B),表明电解质严重分解。XPS分析进一步表明,碳的存在会导致更大程度的 SSE 分解。与不含碳的电极(图 2C 中间)相比,含碳电极(图 2C,底部)的 PS43-硫代磷酸盐单元信号的峰值强度下降幅度更大。因此,与传统的含碳电极相比,无碳电极将大大减少 SSE 分解,从而提高电池的首次循环库仑效率 (CE%) 和倍率性能。图 2. Si-SSE 界面SI成分的表征。同时,研究人员还采用滴定气相色谱 (TGC) 来量化 SEI 增长并确定其钝化和稳定性质。通过组装五个 μSi||SSE||NCM811 全电池,并分别进行 1 到 5 次循环(图 3A)发现:所有电池的首次库伦效率均大约76%,第二圈就迅速上升至 99%。结果表明,在第一次循环后,发现形成的 SEI 总量为电池容量的 11.7%,而在第二次循环中这一数量略有增加至 12.4%。在随后的循环中,发现累积的 SEI 和活性 Li+ 均保持稳定且相对不变,表明界面钝化可防止 Li-Si 与电解质之间发生不必要的连续反应。为了评估延长循环期间的 SEI 稳定性,研究人员制造了一个 Li-Si 对称电池,并在 5 mA cm-2 下循环,每次循环使用 2 mAh cm-2 的容量(图 3C)。电化学阻抗谱 (EIS) 测量发现阻抗在 200 次循环后保持稳定(图 3D),证实 SEI 在本质上是钝化的。图 3. SEI 增长的量化效应。(A) 滴定气相色谱中使用的全电池的电压曲线, (B) Li-Si 和 SEI 相对于电池容量的相对含量, (C) Li-Si 对称电池的电压曲线,和 (D) EIS奈奎斯特图。Li-Si 和 SSE独特的化学和机械性能保证了良好的界面接触为了可视化 Li-Si 的形态演变,研究人员采用聚焦离子束SEM技术表征了在原始、锂化和脱锂状态下三个单独的 μSi 电极的横截面形貌:1)在原始状态下(图 4A),观察到离散的 μSi 颗粒(2 至 5 μm),压延后电极孔隙率为 40%;2) 锂化后(图 4B),电极变得致密,大部分孔隙在原始 μSi 颗粒之间消失。此外,单独的 μSi 颗粒之间的边界已经完全消失,整个电极已成为相互连接的致密锂硅合金;3)脱锂后(图 4C),μSi 电极并没有恢复到其原始的紧密微粒结构,而是形成了大颗粒,且大颗粒之间存在空隙。能量色散 X 射线 (EDS) 成像证实孔隙确实是空隙,没有证据表明每个脱锂颗粒之间存在 SEI 或 SSE。相比之下,由于整个颗粒表面形成了SEI,液态体系下的锂化 μSi 颗粒不会合并并保持分离。为了进一步量化循环过程中的厚度增长和孔隙率变化,研究人员还制备了质量负载约为 3.8 mg cm-2 的 μSi 电极,并在充电和放电状态下测量了它们的厚度。在原始状态下,电极的厚度为约 27 μm,在锂化为 Li3.35Si 后,厚度增加到约 55 μm,脱锂后厚度达到约 40 μm,计算出的孔隙率为约 30%。与原始 40% 相比,脱锂状态下的孔隙率较低。尽管厚度和孔隙率变化相对较大,但在多次循环后观察到相似的形态和厚度,SSE 层和脱锂的 Li-Si 的多孔结构之间仍然保持良好的接触(图 4C)。这表明 Li-Si 和 SSE 的机械性能在保持界面完整性以及沿 2D 界面保持与阳极的接触方面起着至关重要的作用。图 4. 99.9 wt % 微硅负极的锂化和脱锂的可视化。(A) μSi 电极的原始多孔微结构, (B) 锂化后具有致密互连 Li-Si 结构, (C) 脱离后形成大而致密的 Si 颗粒,且颗粒之间形成空隙。纯硅阳极全电池性能得益于上述的 组合优势,该μSi||SSE|| NCM811全固态电池可以实现高达 5 mA cm-2 的电流密度、-20° 和 80°C 之间的工作温度范围以及高达 11 mAh cm-2 (2890 mAh g-1) 的面积容量(图5)。同时μSi||SSE|| NCM811在 5 mA cm-2 下进行500 次循环后仍然可提供 80% 的容量保持率,证明了纯微硅阳极全固态电池具有优异的循环稳定性。图 5. μSi||SSE||NCM811 全固态电池性能:(A) 高电流密度测试, (B) 宽温度范围测试, (C) 高面积容量测试, (D) 室温下的循环寿命。总体而言,这种方法为解决μSi阳极存在的基本界面和性能问题提供了新的解决方案,对推进硅负极商业化具有重要的意义。作者简介通讯作者:孟颖 (Ying Shirley Meng)孟颖教授在中国杭州出生并长大,在新加坡接受高等教育。2005 年获得新加坡-麻省理工学院联盟微纳米系统高级材料博士学位,随后进入麻省理工学院从事博士后研究。2011 年获得美国国家科学基金会 (NSF) CAREER 奖,2013 年获得加州大学圣地亚哥分校校长跨学科合作奖,2014 年巴斯夫和大众汽车电化学科学奖,电化学学会 CW Tobias 青年研究员奖(2016 年),IUMRS-新加坡青年科学家研究奖(2017 年)、国际储能与创新联盟(ICESI)首届青年职业奖(2018 年)、美国化学学会 ACS 应用材料与界面青年研究员奖(2018 年)和 Blavatnik 国家奖(2018 年)入围者。孟颖教授目前是加州大学圣地亚哥分校 (UCSD) 纳米工程和材料科学教授, Zable Endowed 能源技术讲座教授,UCSD可持续电力和能源中心 (http://spec.ucsd.edu) 的创始主任。主要从事能源转换与储存设备(锂离子电池,锂金属电池,锂空气电池,钠离子电池,全固态电池,太阳能电池)的研究,在Science,Nature,Nature Energy等学术期刊上总共发表论文500余篇,h-index 86,被引用25400余次。参考文献:Tan et al., Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373, 1494–1499 (2021). DOI: 10.1126/science.abg7217
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制