光致发光光谱仪原理

仪器信息网光致发光光谱仪原理专题为您提供2024年最新光致发光光谱仪原理价格报价、厂家品牌的相关信息, 包括光致发光光谱仪原理参数、型号等,不管是国产,还是进口品牌的光致发光光谱仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光致发光光谱仪原理相关的耗材配件、试剂标物,还有光致发光光谱仪原理相关的最新资讯、资料,以及光致发光光谱仪原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

光致发光光谱仪原理相关的仪器

  • 光致发光(photoluminescence) 即PL,是用紫外、可见或红外辐射激发发光材料而产生的发光,在半导体材料的发光特性测量应用中通常是用激光(波长如325nm、532nm、785nm 等)激发材料(如GaN、ZnO、GaAs 等)产生荧光,通过对其荧光光谱(即PL 谱)的测量,分析该材料的光学特性,如禁带宽度等。光致发光可以提供有关材料的结构、成分及环境原子排列的信息,是一种非破坏性的、高灵敏度的分析方法,因而在物理学、材料科学、化学及分子生物学等相关领域被广泛应用。 传统的显微光致发光光谱仪都是采用标准的显微镜与荧光光谱仪的结合,但是传统的显微镜在材料的PL 谱测量中,存在很大的局限性,比如无法灵活的选择实验所需的激光器(特别对于UV 波段的激光器,没有足够适用的配件),无法方便的与超低温制冷机配合使用,采用光纤作为光收集装置时耦合效率太低等等问题,都是采用标准显微镜难以回避的问题。 北京卓立汉光仪器有限公司结合了公司十余年荧光光谱仪和光谱系统的设计经验和普遍用户的实际需求,推出了“OmniPLMicroS”系列显微光致发光光谱仪,有效的解决了上述问题,是目前市场上最具性价比的的显微PL 光谱测量的解决方案。性能特点: 一体化的光学调校——所有光学元件只需要在初次安装时进行调校,确保高效性和易用 性 简单易用的双光路设计——可随意在水平和垂直光路上进行切换,适用于各种常见的样 品形态 超宽光谱范围**——200nm-1600nm 视频监视光路——可供精确调整测试点 独有的发射光谱校正功能*——让光谱测量更精准且具有可比性 多种激发波长可选**——325nm,405nm,442nm,473nm,532nm,633nm,785nm等 自动mapping功能可选*——50mm×50mm测量区间,可定制特殊规格 电致发光(EL)功能可选*——扩展选项 显微拉曼光谱测量功能可选*——扩展选项 超低温测量附件可选*——提供10K以下的超低温测量*选配项,请详细咨询;**需根据实际需要进行配置确定。参数规格表*应用:不同制冷温度下GaN材料的PL谱激发波长:325nm,功率:20mW,制冷机最低制冷温度:10K ZnO材料的PL谱: 激发波长:325nm ZnO 薄膜样品在382nm 处有一个特别强的荧光谱带,而在500 ~ 600nm 波段,有个弱的可见光荧光谱带。通过研究这些谱带,可以反映ZnO 表面态对荧光的影响以及晶型和缺陷信息。
    留言咨询
  • 组合式荧光光谱测量系统-OmniPL系列光致发光(photoluminescence)即PL,是用紫外、可见或红外辐射激发发光材料而产生的发光。PL 荧光测量系统通常是用较强的单色光(如激光器等)激发样品/ 材料(如GaN/ZnO 等)产生荧光,通过对其荧光光谱的测量,分析该材料的光学特性。典型应用于LED 发光材料、半导体材料的研究。OmniPL 系列稳态荧光光谱测量系统采用模块化设计,在满足PL 光谱测量的同时,用户可以根据不同的实验需求,选择不同的配件,灵活的进行系统功能的扩展。系统组成:激发光源+ 样品室+荧光光谱仪+数据采集及处理系统+软件+计算机OmniPL-LF325型稳态光致发光光谱系统主要技术参数● 激发光源:HeCd激光器● 激发光功率:20mW● 激发波长:325nm● 瑞利散射截止滤光片,OD6● 荧光光谱仪光谱范围:300-850nm(可扩展至2500nm)● 荧光光谱分辨率:优于0.2nm(@1200g/mm光栅)● 波长准确度:±0.2nm● 波长重复性:±0.1nm● 光探测器:科研级制冷型背感光CCD,300-1000nm● 可选配闭循环超低温制冷机,最低温度可达2K● 系统扩展性:系统采用模块化设计,可扩展至近红外波段光谱测量● 软件提供灵活的实验运行步骤自定义功能,可随时储存和提取图谱,并能够进行复杂的光谱处理及光谱数据间的四则运算系统结构图PL图谱
    留言咨询
  • PMEye-3000光致发光光谱成像(PL-Mapping)测量系统是卓立汉光最新研制的,用于LED外延片、半导体晶片、太阳能电池材料等,在生产线上的质量控制和实验室中的产品研发检测。该系统对样品的PL谱进行Mapping二维扫描成像,扫描结果以3D方式进行显示,使检测结果更易于分析和比较。该系统的软件窗口界面友好,操作简单,只需简单培训就能使用。测试原理:PL(光致发光)是一种辐射复合效应。在一定波长光源的激发下,电子吸收激发光子的能量,向高能级跃迁而处于激发态。激发态是不稳定的状态,会以辐射复合的形式发射光子向低能级跃迁,这种被发射的光称为荧光。荧光光谱代表了半导体材料内部,一定的电子能级跃迁的机制,也反映了材料的性能及其缺陷。PL是一种用于提供半导体材料的电学、光学特性信息的光谱技术,可以研究带隙、发光波长、结晶度和晶体结构以及缺陷信息等等。应用领域举例:LED外延片,太阳能电池材料,半导体晶片,半导体薄膜材料等检测与研究。 主要特点:◆ PLMapping测量◆ 多种激光器可选◆ Mapping扫描速度:180点/秒◆ 空间分辨率:50um◆ 光谱分辨率:0.1nm@1200g/mm◆ Mapping结果以3D方式显示◆ 最大8吋的样品测量◆ 样品精确定位◆ 样品真空吸附◆ 可做低温测量◆ 膜厚测量一体化设计,操作符合人体工学PMEye3000 PL Mapping测量系统采用立式一体化设计,关键尺寸根据人体工学理论设计,不管是样品的操作高度和电脑使用高度,都特别适合于人员操作。主机与操作平台高度集成,方便于在实验室和检测车间里摆放。仪器侧面设计有可收放平台,可摆放液晶显示器和鼠标键盘。仪器底部装有滚轮,方便于仪器在不同场地之间的搬动。模块化设计PMEye-3000 PL Mapping测量系统全面采用模块化设计思想,可根据用户的样品特点来选择规格配置,让用户有更多的选择余地。激发光源、样品台、光谱仪、探测器、数据采集设备都实现了模块化设计。操作简便、全电脑控制PMEye-3000 PL Mapping测量系统,采用整机设计,用户只需要根据需要放置检测样品,无需进行复杂的光路调整,操作简便;所有控制操作均通过计算机来控制实现。全新的样品台设计,采用真空吸附方式对样品进行固定,避免了用传统方式固定样品而造成的损坏;可对常规尺寸的LED外延片样品进行精确定位,提高测量重复精度。两种测量方式,用途更广泛系统采用直流和交流两种测量模式,直流模式用于常规检测,交流模式用于微弱荧光检测。监控激发光源,校正测量结果一般的PL测量系统只是测量荧光的波长和强度,而没有对激发光源进行监控,而激发光源的不稳定性将会对PL测量结果造成影响。PMEye-3000 PL Mapping测量系统增加对激光强度的监控,并根据监控结果来对PL测量进行校正。这样就可以消除激发光源的不稳定带来的测量误差。激光器选配灵活PMEye-3000 PL Mapping测量系统有多种高稳定性的激光器可选,系统最多可内置2个激光器和一个外接激光器,标配为1个405nm波长高稳定激光器。用户可以根据测量对象选配不同的激光器,使PL检测更加精准。可选配的激光器波长有: 405nm,442nm,532nm、785nm、808nm等,外置选配激光器波长为:325nm。自动Mapping功能PMEye-3000 PL Mapping测量系统配置200× 200mm的二维电控位移台,最大可测量8英寸的样品。用户可以根据不同的样品规格来设置扫描区域、扫描步长、扫描速度等,扫描速度可高达每秒180个点,空间分辨率可达50um。扫描结果以3D方式显示,以不同的颜色来表示不同的荧光强度。 软件功能丰富,操作简便我们具有多年的测量系统操作软件开发经验,,熟悉试验测量需求和用户的操作习惯,从而使开发的这套PMEye-3000操作软件功能强大且操作简便。MEye-3000操作软件提供单点PL光谱测量及显示,单波长的X-Y Mapping测量,给定光谱范围的X-Y Mapping测量及根据测量数据进行峰值波长、峰值强度、半高宽、给定波长范围的荧光强度计算并以Mapping显示,Mapping结果以3D方式显示。同时具有多种数据处理方式来对所测量的数据进行处理。低温样品室附件该附件可实现样品在低温状态下的荧光检测。有些样品在不同的温度条件下,将呈现不同的荧光效果,这时就需要对样品进行低温制冷。如图所示,从图中我们可以发现在室温时,GaN薄膜的发光波长几乎涵盖整个可见光范围,且强度的最高峰出现在580nm附近,但整体而言其强度并不强;随着温度的降低,发光强度开始慢慢的增加,直到110K时,我们可以发现在350nm附近似乎有一个小峰开始出现,且当温度越降越低,这个小峰强度的增加也越显著,一直到最低温25K时,基本上就只有一个荧光峰。GaN薄膜的禁带宽度在室温时为3.40Ev,换算成波长为365nm,而我们利用PL系统所测的GaN薄膜在25K时在356.6nm附近有一个峰值,因此如果我们将GaN薄膜的禁带宽度随温度变化情况也考虑进去,则可以发现在理论上25K时GaN的禁带宽度为3.48eV,即特征波长为357.1nm,非常靠近实验所得的356.6nm,因此我们可以推断这个发光现象应该就是GaN薄膜的自发辐射。
    留言咨询

光致发光光谱仪原理相关的方案

  • 荧光光谱仪光致发光量子产率测量
    光致发光量子产率可以表征样品的发光效率,即测量样品有效利用吸收光的效率,数学上可以表示为发射光子数和吸收光子数的比值。对比于相对量子产率,绝对荧光量子产率测量应用得越来越广泛。因为后者不需要量子产率的标准样品,广泛适用于液体、薄膜和粉末样品。本文主要介绍在爱丁堡FLS980荧光光谱仪上联合光致发光量子产率附件对液体和固体样品进行量子产率的测量,以及激发光波长的选择对于量子效率结果的影响。
  • HORIBA | 彩钻的光致发光(PL)分析
    显微激光拉曼光谱仪是许多宝石实验室的标准分析仪器,它同时也是一台很好的光致发光分析系统。光致发光光谱可以用于表征钻石是否是天然的还是经过了脱色处理(高压高温HPHT-处理)或颜色增强处理(加热、辐射)。
  • 变温光致发光在InGaAs/GaAs量子点研究中的应用
    在利用带内载流子跃迁的太赫兹应用领域内,InGaAs/GaAs和InAs/GaAs量子点被认为是非常合适的材料。这类应用包括化学生物媒介的远程探测、红外计数测量、激光雷达、污染监测、分子和固态光谱、非损伤医学诊断。通过调整量子点的大小、形状和结构,量子点的类原子光电特性可被优化用于特定的应用。变温光致发光光谱是一种分析含有量子点和量子阱材料的有效手段,辅助优化上述InGaAs/GaAs分子的性质。制冷一般采用两种冷冻机,一种是液氮或液氦制冷;另一种是封闭循环冷冻机,冷冻液在系统中循环。冷冻样品被激光激发,光致发光信号通过光学接口被耦合进光谱仪。

光致发光光谱仪原理相关的论坛

  • 光致发光应用原理、范围

    一般光致发光指荧光及磷光现象。发光量子产率与激发光波长(或能量)有关,发光强度随激发波长的变化称为激发光谱。激发光谱与发射光谱间符合斯托克斯规则。光致发光可用于研究物质的电子状态,发光物质的痕量分析,发光体的分子取向,发光过程的动力学研究等等。采用发光探针,可以大大扩展光致发光的应用范围,在生物医学、环境科学等领域有广阔的应用前景。

  • 光致发光问题

    [color=#444444]请问,甲胺铅碘的光致发光谱怎么测得?用普通的荧光分光光度计么?还是需要别的设备?[/color]

光致发光光谱仪原理相关的耗材

  • 斯派克 直读光谱仪MAX 激发光源维修
    斯派克 直读光谱仪MAX 激发光源维修我公司主要服务的仪器与厂家:火花直读光谱仪(SPARK-OES):德国斯派克、德国OBLF、美国布鲁克、美国热电(THERMO)、英国牛津、日本岛津、法国JY、意大利GNR等;电感耦合等离子体光谱仪(ICP-OES):美国热电(THERMO) 、美国珀金埃尔默(PE)、美国安捷伦(AGILENT)、德国斯派克、美国利曼、日本岛津等;电感耦合等离子体质谱仪(ICP-MS):美国热电(THERMO) 、美国珀金埃尔默(PE)、美国安捷伦(AGILENT)、德国耶拿、美国利曼、日本岛津等; X荧光光谱仪(XRF):荷兰帕纳科、日本岛津、美国布鲁克、美国热电(THERMO)、德国斯派克等;原子吸收光谱仪(AAS):美国热电(THERMO) 、美国珀金埃尔默(PE)、美国瓦里安、日本岛津、德国耶拿等;射频电源(RF): SEREN、MKS、AE、VEECO、COMDEL;
  • 微型光谱仪/光纤光谱仪
    筱晓光子供应微型光谱仪,具体结构紧凑、性能可靠、应用广泛的特点,可以加配光源、光纤、探头等附件,搭配成各种测量系统,包括:吸光度测量、反射测量、透射测量、辐射测量、荧光测量、化学发光测量、光致发光测量等。该系列微型光谱仪具有2年质保期,如非人为因素损坏,免费更换全新产品。ScanSpec UV:200-600nm 波长范围(300nm 闪耀波长),2.5nm 分辨率(50um 狭缝),1ms-30s 积分时间。ScanSpec UV-VIS:250-800nm 波长范围(400nm 闪耀波长),2.5nm 分辨率(50um 狭缝),1ms-30s 积分时间。ScanSpec VIS:400-850nm 波长范围(500nm 闪耀波长),2.5nm 分辨率(50um 狭缝),1ms-30s 积分时间。ScanSpec VIS-NIR:500-1000nm 波长范围(750nm 闪耀波长),2.5nm 分辨率(50um 狭缝),1ms-30s 积分时间。相关产品
  • ATP生物发光检测试剂盒
    利用萤火虫萤光素酶催化底物萤光素的转化,高效利用ATP的能量发射出光子。发光信号与存在的ATP量呈正比的原理进行ATP的生物发光检测。该产品可用于快速、定量测定液体样品中或细胞或组织内的ATP(adenosine 5' -triphosphate)水平。产品中的Lysis Buffer能够有效裂解细菌、细胞以及微生物样品,充分释放ATP,适用于多种样本来源的ATP检测。Luciferase/Luciferin Substrate采用优化的酶反应体系,产生的萤光在一分钟内保持稳定。该产品检测灵敏度达到10-16mol,检测范围在10-11至10-16 mol之间,可用于微量ATP检测。产品特点:• 方便:反应试剂容易配制。• 检测试剂产生的萤光稳定性高,不需要快速混匀操作。• 快速:样品裂解在5-10分钟内完成,加入稀释后的Luciferase/Luciferin Reagent Substrate即可检测。• 灵敏:可检测少至10-16mol ATP。• 适用范围:可用于检测多种来源样品中细菌、细胞以及微生物的ATP,及微量ATP检测。• 产品储存:未打开包装前避光储存于-20°C,打开包装后根据产品说明书上的单个组分的储存条件保存。避免反复冻融以及ATP污染订货信息:订货号产品名称RS-CL0101ATP生物发光检测试剂盒

光致发光光谱仪原理相关的资料

光致发光光谱仪原理相关的资讯

  • 新加坡国立大学合成新型近红外发光量子点,光致发光量子效率可达25%|国际用户简讯
    作者:Sophie编辑:Joanna对于太阳能转换器件和生物成像应用程序来说,使用发射近红外光、具有显著斯托克斯位移且再吸收损失小的材料非常重要。近期新加坡国立大学化学系便合成了这样一种新型材料——四元混合巨壳型量子点(InAs?In(Zn)P?ZnSe?ZnS)。这种新型量子点可以实现显著斯托克斯位移,且光致发光量子效率可达25%,非常适合应用于太阳能及生物领域。Tips: 斯托克斯位移是指荧光光谱较相应的吸收光谱红移(斯托克斯位移=发射波长-吸收波长)。斯托克斯位移越大,荧光太阳能光电转换效率越高。图片来源于网络 单锅连续注射&结构比例控制合成新型量子点的关键新加坡国立大学使用单锅连续注射的方法来合成该量子点。四元混合巨壳型量子点结构主要成分由内到外比例为1: 50: 37.5: 37.5合成过程分为4步,由内向外,依次为:1. 合成该量子点InAs内核2. 向InAs核反应容器中注射As前驱体溶液、醋酸锌和磷酸氢,完成第2层In(Zn)P壳层的合成3. 向反应体系注射Se前驱体溶液合成第3层ZnSe壳层4. 注射S前驱体溶液和醋酸锌完成ZnS壳层的合成四元混合巨壳型量子点合成过程图示合成过程中,研究人员会定时从反应容器中取出小部分溶液测量其紫外可见吸光度和光致发光特性来跟踪反应进程,并调整量子点间的结构比例。他们利用HORIBA高能量窄脉宽 Nanoled-440L皮秒脉冲激光光源对样品进行激发,在FluoroLog-3 荧光光谱仪上测试荧光寿命。在新的荧光光谱技术中,FluoroLog-3 系列荧光光谱仪配置CCD检测器新技术,实现快速动态荧光光谱检测,实现实时反应发光测试,分子相互作用的动态检测。新型量子点材料助力太阳能及生物应用用领域终合成的巨壳量子点,In(Zn)P壳层能够吸收400-780 nm的可见光,并将吸收后的能量传递到InAs内核,使其在873nm处发射,进而实现显著的斯托克斯位移和很小的吸收-发射光谱重叠;经统计计算,该量子点光致发光量子效率可达25%,这对于近红外发射器来说相当可观,且它在873nm的发射光与硅太阳能电池的光敏响应区匹配良好。并且这一新型量子点为可调色发光,不含有害金属。种种优点使得该量子点不仅非常适合应用于荧光太阳能领域用以提高光电转换效率;且在生物领域,该量子点也可作为荧光材料用于生物成像,给疾病的诊断和治疗带来巨大进步。该工作以“Large-Stokes-Shifted Infrared-Emitting InAs?In(Zn)P?ZnSe?ZnS Giant-Shell Quantum Dots by One-Pot Continuous-InjectionSynthesis”为题,发表于《Chemistry of Materials》。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的选择,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • 光致发光和可穿戴传感器研究获进展
    人们对电子设备的便携性、多功能性和集成性的期待推动了可穿戴电子设备的快速发展。最近,摩擦电纳米发电机(TENGs)在能力收集、人机交互、医疗监测和自供电传感等方面引起了关注。遗憾的是,这类交互设备多由分隔的传感器和显示单元组成,因而总是需要一些笨重的设备或有线连接来将输出信号转换为人类易读出的形式。色彩提供了简单的传输信息的方法,其可调的颜色属性有望与传感器集成,为交互式信号的可视化开辟了新途径。金属卤化物钙钛矿具有特殊的光物理性质,为未来的可穿戴电子产品提供了新机会。然而,构建自供能、应变传感和显示等多功能特性一体化的光致发光传感系统是巨大的挑战。中国科学院苏州纳米技术与纳米仿生研究所轻量化实验室研究员李清文与项目研究员张其冲等,提出了高效窄光致发光金属卤化物固体的水合成策略,进一步将其应用于自供电的可穿戴式光致发光传感器。科研人员利用这一策略,仅使用水作为溶剂便制备了盐壳金属卤化物固体(具有高效和狭窄的绿色排放,PLQY为87.3%)。其中,KBr盐提供了一个富溴的环境来钝化钙钛矿的表面缺陷,且作为基质来提高其稳定性。该绿色环保的制备策略可用于制备无色水性油墨和柔性光致发光薄膜。另外,该固态化合物可作为聚乙烯醇(PVA)的填料,用于TENG中的高性能正摩擦材料,所制备的TENG的输出性能是原始TENG的2.3倍。研究进一步构建了电压响应范围为0-100kPa、响应时间为125ms的可穿戴光致发光传感器,以检测人体的各种运动。研究显示,运用简单的水蒸发结晶策略即可制备高发射窄半高峰宽的金属卤化物固体,巧妙地引入溴化钾盐使得难溶于水的溴化铅完全溶解在水中,不仅赋予了材料高量子产率,而且提升了产物光和热稳定性。得益于水蒸发结晶策略,前驱体水溶液可制备成水性墨水,通过与水性聚合物混合可以制备出柔性荧光薄膜,并可以通过喷墨打印技术打印相关的图案。作为概念验证,研究还构建了电压响应范围为0-100kPa,响应时间为125ms的可穿戴光致发光压力传感器,未来有望构建同时具有显示-传感一体化自供电集成器件,检测人体的各种运动。该研究为高发射的金属卤化物固体的合理设计提供了指导,并为扩展其在多功能可穿戴荧光传感器中的应用提供了参考。相关研究成果以Robust Salt-Shelled Metal Halide for Highly Efficient Photoluminescence and Wearable Real-Time Human Motion Perception为题,发表在Nano Energy上。研究工作得到中科院和江苏省青年基金项目的支持。该研究由苏州纳米所、华东理工大学、新加坡南洋理工大学、上海交通大学的科研人员合作完成。图1.固态盐壳金属卤化物的制备图2.固态金属卤化物的稳定性及其柔性应用图3.固态金属卤化物在传感领域的应用
  • 岛津应用:有机电致发光材料的荧光测定
    近年来在电机和电子领域,不断开发出使用有机电致发光(EL)的显示器和照明设备等产品。在有机EL的开发过程中,需要通过光致发光(PL)对新合成物质的光学特性进行确认。这样可以帮助我们找到高效的发光材料,以及研究材料在溶液中发光原理。通过这个过程,以开发符合要求的光色调、满足节能和高效发光等要求的有机EL材料。在检测有机EL材料时,必须在较宽的波长范围内迅速且准确地测定荧光波长。 本次分析在韩国浦项科技大学基础科学研究院(POSTECH:Pohang University of Science and Technology)的协助下,我们使用岛津荧光分光光度计RF-6000对有机EL材料之一的卟啉溶液(溶剂:三氯甲烷)进行了测定。在各种有机EL材料的开发过程中,要求能够在更高灵敏度和更大范围内进行光谱观测。RF-6000不仅能够迅速准确地进行三维测定,还能够进行高达900nm的高灵敏度光谱测定。并且,还可使用选购件积分球测定量子效率(绝对量子产率)。综上所述,使用荧光分光光度计RF-6000可有效对有机EL材料的三维光谱及荧光光谱进行确认。本文向您介绍详细的分析示例 荧光分光光度计RF-6000 了解详情,敬请点击《有机电致发光材料的荧光测定》

光致发光光谱仪原理相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制