色谱纯表示方法

仪器信息网色谱纯表示方法专题为您提供2024年最新色谱纯表示方法价格报价、厂家品牌的相关信息, 包括色谱纯表示方法参数、型号等,不管是国产,还是进口品牌的色谱纯表示方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱纯表示方法相关的耗材配件、试剂标物,还有色谱纯表示方法相关的最新资讯、资料,以及色谱纯表示方法相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

色谱纯表示方法相关的厂商

  • 400-860-5168转4265
    “苏州汇通色谱分离纯化有限公司”是一家以自主知识产权技术和产品为核心,具有独立研发能力的高技术企业,主要以药厂、生物制品企业、高纯度化学制品企业、质量鉴定单位、大学、科学研究机构和生物技术公司为目标客户,提供高效、高选择性制备色谱分离柱产品;高纯度产品色谱纯化工程设计以及高纯度产品纯化服务。与市场上现存公司相比,本公司拥有高科技(特殊设计)的专利分离介质,高纯度色谱纯化工程设计核心能力,已发展高通量、高选择性、高分离效率的模块式分离系列产品及配套的相应方法;公司除为企业提供高性能的色谱分离柱系统系列产品外,还可以直接为企业提供复杂样品体系的纯品,为企业“工程化”提供一条龙服务;既结合色谱分离专家的理论与实践,为客户发展复杂样品体系的分离、分析、纯化制备方法和有效的工具,同时为市场提供色谱纯度的试剂级产品。
    留言咨询
  • 400-860-5168转2060
    杭州克柔姆色谱科技有限公司是一家集专业气相色谱仪研发、生产与销售于一体的国家高新技术企业,同时担任全国气体标准化技术委员会委员,全国气体标准化技术委员会气体分析分技术委员会委员;公司致力于气相色谱气体分析整体解决方案的应用研究,为用户量身定制个性化的气体分析色谱方案及提供成套的色谱仪器检测设备。 克柔姆公司现位于杭州市拱墅区,公司拥有标准化生产及研发基地,具备完善的管理制度以及一流的生产环境,公司拥有独立的调试车间、研发中心。公司始建于2010年10月,公司具有60台/年以上的超纯气、高纯气分析色谱仪器生产制造能力,是国家气体行业专业色谱分析仪器供应厂商。主要产品有GC-112系列氦离子气相色谱仪、GC-80PDD在线分析气相色谱仪,Agilent-8890氦离子气相色谱仪、GC-126EPD等离子发射气相色谱仪及等十余种产品。用于检测分析高纯或超纯工业气体、特种气体、电子气体、永久性气体等。 “用技术和智慧创新检测方法,以工匠精神造优质先进仪器”是克柔姆公司一贯秉承的经营理念与质量方针,技术团队成员均拥有大学学历以及丰富的色谱应用经验,凭借在气相色谱气体分析领域的领先技术优势和孜孜不倦的追求技术创新的精神,杭州克柔姆公司将为您提供满意的产品和优化的技术方案,实践杭州克柔姆“色谱科技创造价值”的创业宗旨。
    留言咨询
  • 无锡加莱克色谱科技有限公司成立于2009年,是由美籍华人色谱专家和中科院科技管理人员共同创立的高科技企业,位于无锡(马山)国家生命科学园,致力于生产生物工程、制药、食品安全和环境检测等领域所急需的以聚合物和硅胶为基质的专用色谱填料,色谱柱、装柱系统、纯化设备以及分离纯化工艺和检测方法开发;是一家专业提供完整的生物医药分离纯化解决方案及设备、产线的集成商。加莱克公司拥有在美国知名企业从事20余年液相色谱填料研发和产业化的资深色谱专家团队,具有很强实战和创新能力,加莱克公司经过十多年的深耕细作,形成蛋白与抗体纯化、天然产物纯化和硅胶色谱填料三大技术平台,拥有10项发明专利、8项实用新型专利和近百种产品;并向市场推出四十余种产品,逐渐在生物医药纯化领域崭露头角;产品与技术已在国内众多药企广泛使用,并出口美国、俄罗斯、日本、印度和台湾地区等地区。为更好的解决客户需求,无锡加莱克色谱科技有限公司牵头国内知名厂商,大学研究机构,多个国内知名研究团队组成了战略合作联盟,为客户提供完整的生物医药解决方案,涵盖生物医药产品的工艺开发与优化、中试放大、工业级生产线设计等不同阶段、自动化控制、公用工程需求等方案的设计,相应生产设备提供、生产线的安装施工等,同时提供配套相关符合GMP要求的认证文件的制作和编写。希望通过加莱克的专业知识和技能,以及始终秉承“创新、专注、高效、诚信、责任、奉献”的企业理念,力求服务再多一点,质量再高一点,给客户和企业带来更优质的产品和服务,为我国生物医药产业的健康快速发展贡献一份力量。
    留言咨询

色谱纯表示方法相关的仪器

  • 可选择的系统阵容岛津可提供的各类LC产品系列进行方法开发。无论是SFC研究还是紧凑型系统的简单研究,均可选择到适合您实验室环境的系统。全自动方法探索结合使用方法开发系统与Method Scouting Solution专用软件可大幅提高各类操作(方法创建至数据采集)的效率和分析效率。原方法方法开发系统+Method Scouting Solution使用方法开发系统实施连续夜间分析色谱柱和流动相实现自动切换可将现有系统的停机时间降至为零,并实现了可完成快速方法开发的高通量系统。将方法和分析计划创建工作交由Method Scouting Solution完成以前的方法开发流程要求每当需更换色谱柱或流动相时都需要重置方法。研究100个不同条件需要创建100个不同的方法文件,进而需消耗大量劳动时间。Method Scouting Solution可从单一基本方法自动创建包含不同色谱柱、流动相和梯度条件的方法,助您更高效地利用时间。无缝评估多数据报告中的结果利用多数据报告对方法开发获取的数据进行定量评估。利用岛津推荐的评估方法(所用分辨率和峰检测数)对色谱图进行定量检查,帮助用户获取最佳方法。将岛津提供模板登记至Method Scouting Solution后,在完成分析的同时创建并输出报告,实现快速确认最佳条件。简单方法设置方法探索会涉及到方法和批次生成过程中繁琐工作,这些操作很容易导致出现操作错误。Method Scouting Solution图形用户界面针对系统配置定制,可直观、简便地创建方法和批次计划。支持正确分析的图形信息分析序列自动化将提高操作速率流动相和色谱柱自动切换过程中的清洗条件和平衡过程是方法开发中的关键问题。借助Method Scouting Solution,可根据预先设置的条件自动执行上述步骤及所有其他实验室操作(从自动控制至系统检查、系统关闭)。
    留言咨询
  • 1290 Infinity II 分析型液相色谱纯化系统1290 Infinity II 分析型液相色谱纯化系统代表了 UHPLC 化合物分离技术的未来,拥有 InfinityLab 液相色谱系列无与伦比的可靠性和稳定性,并采用突破性技术,可最大程度提高纯化实验室的效率。为满足不同的纯化需求,支持 UV 或 MS 检测以及组合使用多个馏分收集器,以扩展馏分容量并提高工作效率。特性 分析型纯化液相色谱系统是纯化数毫克级材料的理想选择 高度可靠且稳定的液相色谱系统可提高您的分析能力,应对不断增长的工作量需求 在最高 1300 bar 的压力下,动态流速范围高达 5 mL/min,可广泛应用于各种分析型纯化工作流程中 利用附加模块(如示差折光、荧光或蒸发光散射检测器,或单四极杆 LC/MSD)进行升级,实现前瞻性投资 低扩散馏分收集,可从分析运行中精确分离目标化合物 可在微孔板中最多收集 4 x 96 种馏分,或在 4 种外径的玻璃管中最多收集 216 种馏分 集成的自动化馏分延迟传感器技术可提高所收集的馏分的纯度和回收率 可根据您的需求升级馏分容量:通过正交分析信息(仅可从分离的化合物中获得)提高实验室效率 完全可升级,可根据您的需求提升系统的性能和功能 Agilent OpenLab CDS ChemStation 提供干净的软件架构,确保熟悉、可靠的操作
    留言咨询
  • 环保部HJ-741-2015土壤和沉积物挥发性有机物的测定顶空气相色谱法------北分三谱AHS-20Aplus全自动顶空进样器+福立GC-9790plus 1、方法原理:在一定温度下,AHS-20Aplus全自动顶空进样器的顶空瓶内样品中挥发性有机物向液上空间挥发,在气液固三相达到热力学平衡后,气相中的挥发性有机物经AHS-20Aplus全自动顶空进样器进到福立GC-9790plus气相色谱仪进行分离,用氢火焰离子化检测器检测,以保留时间定性,外标法定量。 2、试剂及材料:2.1实验用水:二次蒸馏水或通过纯化设备制备的水,使用前需经过空白实验,确认在目标化合物的保留时间内无干扰色谱峰或其中的目标化合物低于方法检出限。2.2甲醇:色谱纯,使用前,需经过检测,确认无目标化合物货目标化合物浓度低于方法检出限。2.3氯化钠(NaCl):优级纯,在马弗炉中400℃下烘烤4小时,置于干燥器中冷却至室温,转移至磨口玻璃瓶中保存2.4磷酸(H3PO4):优级纯2.5饱和氯化钠溶液:量取500ml实验用水(2.1),滴加几滴磷酸(2.4)调节PH≤2,加入180g氯化钠溶解并混匀。于4℃下保存,可保存6个月。2.6标准储备液:р=1000mg/L~5000mg/L,可直接购买有证标准溶液,也可用标准物质配制。2.7标准使用液:р=10mg/L~100mg/L。2.8石英砂(SiO2)分析纯,20目~50目。2.9载气:高纯氮气,BF-300N氮气发生器,纯度≧99.999%2.10燃气:高纯氢气,BF-300E氢气发生器,纯度≧99.999%2.11助燃器:洁净空气,BF-2L空气发生器3、仪器设备3.1气相色谱仪:GC-GC-9790plus气相色谱仪,具有毛细管分流/不分流进样口,可程序升温,PID检测器3.2色谱柱:专用毛细管色谱柱,60m×0.25mm×1.4um3.3 AHS-20Aplus全自动顶空进样器,20位自动进样3.4 往复振荡器:振荡频率150次/min,可固定顶空瓶。3.5 天平:精度0.01g3.6 微量进样器若干3.7 采样器材:铁铲货不锈钢药勺3.8 便携式冷藏箱:溶剂20L,温度4℃以下3.9其他常用仪器和设备 4、分析步骤4.1 AHS-20Aplus全自动顶空进样器条件 顶空瓶加热温度:85℃,加热平衡时间50min,阀箱温度:100℃,传输管线温度:100℃,加压时间:0.3min,取样时间5s,进样时间30s4.2 GC-GC-9790plus气相色谱仪条件 升温程序:40℃(保持5min) 8℃/min 100℃(保持5min)6℃/min 2008℃(保持10min),进样口温度:220℃,温度:240℃,分流:10:14.3标准曲线绘制向5支顶空瓶中依次加入2.00g石英砂、10.0ml饱和氯化钠溶液和一定量的标准使用液,立即密封,配制目标化合物分别为0.10ug、0.20ug、0.50ug、1.00ug和2.00ug的5点不同浓度的标准曲线,将配制好的标准系列样品在振荡器上以150次/min的频率震荡10min,按照仪器条件依次进样。 5、谱图及仪器
    留言咨询

色谱纯表示方法相关的资讯

  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV   分析原理:吸收紫外光能量,引起分子中电子能级的跃迁   谱图的表示方法:相对吸收光能量随吸收光波长的变化   提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息   荧光光谱法FS   分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光   谱图的表示方法:发射的荧光能量随光波长的变化   提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息   红外吸收光谱法IR   分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁   谱图的表示方法:相对透射光能量随透射光频率变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   拉曼光谱法Ram   分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射   谱图的表示方法:散射光能量随拉曼位移的变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   核磁共振波谱法NMR   分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁   谱图的表示方法:吸收光能量随化学位移的变化   提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息   电子顺磁共振波谱法ESR   分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁   谱图的表示方法:吸收光能量或微分能量随磁场强度变化   提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息   质谱分析法MS   分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离   谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化   提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息   气相色谱法GC   分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关   反气相色谱法IGC   分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力   谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线   提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数   裂解气相色谱法PGC   分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型   凝胶色谱法GPC   分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:高聚物的平均分子量及其分布   热重法TG   分析原理:在控温环境中,样品重量随温度或时间变化   谱图的表示方法:样品的重量分数随温度或时间的变化曲线   提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区   热差分析DTA   分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化   谱图的表示方法:温差随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   TG-DTA图   示差扫描量热分析DSC   分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化   谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   静态热―力分析TMA   分析原理:样品在恒力作用下产生的形变随温度或时间变化   谱图的表示方法:样品形变值随温度或时间变化曲线   提供的信息:热转变温度和力学状态   动态热―力分析DMA   分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化   谱图的表示方法:模量或tg&delta 随温度变化曲线   提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM   分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象   谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象   提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等   扫描电子显微术SEM   分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象   谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等   提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等   原子吸收AAS   原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。   (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP   原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。   X-raydiffraction,x射线衍射即XRD   X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。   满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。   高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)   CZE的基本原理   HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。   MECC的基本原理   MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。   扫描隧道显微镜(STM)   扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。   原子力显微镜(AtomicForceMicroscopy,简称AFM)   原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。   俄歇电子能谱学(Augerelectronspectroscopy),简称AES   俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
  • 【瑞士步琦】通过 SFC(超临界流体色谱)分离纯化甜叶菊提取物中甜菊苷的方法
    分离纯化甜叶菊提取物中甜菊苷甜菊糖苷(结构式见图1 (b))属于甜菊醇糖苷,甜菊糖苷是甜菊属植物的甜味来源。甜菊糖的增甜能力比蔗糖的甜度高许多倍,因此是一种糖的替代品。自 2011 年以来,甜菊糖苷已被欧盟批准为食品添加剂 E960。甜叶菊本身还没有被批准作为一种食品。本文介绍了一种使用 BUCHI Sepiatec SFC 设备从甜叶菊提取物当中分离得到甜菊糖苷的方法。分离过程所使用食品级CO2、乙醇和水作为添加剂。 1实验条件设备Sepiatec SFC-50色谱柱prep HPLC column Nucleodur Si 5um 250 x 4.0m流动相种类A=CO2(100%)B=乙醇/水(95/5)流动相条件0-2min:95%A/5%B2-25min:5-35%B25-31min:35%B样品200mg/mL 乙醇甜叶菊提取物以 95%A/5%B,4mL/min流速条件对色谱柱平衡 5min。通过自动进样器进样并开始运行分离程序,UV检测波长设定为 210nm,背压调节阀设定为 150bar,柱温箱温度为 40℃,得到如下分离图谱:▲ 图1:(a)甜叶菊提取物的纯化以及(b)对 24 号组分进行 HPLC 纯化分析 2结果与讨论图1(a)展示了甜叶菊提取物的色谱图,通过乙醇对甜叶菊进行提取得到了很多化合物,甜菊糖苷作为极性分子与色谱柱的极性固定相(Slica)发生了强烈的相互作用。因此,当流动相的整体梯度极性增加是,甜菊糖苷得以被洗脱。图1(a)表明其纯度非常高。除此之外,甜菊糖苷也是提取物中甜度最高的化合物,并且可从甜菊糖总甙中的甜菊双糖苷中分离得到。食品性质的物质提纯一般更偏向于使用乙醇。反相色谱所使用的典型溶剂甲醇或乙腈往往与食品特性不太符合的。由于流动相整体极性的增加,所以水作为添加剂可以有效改善待测分析物的峰型。 3结论使用制备型 SFC 可以有效地将甜菊糖苷从甜叶菊提取物中分离得到。通过 SFC 以及符合食品要求的溶剂可以对食品提取物进行纯化。
  • 【瑞士步琦】通过SFC(超临界流体色谱)分离三萜香树脂醇的方法
    分离三萜香树脂醇的方法香树脂醇属于三萜类的天然产物,它们有一个双键,结构为五环三萜醇。自然界中的香树脂醇通常以 α-香树脂醇和 β-香树脂醇形式存在,它们互为同分异构体。其中 β-香树脂醇,又称白桦酯醇,具有较高的药用价值,能抑制胆固醇和甘油三酯合成,有效预防肥胖症、动脉粥样硬化症和 2 型糖尿病。α-香树脂醇β-香树脂醇作为两个极性接近的同分异构体,如何利用色谱法有效分离和收集 α-香树脂醇和 β-香树脂醇一直是天然产物界的研究课题之一。由于香树脂醇的化学结构特性,在 HPLC-UV 上会采用 200nm 左右的吸收波长来检测,很容易受到溶剂或其他杂质的影响,而且分离时间也比较长。如图 1 采用 250×3mm I.D,3μm 的 C18 色谱柱分离一系列三萜化合物的混合物。 M. Martelanc et al. / J. Chromatogr. A 1216 (2009) 6662–6670图1、用 HPLC-UV 分离羽扇豆醇(L1),羽扇烯酮(L3),α-香树脂醇(αAm),β-香树脂醇(βAm),δ-香树脂醇(δAm),乙酸环阿屯酯(C2), β-谷甾醇(S2)以及豆甾醇(S1)混合物,流动相为 6.5%水/93.5% 乙腈。本文介绍了一种利用 BUCHI Sepiatec SFC 仪器分离 α-香树脂醇和 β-香树脂醇的方法。SFC 仪器与蒸发光散射检测器(ELSD)相连。为了提高生产效率,采用了堆叠注入模式。▲ BUCHI Sepiatec SFC-50 1实验条件设备Sepiatec SFC-50色谱柱Reprosher C30 10um 100x10mm流动相种类A=CO2B=甲醇流动相条件A/B=85%/15%,等度 18min流速30 mL/min背压150 bar柱温40℃样品25 mg/mL 香树脂醇甲醇溶液进样量11 次叠层进样,每次 100uL▲ 图2、香树脂醇经过 11 次叠层进样,分离为 α-香树脂醇和 β-香树脂醇 2结果与讨论由于 α-香树脂醇和 β-香树脂醇之间没有基线分离,所以分为三组馏分收集,中间部分重新注入以提高回收率。在图 1 的 HPLC-UV 分离方法中,α-香树脂醇和 β-香树脂醇的出峰时间为 20-25 分钟,基线部分波动较大。在图 2 中,SFC-ELSD 采用 11 次叠层进样,总时长为 18 分钟,相比 HPLC 法效率更加高,基线也更加平稳。在馏分收集方面,得益于叠层进样和主要溶剂为 85% CO2,可以在收集大量样品的同时减少溶剂后处理的时间。 3结论α-香树脂醇和 β-香树脂醇可以用 Sepiatec SFC-50 有效分离,结合 ELSD 可实现高产率的检测和连续分馏。 4文献来源Separation and identification of some common isomeric plant triterpenoids by thin-layer chromatography and high-performance liquid chromatographyMitja Martelanc, Irena Vovk, Breda SimonovskaNational Institute of Chemistry, Laboratory for Food Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia

色谱纯表示方法相关的方案

色谱纯表示方法相关的资料

色谱纯表示方法相关的试剂

色谱纯表示方法相关的论坛

  • 各种仪器分析的基本原理及谱图表示方法~

    紫外吸收光谱 UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息荧光光谱法 AFS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息红外吸收光谱法 IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法 Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法 NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法 ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息质谱分析法 MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息 气相色谱法 GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化 提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关反气相色谱法 IGC 分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数裂解气相色谱法 PGC 分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片 谱图的表示方法:柱后流出物浓度随保留值的变化 提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型凝胶色谱法 GPC 分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:高聚物的平均分子量及其分布热重法 TG 分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线 提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区热差分析 DTA 分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化 谱图的表示方法:温差随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息示差扫描量热分析 DSC 分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化 谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线 提供的信息:提供聚合物热转变温度及各种热效应的信息静态热-力分析 TMA 分析原理:样品在恒力作用下产生的形变随温度或时间变化谱图的表示方法:样品形变值随温度或时间变化曲线提供的信息:热转变温度和力学状态动态热-力分析 DMA 分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化[font='微软雅黑','sans-se

  • 【资料】-各种仪器分析的原理及谱图的表示方法

    各种仪器分析的原理及谱图的表示方法分析方法:拉曼光谱法(Ram)分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射. 谱图的表示方法:散射光能量随拉曼位移的变化. 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率.分析方法:核磁共振波谱法(MR) 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁. 谱图的表示方法:吸收光能量随化学位移的变化. 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息.分析方法:电子顺磁共振波谱法(SR) 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁. 谱图的表示方法:吸收光能量或微分能量随磁场强度变化.提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息.分析方法:质谱分析法(MS) 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离. 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化. 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息.分析方法:相色谱法(GC) 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离. 谱图的表示方法:柱后流出物浓度随保留值的变化. 提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关.分析方法:反[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法(IGC) 分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力. 谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线. 提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数.分析方法:裂解[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法(PGC) 分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片.谱图的表示方法:柱后流出物浓度随保留值的变化. 提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型.分析方法:凝胶色谱法(GPC) 分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出. 谱图的表示方法:柱后流出物浓度随保留值的变化. 提供的信息:高聚物的平均分子量及其分布.分析方法:热重法(TG) 分析原理:在控温环境中,样品重量随温度或时间变化. 谱图的表示方法:样品的重量分数随温度或时间的变化曲线. 提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区.分析方法:热差分析(DTA) 分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化. 谱图的表示方法:温差随环境温度或时间的变化曲线. 提供的信息:提供聚合物热转变温度及各种热效应的信息.分析方法:示差扫描量热分析(DSC) 分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化. 谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线.提供的信息:提供聚合物热转变温度及各种热效应的信息.分析方法:静态热―力分析(TMA) 分析原理:样品在恒力作用下产生的形变随温度或时间变化. 谱图的表示方法:样品形变值随温度或时间变化曲线. 提供的信息:热转变温度和力学状态.分析方法:动态热―力分析(DMA). 分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化. 谱图的表示方法:模量或tgδ随温度变化曲线 .提供的信息:热转变温度模量和tgδ.分析方法:透射电子显微术(TEM) 分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象 谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象 ..提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等.分析方法:扫描电子显微术(SEM) 分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象. 谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等.提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等.分析方法:紫外吸收光谱(UV)分析原理: 吸收紫外光能量,引起分子中电子能级的跃迁.谱图的表示方法: 相对吸收光能量随吸收光波长的变化. 提供的信息: 吸收峰的位置、强度和形状,提供分子中不同电子结构的信息.分析方法: 荧光光谱法(FS)分析原理: 被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光.谱图的表示方法: 发射的荧光能量随光波长的变化.提供的信息: 荧光效率和寿命,提供分子中不同电子结构的信息.[em09] 『转自化学仪器分析资源』[color=blue][marquee]欢迎到[i]微波化学[/i]做客![/marquee][/color]

色谱纯表示方法相关的耗材

  • 气相色谱柱 ASTM 方法 CP8687
    产品信息:Agilent J&W 气相色谱柱订货信息:ASTM 方法方法名称方法标题推荐的安捷伦色谱柱部件号D3328 水性石油润滑油对比的气相色谱标准试验方法 CP-Sil 5 CB, 30 m x 0.32 mm, 3.00 μmCP8687CP-Sil 5 CB, 30 m x 0.53 mm, 3.00 μmCP8677D3329 甲基异丁基甲酮纯度的气相色谱标准测试方法 DB-WAX, 30 m x 0.53 mm, 1.00 μm125-7032DB-624, 30 m x 0.45 mm, 2.55 μm124-1334CP-Wax 52 CB, 60 m x 0.53 mm, 1.00 μmCP8798D3432 聚氨酯预聚物和涂料溶液中未反应的甲苯二异氰酸酯 的气相色谱标准试验方法HP-1ms, 30 m x 0.32 mm, 1.00 μm 19091S-713D3447卤化有机溶剂纯度的标准试验方法DB-624, 30 m x 0.53 mm, 3.00 μm125-1334D3452热裂解气相色谱橡胶鉴定的标准操作CP-Sil 5 CB, 30 m x 0.53 mm, 1.50 μmCP8735D3465 增塑剂单体纯度的气相色谱标准试验方法 CP-Sil 5 CB, 25 m x 0.32 mm, 0.52 μmCP8430CP-Sil 5 CB, 30 m x 0.53 mm, 1.50 μmCP8735D3524 柴油发动机油中的柴油燃料稀释剂的气相色谱标准试 验方法CP-SimDist UltiMetal, 10 m x 0.53 mm, 0.53 μm CP7592 D3545乙醇含量和醋酸酯纯度的气相色谱标准试验方法DB-624, 30 m x 0.53 mm, 3.00 μm125-1334D3606 成品汽车和航空汽油中苯和甲苯测定的气相色谱测定 标准试验方法 VF-1ms, 15 m x 0.25 mm, 0.10 μmCP8906CP-TCEP for Alcohols in Gasoline, 50 m x 0.25 mm, 0.40 μmCP7525D3687 用活性碳管吸附法对所收集的有机蒸气进行分析的标 准试验方法 DB-WAX, 30 m x 0.53 mm, 1.00 μm 125-7032 DB-WAX, 30 m x 0.45 mm, 0.85 μm124-7032CP-Wax 52 CB, 30 m x 0.32 mm, 0.50 μmCP8763CP-Wax 52 CB, 30 m x 0.53 mm, 1.00 μmCP8738D3695 水中挥发性醇的直接水相进样气相色谱标准试验方法 DB-WAX, 30 m x 0.53 mm, 1.00 μm125-7032CP-SimDist UltiMetal, 10 m x 0.53 mm, 0.53 μmCP7592D3710 汽油和汽油馏分沸点范围分布的气相色谱标准试验 方法DB-2887, 10 m x 0.53 mm, 3.00 μm 125-2814 D3749 聚(氯乙烯)酯中残留聚氯乙烯单体的顶空气相色谱 标准测试方法 PoraBOND Q, 10 m x 0.32 mm, 5.00 μm CP7350 PoraBOND Q PT, 10 m x 0.53 mm, 10.00 μmCP7353PT
  • 气相色谱和气相色谱/质谱用有机标样
    产品名称:PerkinElmer气相色谱和气相色谱/质谱用有机标样仪器厂商:PerkinElmer/美国 珀金埃尔默 价格:面议 库存:是说明零件编号600系列废水方法《清洁水法案》“废水”1.2ml装2,000μg/ml于P&T甲醇N9331064624方法用混标A1.2ml装2,000μg/ml于P&T甲醇N9331060624方法用净化气混标B1.2ml装2,000μg/ml于P&T甲醇N9331061624方法用混标C1.2ml装2,000μg/ml于P&T甲醇N9331062624方法用混标D1.2ml装2,000μg/ml于P&T甲醇N9331063挥发性有机物混标1.2ml装2,000μg/ml于P&T甲醇N93310478260B方法标样8260B方法可替代四成分标样1.2ml装2,000μg/ml于P&T甲醇N9331042内标(适用于8260B方法)1.2ml装2,000μg/ml于P&T甲醇N93310418260B用酮化合物标样1.2ml装2,000μg/ml于P&T甲醇N93310438260B/524.2用净化气体混标B1.2ml装2,000μg/ml于P&T甲醇N9331048
  • 恒谱生USHA C18-T高效液相c18色谱柱hplc色谱纯化柱
    恒谱生USHA C18-T高效液相色谱柱,专为选择性分离而设计以实现优质的分离与纯化为目标。恒谱生分析色谱柱基于高纯硅胶,采用独特键合技术,具有优异的峰形,有更好的选择、灵敏性和重要性。其基质金属含量低,对所有类型的分析物均表现良好峰形。机械强度稳定性好,质控严格,确保很出色的色谱柱性能和延长色谱柱寿命。具有多种键合相,为客户提供优化的分离。不同的键合相提供了不同的选择性,使方法开发更加灵活。制造时遵守严格的生产流程和严格的质量控制测试,保证优异的柱间重复性。恒谱生uplc色谱柱结合独特的表面化学键合和封尾技术研制出具有柱效高、机械强度高和反压低的反相硅胶填料,填料包括反相C18、C8和C4等产品,广泛应用于医药、环境和食品等多个领域,并满足从实验室分析到工业大规模制备的不同需求。键合相种类C18-T粒径1.8、2、3、5、10、20、30μm孔径70、100、150、200、300?等含碳量19%PH稳定值 1.5-11是否封端二次封尾分离模式反相恒谱生高效反相色谱柱性能优点:稳健的HPLC方法HPLC方法无缝转换到UPLC制备分离的优化及放大极端pH条件下的稳定性提升柱寿命和稳定性大幅提高方法开发灵活性增强化合物保留 uHPLCs色谱柱具有各种尺寸,满足您应用的需要。由恒谱生专门生产,键合相具有1.8μm、2 μm、3μm和5μm的小粒径,提供高分离度,通过使用更短的色谱柱,提供更有效和快速的色谱分离,减少溶剂损耗,或者使用更长的色谱柱分离复杂混合物。可重复使用柱接头的不锈钢色谱空柱有30、50、75、100、150、200、250和300mm等多种长度。恒谱生生产设施严格的QC过程确保批次之间的重现性。 恒谱生色谱柱柱管由不锈钢制成,不锈钢柱内壁多经过抛光,减小管壁效应,提高柱效,柱中填充键合硅胶或聚合物填料。液相色谱柱基于高纯硅胶,采用独特键合技术,具有优异的峰形,灵敏性好。基质金属含量低,对所有类型的分析物均表现完好峰形。机械强度高,稳定性好,质控严格,确保色谱柱性能和色谱柱的使用寿命。有多种尺寸规格可供选择以适应色谱工作者及其使用的不同需求。我们有专业的技术工程师团队为您的需求提供解决方案,欢迎前来咨询了解! 通常色谱柱寿命在正确使用时可达2年以上。以硅胶为基质的填料,只能在pH2~9范围内使用。柱子使用一段时间后,可能有一些吸附作用强的物质保留于柱顶,特别是一些有色物质更易看清被吸着在柱顶的填料上。新的色谱柱在使用一段时间后柱顶填料可能塌陷,使柱效下降,这时也可补加填料使柱效恢复。色谱柱的正确使用和维护十分重要,稍有不慎就会降低柱效、缩短使用寿命甚至损坏。所以要用正确的方法使用,每次工作完后,需用洗脱能力强的洗脱液冲洗,以延长色谱柱的寿命。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制