光谱仪分类原理

仪器信息网光谱仪分类原理专题为您提供2024年最新光谱仪分类原理价格报价、厂家品牌的相关信息, 包括光谱仪分类原理参数、型号等,不管是国产,还是进口品牌的光谱仪分类原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光谱仪分类原理相关的耗材配件、试剂标物,还有光谱仪分类原理相关的最新资讯、资料,以及光谱仪分类原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

光谱仪分类原理相关的仪器

  • ImSpector系列光谱仪是一种以透射光栅为分光元件的成像光谱仪;通过将这种成像光谱仪附加到CCD相机前,可通过空间扫描获得目标物的影像和连续的光谱信息。ImSpector系列成像光谱仪,采用高集成度的机械设计,配合绝对的影像修正光学设计,真正可实现无光学像差的成像,设计中考虑最佳的光通效率,既满足实验室的使用性能,也能够满足工业在线的长期使用的稳定性需求。ImSpector系列成像光谱仪的入射端采用狭缝设计,并采用独创的全密封式设计,可保证在实际使用中不会因为环境的灰尘等影响光谱仪的内部光学元件,确保仪器的长期正常使用;出射端采用标准的C型接口或U型接口,可与各种标准C型或U型CCD相机直接接配。根据ImSpector-成像光谱仪的功能,有标准版成像光谱仪、增强版成像光谱仪及快速版成像光谱仪等多个版本可供选择;根据所覆盖的光谱范围,有如下分类: 适用光谱范围可选型号UV200-400nmUV4EVIS380-800nmV8, V8ERaman530-630nm, 770-980nmR6E, R10EVNIR400-1000nmV10, V10EVNIR350-1000nmV10MNIR900-1700nmN17ESWIR1000-2500nmN25E 标准版成像光谱仪标准版成像光谱仪具有体积小、重量轻的特点,提供接配1/2&rdquo 和2/3&rdquo CCD相机的版本,影像略有失真。(V8/V10)标准版V8 1/2&rdquo V8 2/3&rdquo V10 1/2&rdquo V10 2/3&rdquo 光谱范围380-800nm380-800nm400-1000nm400-1000nm倒线色散93.6nm/mm66nm/mm139nm/mm93.9nm/mm光谱分辨率8nm6nm11.2nm9nm像面尺寸(空间× 光谱)4.3× 6.6mm6.6× 8.8mm4.3× 6.6mm6.6× 8.8mm空间分辨率30&mu m, rms30&mu m, rms40&mu m, rms40&mu m, rms像差略有像散枕形畸变:30&mu m梯形畸变:20&mu m略有像散枕形畸变:45&mu m梯形畸变:40&mu m略有像散枕形畸变:30&mu m梯形畸变:20&mu m略有像散枕形畸变:45&mu m梯形畸变:40&mu m相对孔径F/2.8F/2.8F/2.8F/2.8狭缝宽度50&mu m(25,80,150可选)50&mu m(25,80,150可选)50&mu m(25,80,150可选)50&mu m(25,80,150可选)狭缝长度9.6mm9.6mm9.8mm9.8mm通光效率50%50%50%50%杂散光0.5%0.5%0.5%0.5%镜头接口C型C型C型C型相机接口C型C型C型C型主体材料铝铝铝铝外形尺寸&Phi 35× 139mm&Phi 35× 139mm&Phi 35× 139mm&Phi 35× 139mm重量300g300g300g300g高光谱成像应用:◆ 实验室研究(农产品表面检测、人体表面检测、包装材料表面检测等)◆ 产品在线检测(如显示器、纺织业、药品、酒类、印刷、染料、太阳能电池片)◆ 生医上的研究(如荧光检测、生物芯片穿透率量测)◆ 建筑古迹上的鉴定、真钞假钞辨识、真画假画的辨别、桥梁盐分的检测◆ 环保上的应用(如垃圾分类、海洋上漏油的分析、塑料材料分类)◆ 农业上的检测(可以观测喷洒农药前后的比较)◆ 航空遥感(如地形、地表、地貌)
    留言咨询
  • 产品概述BFA-3100便携式活体荧光藻分类自动分析仪采用荧光光谱分析方法,通过分析不同门类藻类的特异性荧光光谱,实现藻类快速分类监测。设备可同时监测藻密度和叶绿素a,无需试剂,整体便携手提箱设计,适合车载、船载等便携应用形式。产品特点1)自带温度、补偿和浊度补偿功能,测量更准确2)多波长测量方法,数据更可靠3)背景扣除算法消除水中荧光有机物干扰,结果更准确4)具备水深监测功能,准确识别藻在水深方向的变化,支持不同水深剖面监测藻类密度,最深可在水下200m实现藻类测量5)创新性采用高集成度关键器件,相较同类产品具有低故障率、易维护的优势6)具备藻类分类功能,可区分识别蓝藻、绿藻、硅藻、甲藻、隐藻5大类水中藻7)数据查看方便,提供安卓端、IOS端、Windows端三种软件查看数据8)设备轻便,体积小,易携带应用领域湖泊、水库、饮用水源地、城市内河等
    留言咨询
  • 产品背景 近年来,我国雾霾频发使大气能见度下降,严重影响人们的日常生活和身心健康。针对严重的气溶胶颗粒污染状况,聚光科技与德国吉森大学展开合作,引进国际领先的单颗粒气溶胶质谱技术,推出大气颗粒物质谱监测系统LAMPAS(Laser Mass Analyzer for Particles in the Airborne State),其经历二十多年发展,并在欧洲多个地方展开环境实地监测。该系统可广泛用于环境监测站、气象局、科研院所等环境空气质量监测场所中气溶胶颗粒物粒径和化学成分在线监测及在线源解析。产品特点 现场实时在线监测、高时间分辨率,在线分析颗粒物污染来源; 实现单颗粒气溶胶直接进样与精确粒径测量; 可测量几乎所有种类的气溶胶颗粒; 颗粒物粒径和化学成分同时测量,多成分正负离子同时检测; 无需繁琐的前处理,获得单颗粒质谱信息,更准确反映颗粒物的真实信息; 强大的数据记录与处理功能; 体积小,结构紧凑,仪器稳定性和机动性强; 总打击率高。产品原理 LAMPAS-3.0由进样系统、测径系统、激光电离系统和飞行时间质谱仪( TOF-MS)组成,气溶胶颗粒通过差分真空透镜加速准直进入真空室;随后在测径区,由两束测径激光测量其空气动力学直径,并同时触发电离激光器;激光电离产生的正、负离子通过双极TOF-MS检测其化学成分。LAMPAS-3.0可获得气溶胶单颗粒物粒径大小和化学成分信息,同时通过将颗粒物谱图进行分类处理,实现颗粒物在线源解析功能。应用领域 环境监测:大气细颗粒物源解析,新粒子生成与灰霾形成机制,颗粒物混合状态; 机动车辆排放监测; 生物领域; 医疗领域; 极端气候研究; 工业过程监测:粉末生产,半导体加工; 吸入毒理学研究
    留言咨询

光谱仪分类原理相关的方案

光谱仪分类原理相关的论坛

  • 光谱仪多维度分类

    光谱仪分类有多种。1、按分析目的可分:实验室光谱仪(化验室光谱仪)和工业光谱仪。2、按产生本质可分:原子光谱仪和分子光谱仪。3、按产生方式可分:发射光谱仪、吸收光谱仪、荧光光谱仪和散射光谱仪等。4、按光谱形状可分:线光谱仪、带光谱仪和连续光谱仪。5、按波长范围可分:红外光谱仪、紫外可见光谱仪和X射线光谱仪等。6、按光源可分:电感耦合等离子体发射光谱仪等。7、按发射原理可分:原子发射光谱仪。8、按吸收原理可分:原子吸收光谱仪、分子吸收光谱仪、紫外可见光谱仪、红外光谱仪和核磁共振光谱仪等。9、按散射原理可分:激光拉曼光谱仪等。10、按荧光原理可分:原子荧光光谱仪、分子吸收光谱仪和X射线荧光光谱仪等。11、按磷光原理可分:分子磷光光谱仪。12、按分光原理可分:色散型光谱仪和调制型光谱仪。13、按调制原理可分:傅里叶变换红外光谱仪等。14、按测定的X射线特征可分:X射线能量分散谱仪和X射线波长分散谱仪。15、按测定能量的产生原理可分:紫外光电子能谱仪、X射线光电子能谱仪、俄歇电子能谱仪和电子能量损失谱仪等。16、按结构可分:台式光谱仪和落地式光谱仪。17、按分析规模可分:小型光谱仪和大型光谱仪。 18、按分析对象的属性可分:有机光谱仪和无机光谱仪。19、按用途可分:生物光谱仪、制药光谱仪、化工光谱仪、食品光谱仪、医用光谱仪、金属光谱仪、非金属光谱仪、矿用光谱仪、试验光谱仪和专用光谱仪等。(来自网络)

  • 气相色谱仪工作原理及分类

    工作站打印分析结果 一色谱法也叫层析法,它是一种高效能的物理分离技术,将它用于分析化学并配合适当的检测手段,就成为色谱分析法。 色谱法的最早应用是用于分离植物色素,其方法是这样的:在一玻璃管中放入碳酸钙,将含有植物色素(植物叶的提取液)的石油醚倒入管中。此时,玻璃管的上端立即出现几种颜色的混合谱带。然后用纯石油醚冲洗,随着石油醚的加入,谱带不断地向下移动,并逐渐分开成几个不同颜色的谱带,继续冲洗就可分别接得各种颜色的色素,并可分别进行鉴定。色谱法也由此而得名。1、色谱分离基本原理: 在色谱法中存在两相,一相是固定不动的,我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相。 色谱法的分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。 使用外力使含有样品的流动相(气体、液体)通过一固定于柱中或平板上、与流动相互不相溶的固定相表面。当流动相中携带的混合物流经固定相时,混合物中的各组分与固定相发生相互作用。 由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相保留的时间不同,从而按一定次序由固定相中先后流出。与适当的柱后检测方法结合,实现混合物中各组分的分离与检测。    气相色谱仪的特点  高灵敏度:可检出10-10克的物质,可作超纯气体、高分子单体的痕迹量杂质分析和空气中微量毒物的分析。  高选择性:可有效地分离性质极为相近的各种同分异构体和各种同位素。  高效能:可把组分复杂的样品分离成单组分。  速度快:一般分析、只需几分钟即可完成,有利于指导和控制生产。  应用范围广:即可分析低含量的气、液体,亦可分析高含量的气、液体,可不受组分含量的限制。  所需试样量少:一般气体样用几毫升,液体样用几微升或几十微升。设备和操作比较简单仪器价格便宜。  气相色谱简单分析装置流程  气相色谱法简单分析装置流程基本由四个部份组成:  1、气源部分,2、进样装置,3、色谱柱,4、鉴定器和记录器.色谱分类方法: 色谱分析法有很多种类,从不同的角度出发可以有不同的分类方法。   ㈠按固定相聚集态分类:  1、气固色谱:固定相是固体吸附剂,  2、气液色谱:固定相是涂在担体表面的液体。  ㈡按过程物理化学原理分类:  1、吸附色谱:利用固体吸附表面对不同组分物理吸附性能的差异达到分离的色谱。  2、分配色谱:利用不同的组分在两相中有不同的分配系数以达到分离的色谱。  3、其它:利用离子交换原理的离子交换色谱:利用胶体的电动效应建立的电色谱;利用温度 变化发展而来的热色谱等等。  ㈢按固定相类型分类:  1、柱色谱:固定相装于色谱柱内,填充柱、空心柱、毛细管柱均属此类。  2、纸色谱:以滤纸为载体,  3、薄膜色谱:固定相为粉末压成的薄漠。  ㈣按动力学过程原理分类:可分为冲洗法,取代法及迎头法三  气相色谱法的常见术语及概念解释  1、相、固定相和流动相:一个体系中的某一均匀部分称为相;在色谱分离过程中,固定不动的一相称为固定相;通过或沿着固定相移动的流体称为流动相。  2、色谱峰:物质通过色谱柱进到鉴定器后,记录器上出现的一个个曲线称为色谱峰。  3、基线:在色谱操作条件下,没有被测组分通过鉴定器时,记录器所记录的检测器噪声随时间变化图线称为基线。  4、峰高与半峰宽:由色谱峰的浓度极大点向时间座标引垂线与基线相交点间的高度称为峰高,一般以h表示。色谱峰高一半处的宽为半峰宽,一般以 x1/2表示。  5、峰面积:流出曲线(色谱峰)与基线构成之面积称峰面积,用A表示。  6、死时间、保留时间及校正保留时间:从进样到惰性气体峰出现极大值的时

  • 直读光谱仪分类及误差分析

    直读光谱仪又叫原子发射光谱仪,应用于铸造,钢铁,金属回收和冶炼以及军工、航天航空、电力、化工、高等院校和商检,质检等单位。随着CCD技术的不断发展,直读光谱仪开始朝小型化、全谱型方向发展。小型化仪器功耗小,占用空间小且易于维护;全谱直读光谱仪能够获得全波段范围内的光谱,满足多基体分析要求,谱线选择灵活,可以有效扣除光谱干扰,分析更准确,而多道直读光谱仪只能检测有限数量的光谱,很难做到这一点。直读光谱仪分类1.根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和新型光谱仪2..根据光栅所处的环境不同,可分为真空型和非真空型直读光谱仪,其中非真空型直读光谱仪又可分为空气型直读光谱仪和充惰性气体型直读光谱仪(可以测定真空紫外元素);2.根据仪器的结构不同,又可分为多道直读光谱仪和全谱直读光谱仪,其中前者多采用光电倍增管作为检测器,后者多采用阵列检测器。4.根据色散组件的分光原理,光谱仪器可分为棱镜光谱仪, 衍射光栅光谱仪和干涉光谱仪.直读光谱仪器的误差来源分析1.系统误差也叫可测误差,一般包括仪器的本身波动;样品的给定值和实际值存在一定的偏差(标准样品的元素定值方法可能和实际检测方法不一致,这样检测结果会有方法上的差异;同一种方法的检测结果也存在一定的波动);待测样品和系列标样之间存在成分的差异,可能导致在蒸发、解离过程中的误差,如背景强度的差别和基体蒸发的差异等。 2.偶然误差是一种无规律性的误差,如试样不均匀;检测时周围的温湿度、电源电压等的变化;样品本身的成分差异等。3.过失误差是指分析人员工作中的操作失误所得到的结果,可以避免。如制样不精确,样品前处理不符合要求,控样和待测试样存在制样偏差,选择了错误的分析程序等。

光谱仪分类原理相关的耗材

  • Nalgene 2423 颜色标记的Unitary 分类洗瓶,低密度聚乙烯瓶体
    Nalgene 2423 颜色标记的Unitary 分类洗瓶,低密度聚乙烯瓶体;聚丙烯螺旋盖?Unitary 分类洗瓶已进行预包装,带有颜色标记,使用方便。每个包装中有四个500 ml 的Unitary 款式洗瓶,配有四种不同颜色的螺旋盖,分别是:红色、蓝色、白色和黄色。每个包装中含有带聚酯薄膜涂层的PolyPaper 易认标签定制系统样品(目录编号6316)。防漏订货信息:Nalgene 2423 颜色标记的Unitary 分类洗瓶,低密度聚乙烯瓶体;聚丙烯螺旋盖目录编号 2423-0500容量,ml500容量,oz.16盖尺寸,mm38-415每盒数量4每箱数量16可单独提供通气盖。
  • LMP激光雨滴谱仪
    LMP激光雨滴谱仪可以用来测量降雨和降雪。不仅对降雨降雪过程进行监测而且对降雨降雪的特性可以进行详细分析。可以监测区分下落中的毛毛雨、大雨、冰雹、雪花、雪球以及各种介于雪花和冰雹之间的降水。可以计算各种降雨类型的强度、总量、能见度,所有的数据都以RS485协议传输,再通过协议转换器转接到其它设备。 LMP激光雨滴谱仪广泛应用于交通控制、气象监测与服务、科学研究、机场观测、公路气象监测、水文地理学、气象雷达数据校正等应用领域。LMP激光雨滴谱仪几乎不需要保养,它的光学配件性能优越,可以工作在各种恶劣的环境中。激光发射器可以保证长时间的正常使用。特殊的工艺设计排除了外在光源对测定的影响,通过多方面的精心设计对环境的温度和尘土对测定带来的误差作了可靠的补偿。系统具有额外接口,还可以连接风速传感器、风向传感器、温湿度传感器等,所有的数据可通过激光雨滴谱仪的数据接口一起输出。测量原理:应用激光原理对高速运动物体进行测定。可测定运动物体的总量,大小,强度,和运动速度。它的优越性能尤其表现在对微小物体的测定,测定对象最小直径达到0.16mm。 技术参数LMP激光雨滴谱仪技术参数主要输出数据降雨量,降雨速度,降雨粒径大小,降雨强度,降雨等级(synop/r),雷达校正(z/r ratio),能见度(mor)可选输出数据风速,风向,空气温度,相对湿度(需单独订购传感器)操作原理785nm激光,最大0.5mw ,激光等级1m测定区域 46 cm2 (23 x 2.0 cm)操作环境-40~+70度; 0~100%相对湿度防护等级IP65供电24 v ac/dc /750 ma,或230 vac(可选12vdc)外箱不锈钢制,270x 170x 540 mm重量4.8 kg数据输出RS485双路输出 1200~115200波特率,全双工/半双工粒子速度范围0.2 ~20 m/s粒子等级440种(22种直径x 20种速度) 降雨降雪等级区分度 97%最小强度0.005 mm/h 毛毛雨最大强度250 mm/h雨中能见度0 ~99999m雷达反射率-9.9 ~99.9dbz 产地:中国
  • 化工原理实验仿真软件CES (以北化装置为原型)
    流程简述: 化工原理是化工、生物、食品、制药等专业必修课。化工原理实验是大部分学校必做的实验。因此化工原理实验被列为重点实验内容之一。东方仿真使用自主开发平台,利用动态数学模型实时模拟真实实验现象和过程,通过3D仿真实验装置交互式操作,产生和真实实验一致的实验现象和结果。每位学生都能亲自动手做实验,观察实验现象,记录实验数据,验证公式、原理定理。另外,该系统还配备开放的标准实验思考题生成器。该系统分为教师站和学生站。通过网络,教师站上的监控和管理程序方便地对学生站运行的实验仿真软件进行实时的监控和管理。本仿真软件以北京化工大学实验装置为主,兼顾华东理工大学的实验装置。包括了所有典型的化工原理实验装置。培训工艺:1.1 、离心泵特性曲线测定1.2 、流量计的认识和校核1.3 、流体阻力系数测定1.4 、传热(水-蒸汽)实验1.5 、传热(空气-蒸汽)实验1.6 、精馏(乙醇-水)实验1.7 、精馏(乙醇-丙醇)实验1.8 、吸收(氨-水)实验一1.9 、吸收(氨-水)实验二1.10 、丙酮吸收实验1.11 、干燥实验1.12 、板框过滤实验建议配置:学员站:CPU:奔腾E2140或更强的CPU(或AMD Athlon X2 4000)内存:1G以上显卡和显示器:分辨率1024x768以上硬盘空间:至少1G剩余空间操作系统:Windows XP SP2/SP3教师站:CPU:奔腾E5200或更强的CPU(或AMD Athlon X2 5000)内存:1G以上(推荐2G以上)显卡和显示器:分辨率1024x768以上硬盘空间:至少1G剩余空间操作系统:Windows Server 2003 SP2网络要求:网络必须稳定通畅(统一式激活)

光谱仪分类原理相关的资料

光谱仪分类原理相关的资讯

  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 万字讲懂离子色谱仪原理、结构、分类、应用、常见品牌等 | 仪器博物馆
    离子色谱仪是高效液相色谱的一种,作为测定阴离子、阳离子及部分极性有机物种类和含量的一种液相色谱方法,已被广泛应用在环境监测、食品分析、自然水工业、农业、地质等多个领域。今天小谱就其发展史、检测原理、结构等和大家进行探讨,一文把离子色谱仪讲通透。(如果读完文章您觉得还有哪些想听的知识点没有讲到,亦或是觉得文章中有哪些观点您不太认同,欢迎您积极留言。)01离子色谱的“前世今生”1975年,Dow Chemical(陶氏化学)的H.Small等人发表的第一篇离子色谱方面的论文在美国分析化学上;在分离用的离子交换柱后端加入不同极性的离子交换树脂填料,该树脂填料呈氢型或氢氧根型。如阴离子交换柱后端加入氢型的阳离子,交换树脂填料阳离子交换柱后端加入氢氧根型的阴离子,交换树脂填料当由分离柱流出的携带待测离子的洗脱液在检测前发生两个简单而重要的化学反应,一个是将淋洗液转变成低电导组分以降低来自淋洗液的背景电导,另一个是将样品离子转变成其相应的酸或碱以增加其电导。这种在分离柱和检测器之间降低背景电导值而提高检测灵敏度的装置后来组成独立组件称为抑制柱(或抑制器),通过这种方式使电导检测的应用范围扩大了;在H-Small等人提议下称这种液相色谱为离子色谱。离子色谱一经诞生就立即商品化;1975年,第一家离子色谱公司诞生——戴安公司(Dow Ion Exchange),由H-Small和T-S.Stevens研发;1979年,美国阿华州大学的J.S.Fritz等人建立了单柱型离子色谱,许多其它公司生产了离子色谱;1983年,中国核工业第五研究所刘开禄研究员刘开禄带领团队在青岛崂山电子实验仪器所研制成我国第一台离子色谱仪的原理样机ZIC-1,并实现产业化。性能基本与国外同类仪器(美国Dionex-14型)相接近,填补了国内空白;第六届“科学仪器行业研发特别贡献奖”获奖者 刘开禄ZIC-1型离子色谱仪第一台离子色谱仪成功商品化后,高效阳离子分离柱、五电极式电导检测器、阴离子分离柱、连续自再生式高效离子交换装置等一系列创造性的研究工作不断取得成功,极大的推动了中国离子色谱仪的发展。1985年6月,赵云麒、刘开禄研制ZIC-2型离子色谱仪,包含双模式理论和适用于阳离子分析的“五级电导检测”电路。1987年12月22日 ,ZIC-2型离子色谱仪通过了专家鉴定并投产,核心技术目前仍应用在中国的核潜艇水质监测。1995年,ZIC-3型离子色谱仪由张烈生、荆建增设计完成并获得国家科技成果完成者证书。左:ZIC-2型离子色谱仪、中:ZIC-2A型离子色谱仪、右:ZIC-3型离子色谱仪目前,随着技术的发展,电化学等技术在离子色谱仪中得到了更广泛的应用,比如新型抑制器技术、淋洗液发生器以及新型的电化学检测器-电荷检测器等均已商品化。而目前离子色谱技术发展也主要集中在色谱固定相、脉冲安培检测器以及抑制器等方面。不过,我国离子色谱的研发虽然取得了一定的成绩,但仍需更进一步的发展。02离子色谱的原理和结构离子色谱的原理基于离子交换树脂上可离解的离子与流动相中具有相同电荷的溶质离子之间进行的可逆交换和分析物溶质对交换剂亲和力的差别而被分离。适用于亲水性阴、阳离子的分离。工作过程: 输液泵将流动相以稳定的流速( 或压力) 输送至分析体系, 在色谱柱之前通过进样器将样品导入, 流动相将样品带入色谱柱, 在色谱柱中各组分被分离, 并依次随流动相流至检测器, 抑制型离子色谱则在电导检测器之前增加一个抑制系统。即用另一个高压输液泵将再生液输送到抑制器, 在抑制器中, 流动相的背景电导被降低, 然后将流出物导入电导检测池, 检测到的信号送至数据系统记录、处理或保存。非抑制型离子色谱仪不用抑制器和输送再生液的高压泵, 因此仪器的结构相对要简单得多, 价格也要便宜很多。离子色谱的结构离子色谱仪一般由流动相输送系统、进样系统、分离系统、抑制或衍生系统、检测系统及数据处理系统六大部分组成。1、流动相输送系统离子色谱的输液系统包括贮液罐、高压输液泵、梯度淋洗装置等,与高效液相色谱的输液系统基本一致。1.1贮液罐溶剂贮存主要用来供给足够数量并符合要求的流动相,对于溶剂贮存器的要求是:(1)必须有足够的容积,以保证重复分析时有足够的供液;(2)脱气方便;(3)能承受一定的压力;(4)所选用的材质对所使用的溶剂一律惰性。出于离子的流动相一般是酸、碱、盐或络合物的水溶液,因此贮液系统一般是以玻璃或聚四氟乙烯为材料,容积一般以0.5~4L为宜,溶剂使用前必须脱气。因为色谱柱是带压力操作的,在流路中易释放气泡,造成检测器噪声增大,使基线不稳,仪器不能正常工作,这在流动相含有有机溶剂时更为突出。脱气方法有多种,在离子色谱中应用比较多的有如下方法:(1)低压脱气法:通过水泵、真空泵抽真空,可同时加温或向溶剂吹氮,此法特别适用纯水溶剂配制的淋洗液。(2)吹氧气或氮气脱气法:氧气或氮气经减压通入淋洗液,在一定压力下可将淋洗液的空气排出。(3)超声波脱气法:将冲洗剂置于超声波清洗槽中,以水为介质超声脱气。一般超声30min左看,可以达到脱气日的。新型的离子色谱仪,在高压泵上带有在线脱气装置,可白动对琳洗液进行在线自动脱气。1.2高压输液泵高压输液泵是离子色谱仪的重要部件,它将流动相输入到分离系统,使样品在柱系统中完成分离过程。离子色谱用的高压泵应具备下述性能:(1)流量稳定:通常要求流量精度应为±1%左右,以保证保留时间的重复和定性定量分析的精度。(2)有一定输出压力,离子色谱一般在20MPa状态下工作,比高效液相色谱略低。(3)耐酸、碱和缓冲液腐蚀,与高效液相色谱不同,离子色谱所有淋洗液含有酸或碱。泵应采用全塑Peek材料制作。(4)压力波动小,更换溶剂方便,死体积小,易于清洗和更换溶剂。(5)流量在一定范围任选,并能达到一定精度要求。(6)部分输液泵具有梯度淋洗功能。目前离子色谱应用较多的是往复柱塞泵,只有低压离子色谱采用蠕动泵,但蠕动泵所能承受的压力太小,实际操作过程中会出现问题。由于往复柱塞泵的柱塞往复运动频率较高,所以对密封环的耐磨性及单向阀的刚性和精度要求都很高。密封环一般采用聚四氟乙烯添加剂材料制造,单向阀的球、阀座及柱塞则用人造宝石材料。1.3梯度淋洗装置梯度淋洗和气相色谱中的程序升温相似,给色谱分离带来很大的方便,但离子色谱电导检测器是一种总体性质的检测器,因此梯度淋洗一般只在含氢氧根离子的淋洗液中采用抑制电导检测时才能实现。采用梯度淋洗技术可以提高分离度、缩短分析时间、降低检测限,它对于复杂混合物,特别是保留强度差异很大的混合物的分离,是极为重要的手段。另外,新型抑制器通过脱气使淋洗液中CO2去除,碳酸盐的淋洗液背景电导很低,使灵敏度大大增加,也可以实现碳酸盐的梯度淋洗。离子色谱梯度淋洗可分为低压梯度和高压梯度两种,现分别介绍如下:(1)低压梯度低压梯度是采用比例调节阀,在常压下预先按一定的程序将溶剂混合后,再用泵输入色谱柱系统,也称为泵前混合。(2)高压梯度它是由两台高压输液泵、梯度程序控制器、混合器等部件所组成。两台泵分别将两种淋洗液输入混合器,经充分混合后,进入色谱分离系统。它又称为泵后高压混合形式。梯度淋洗的溶剂混合器必须具备容积小、无死区、清洗方便、混合效率高等性能,能获得重复的、滞后时间短的梯度淋洗效果。2、进样系统离子色谱的进样主要分为3种类型:即气动、手动和自动进样方式。(1)手动进样阀手动进样采用六通阀,其工作原理与HPLC相同,但其进样量比HPLC要大,一般为50μL。其定量管接在阀外,一般用于进样体积较大时的情况。样品首先以低压状态充满定量管,当阀沿顺时针方向旋至另一位置时,即将贮存于定量管中固定体积的样品送入分离系统。(2)气动进样阀气动阀采用一定氮气或氮气气压作动力,通过两路四通加载定量管后,进行取样和进样,它有效地减少了手动进样因动作不同所带来的误差。(3)自动进样自动进样器是在色谱工作站控制下,自动进行取样、进样、清洗等一系列操作,操作者只须将样品按顺序装入贮样机中。自动进样可以达到很宽的样品进样量范围的目的。3、分离系统分离系统是离子色谱的核心和基础。离子色谱柱是离子色谱仪的“心脏”,要求它具有柱效高、选择性好、分析速度快等特点。离子色谱柱填料的粒度一般在5~25μm之间,比高效液相色谱的柱填料略大,因此其压力比高效液相色谱的要小,一般为单分散,而且呈球状。3.1高分子聚合物填料离子色谱中使用得最广泛的填料是聚苯乙烯——二乙烯苯共聚物。其中阳离子交换柱一般采用磺酸或羧酸功能基,阴离子交换柱填料则采用季胺功能基或叔胺功能基。离子排斥柱填料主要为全磺化的聚苯乙烯 二乙烯苯共聚物,这类离子交换树脂可在pH0~14范围内使用。如果采用高交联度的材料来改进,还可兼容有机溶剂,以抗有机污染。一般来说,离子交换型色谱柱的交换容量均很低。3.2硅胶型离子色谱填料该填料采用多孔二氧化硅柱填料制得,是用于阴离子交换色谱法的典型薄壳型填料。它是用含季胺功能基的甲基丙烯十醇酯涂渍在二氧化硅微球上制备的。阳离子交换树脂是用低相对分子质量的磺化氟碳聚合物涂渍在二氧化硅微粒上制备的。这类填料的pH值使用范围为4~8,一般用于单柱型离子色谱柱中。3.3色谱柱结构一般分析柱内径为4mm,长度为100~250mm,柱子两头采用紧固螺丝。高档仪器特别是阳离子色谱柱一般采用聚四氟乙烯材料,以防止金属对测定的干扰。随着离子色谱的发展,细内径柱受到人们的重视,2mm柱不仅可以使溶剂消耗量减少,而且对于同样的进样量,灵敏度可以提高4倍。4、离于色谱的抑制系统对于抑制型(双柱型)离子色谱系统,抑制系统是极其重要的一个部分,也是离子色谱有别于高效液相色谱的最重要特点。抑制器的发展经历了多个发展时期,而目前商品化的离子色谱仪亦分别采用不同的抑制手段及相关研究成果。4.1树脂填充抑制柱该抑制系统采用高交换容量的阳离子树脂填充柱(阴离子抑制),通过硫酸,将树脂转化为氢型。它抑制容量不高,需要定期再生,而且死体积比较大,对弱酸根离子由于离子排斥的作用,往往无法准确定量。目前这类抑制器目前已经基本不用。4.2纤维抑制器这种抑制系统采用阳离子交换的中空纤维作为抑制器,外通硫酸作为再生液,可连续对淋洗液进行再生,这种抑制器的死体积比较大,抑制容量也不高。4.3微膜抑制器这种抑制系统采用阳离子交换平板薄膜,中间通过淋洗液,而外两侧通硫酸再生液。这种抑制器的交换容量比较高,死体积很小,可进行梯度淋洗。4.4电解抑制器这种抑制系统采用阳离子交换平板薄膜,通过电解产生的H+,对淋洗液进行再生。早期的这类抑制器是由我国厦门大学田昭武发明,并投入了生产,但它需要定期加入硫酸来补充H+。美国Dionex公司对这类抑制器进行了改进,使之成为自再生,只要用淋洗液自循环或去离子水电解就可能实现再生,抑制容量可以通过改变电流的大小加以控制,而且死体积很小。5、检测系统5.1电导检测器电导检测是离子色谱检测方式中最常用的一种。它是基于极限摩尔电导率应用的检测器,主要用于检测无机阴阳离子、有机酸和有机胺等。由于电导池中的等效电容的影响,施加到电导池上的电压和电流之间的关系是非线性的,这给测量电导值带来很大困难。另外,流动相中本底电导值很高,从较大的背景值中准确测量待测组分的信号,也是电导检测中的重要问题。目前采用较多的方法有:(1)双极脉冲检测器:在流路上设置两个电极,通过施加脉冲电压,在合适的时间读取电流,进行放大和显示。容易受到电极极化和双电层的影响。(2)四极电导检测器:在流路上设置四个电极,在电路设计中维持两测量电极间电压恒定,不受负载电阻、电极间电阻和双电层电容变化的影响,具有电子抑制功能(阳离子检测支持直接电导检测模式)。(3)五极电导检测器:在四极电导检测模式中加一个接地屏蔽电极,极大提高了测量稳定性,在高背景电导下仍能获得极低的噪声,具有电子抑制功能(阳离子检测支持直接电导检测模式)。5.2安培检测器安培检测器是基于测量电解电流大小为基础的检测器,主要用于检测具有氧化还原特性的物质。安培检测主要包括恒电位(直流安培)、脉冲安培以及积分安培三种方式。(1)直流安培检测模式:该方法是将一个恒定的直流电位连续地施加于检测池的电极上,当被测物被氧化时,电子从待测物转移至电极,得到电流信号。在此过程中,电极本身为惰性,不参与氧化反应。该方法具有较高的灵敏度,可以测定pmol级的无机和有机离子,主要用于抗坏血酸、溴、碘、氰、酚、硫化物、亚硫酸盐、儿茶酚胺、芳香族硝基化合物、芳香胺、尿酸和对二苯酚等物质的检测。(2)脉冲安培检测模式:脉冲安培检测器出现在20世纪80年代初,是美国Dionex公司为满足糖的测定而研制的。糖类化合物的pKa值为12~14,在强碱性介质中以阴离子形式存在,可以用阴离子交换色谱分离。因为糖的分离是在碱性条件下完成的,检测方法必须与此相匹配,用金电极的脉冲安培检测法适合于这个条件。金电极的表面可为糖的电化学氧化反应提供一个反应环境。用脉冲安培检测法可检测pmol~fmol级的糖,而且不需要衍生反应和复杂的样品纯化过程。该检测器主要用于醇类、醛类、糖类、胺类(一二三元胺,包括氨基酸)、有机硫、硫醇、硫醚和硫脲等物质的检测,不可检测硫的氧化物。(3)积分脉冲安培检测模式:积分脉冲安培检测法为脉冲安培检测的升级模式,于1989年由Welch等人首先提出,并运用此技术,用金电极实现了对氨基酸的检测。与脉冲安培检测法相似,积分脉冲安培检测法中加到工作电极上的也是一种自动重复的电位对时间的脉冲电位波形,不同之处是:脉冲安培检测法是对每次脉冲前的单电位下产生的电流积分;而积分脉冲安培检测法是对每次脉冲前循环方波或三角波电位下产生的电流积分,即是对电极被氧化形成氧化物和氧化物还原为其初始状态的一个循环电位扫描过程中产生的电流积分。由积分整个高-低采样电位下的电流所得到的信号仅仅是被分析物产生的信号。在没有待测物(可氧化物)存在时,静电荷为零。积分脉冲安培检测法的优点在于通过施加方波或三角波电位消除了氧化物形成和还原过程中产生的电流。正、反脉冲方向的积分有效地扣除了电极氧化产生的背景效应,使得那些可受金属氧化物催化氧化的分子产生较强的检测信号和获得稳定的检测基线成为现实。此外,离子色谱还可以采用紫外、可见光、荧光等高效液相色谱常用的检测器,其原理与常规的高效液相色谱检测相似。6、数据处理系统离子色谱一般柱效不高,与气相色谱和高效液相色谱相比一般情况下离子色谱分离度不高,它对数据采集的速度要求不高,因此能够用于其他类型的数据处理系统,同样也可用于离子色谱中。而且在常规离子分析中,色谱峰的峰形比较理想,可以采用峰高定量分析法进行分析。主要数据处理系统为:6.1记录仪记录仪要求满刻度行程时间≤1s,输入阻抗高,屏蔽好,纸速稳定。采用双笔式记录仪,可以同时测量样品中高浓度和痕量浓度组分,也可进行双检测器分析。6.2自动积分仪它是一种通过A/D转换,采用固定程序,分析色谱信息,打印色谱图的仪器。采用自动积分仪大大减少了记录仪中色谱手工处理的繁琐手续。6.3数据工作站通过A/D转换,将数据采集于电脑,然后通过对采集的数据分析,得到相关的色谱信息。随着个人电脑的普及,数据工作站将得到广泛的应用。03离子色谱的分类通常情况下,离子色谱可以分为三种类型:离子交换色谱、离子排斥色谱、离子对色谱。离子交换色谱:离子交换色谱以离子间间作用力不同为原理,主要用于有机和无机阴、阳离子的分离。离子排斥色谱:离子排斥色谱基于Donnan排队斥作用,是利用溶质和固定相之间的非离子性相互作用进行分离的。它主要用于机弱酸和有机酸的分离,也可以用于醇类、醛类、氨基酸和糖类的分离。离子对色谱:离子对色谱的分离机理是吸附、分离的选择性主要由流动相决定。该方法主要用于表面活性阴离子和阳离子以及金属络合物的分离。根据应用场景可分为:实验室、便携式、在线离子色谱。便携式离子色谱:适用的主要场景比如户外检测、或者在移动检测车上使用等等。在线离子色谱:适用的主要场景,比如大气环境的连续监测、或者工厂流水线中的连续监测等等。实验室离子色谱:相对来讲,就是最常规的离子色谱类型了,用户采购量也是相对最大。04离子色谱的应用离子色谱作为20世纪70年代发展起来的一项新的分析技术,由于具有快速、灵敏、选择性好等特点,尤其在阴离子检测方面有着其它方法所的优势,因此被广泛地应用于化工、医药、环保、卫生防疫、半导体制造等行业,并在某些领域被列为标准测定方法。涉及离子色谱的国内标准分析方法行业标准部分国际标准05离子色谱使用的注意事项1、淋洗液淋洗液作为系统的流动相,其品质对分析结果有重要影响。流动相的脱气是离子色谱分析过程中的一个重要环节。输液泵的扰动或色谱柱前后的压力变化以及抑制过程都可能导致流动相中溶解的气体析出,形成小气泡。这些小气泡会产生很多尖锐的噪声峰,较大的气泡还可能引起输液泵流速的变化,因此对流动相要进行脱气处理。2、分离柱分离柱柱体材料为PEEK(聚醚醚酮)。分离相由聚乙烯醇颗粒组成,粒径为9μm,表面有离子交换官能团。这种结构可保证高度的稳定性,并对可穿过内置过滤板的极细颗粒具有很高的容耐性,适用于水分析的日常测试任务。为保护分离柱不受外来物质侵害(这些物质会对分离效率产生影响),对淋洗液、也对样品作微孔过滤(0.45μm过滤器),并通过吸液过滤头吸取淋洗液。分离柱堵塞会导致系统压力上升,分离能力变差会导致保留时间波动、样品重复测量平行性差。分离柱接入系统时,需要先冲洗10分钟以上再接检测器,冲洗时出口向上,便于将气泡赶出。 分离柱的保存:短时间不用,可直接将柱子两端盖上塞子,放在盒中保存。阴离子柱长时间不使用(1个月以上),应保存到10mmol/LNa2CO3中。3、高压泵sp 岛埃仑YC3000离子色谱仪青岛埃仑YC7000型离子色谱仪 等▲ 青岛埃仑YC3000离子色谱仪B. 岛津
  • 质谱分类里程碑!中国分析测试协会《质谱仪器分类与代码》团标发布!
    由中国分析测试协会和中关村材料试验技术联盟发布的团体标准《质谱仪器分类与代码》于于2024年1月5日发布,标准将于4月5日开始实施。  质谱仪器作为质谱技术作为一种高灵敏、高分辨的分析技术,越来越受到关注和重视,其在食品、环境、制药、医疗以及学术研究等行业的应用也日益广泛。而在中国质谱界,对于日渐丰富的质谱仪器品类,如何更好的分类质谱仪器势在必行,于是本标准也在业内专家大力支持下应运而生。  《质谱仪器分类与代码》标准的分类原是按仪器结构和原理对质谱仪器进行分类,具体按照联用技术、离子化技术、质量分析器三个维度划分。分类方法采用分面分类法,包括按照联用技术划分、按照离子化技术划分、按照质量分析器类型划分。  分类方法  采用分面分类法,按“分面—亚面—类目”建立类表结构体系。根据质谱仪器的结构组成分为三个分面,每一分面根据对应的原理逐次分为若干亚面或若干类目。  分面一:按照联用技术划分  根据质谱仪器联用技术分为直接离子化分析、色谱联用以及常用非色谱联用三个亚面。根据不同的色谱类型分为液相色谱、气相色谱、离子色谱、薄层色谱、超临界流体色谱、毛细管电泳 6 个类目 各类目再根据该色谱原理不同,再逐一划分。常用非色谱联用分为热解吸、流式细胞术、激光烧蚀 3 个类目。  1) 直接离子化分析   2) 色谱联用划分为:  a) 液相色谱包括:  —液相色谱   —高效液相色谱   —超高效液相色谱   —多维液相色谱   b) 气相色谱包括:  —气相色谱   —全二维气相色谱   c) 离子色谱   d) 超临界流体色谱   e) 薄层色谱   f) 毛细管电泳   3) 常见非色谱联用划分为:  a) 热解吸   b) 流式细胞术   c) 激光烧蚀。  4) 其他。  分面二:按照离子化技术划分  根据离子化原理不同,对常用的离子化技术进行分类。分为轰击离子化、电喷雾离子化、化学离子化、致离子化、放电离子化、热离子化、场致离子化七个亚面。各亚面根据该种离子化原理是否有不同细分,再逐一划分若干类目。  1)轰击离子化包括:  a) 电子轰击离子化   10T/CAIA/YQ 008—2024/T/CSTM 01082—2024  b) 快速原子轰击离子化   c) 二次离子化   2) 电喷雾离子化包括:  a) 电喷雾离子化   b) 解吸附电喷雾离子化   c) 纳升电喷雾离子化   d) 脉冲直流电喷雾离子化   e) 电喷雾萃取离子化   f) 电喷雾辅助激光解吸离子化   g) 极性反转电喷雾离子化   3) 化学离子化包括:  a) 化学离子化   b) 大气压化学离子化   c) 质子转移反应   4) 光致离子化包括:  a) 基质辅助激光解吸离子化   b) 单光子离子化   c) 多光子离子化   d) 激光解吸离子化   5) 放电离子化包括:  a) 介质阻挡放电离子化   b) 辉光放电离子化   c) 低温等离子体离子化   d) 电晕放电离子化   e) 解吸电晕束离子化   f) 火花放电离子化   g) 电感耦合等离子体离子化   6) 热离子化   7) 场致离子化包括:  a) 场解吸离子化   b) 场离子化   8) 其他。  分面三:按照质量分析器类型划分  根据质谱仪器的主质量分析器(输出最终分析结果的质量分析器)的不同原理,划分为五个亚面,分别为四极杆质量分析器、飞行时间质量分析器、离子阱质量分析器、磁质量分析器、傅里叶变换质量分析器。各亚面根据该种质量分析器原理不同,再逐一划分若干类目。  1) 四极杆质量分析器   2) 飞行时间质量分析器包括:  a) 直线飞行时间质量分析器   b) 单次反射飞行时间质量分析器   c) 多次反射飞行时间质量分析器   3) 离子阱质量分析器包括:  11T/CAIA/YQ 008—2024/T/CSTM 01082—2024  a) 二维离子阱质量分析器   b) 三维离子阱质量分析器   4) 磁质量分析器包括:  a) 单聚焦质量分析器   b) 双聚焦质量分析器   5) 傅里叶变换质量分析器包括:  a) 静电阱质量分析器   b) 离子回旋共振质量分析器   6) 其他。  本文件起草单位:广东省麦思科学仪器创新研究院、广州禾信仪器股份有限公司、暨南大学、宁波大学、中国计量科学研究院、中国广州分析测试中心、赛默飞世尔科技(中国)有限公司、杭州谱育科技发展有限公司、宁波华仪宁创智能科技有限公司、常州磐诺仪器有限公司、中国科学院苏州生物医学工程技术研究所、上海质谱仪器工程技术研究中心、北京东西分析仪器有限公司、江苏天瑞仪器股份有限公司、钢研纳克检测技术股份有限公司、苏州安益谱精密仪器有限公司、北京清谱科技有限公司、山东英盛生物技术有限公司、安捷伦科技(中国)有限公司、珀金埃尔默企业管理(上海)有限公司、岛津企业管理(中国)有限公司、西北核技术研究院。本文件主要起草人:朱芷欣、刘丹、周振、黄正旭、罗德耀、周志恒、丁传凡、丁力、黄泽建、陈江韩、徐牛生、俞晓峰、姚继军、闻路红、周向东、程文播、王世立、韩娜、刘召贵、沈学静、张小华、高俊海、景叶松、朱颖新、王海鉴、朱敏、潘晨松、洪义、李磊、陈政阁、黎彦、刘虎威、李志明、沈小攀。附件:TCAIAYQ 008—2024TCSTM 01082—2024《质谱仪器分类与代码》.pdf

光谱仪分类原理相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制