激光红外成像系统

仪器信息网激光红外成像系统专题为您提供2024年最新激光红外成像系统价格报价、厂家品牌的相关信息, 包括激光红外成像系统参数、型号等,不管是国产,还是进口品牌的激光红外成像系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光红外成像系统相关的耗材配件、试剂标物,还有激光红外成像系统相关的最新资讯、资料,以及激光红外成像系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

激光红外成像系统相关的厂商

  • 湖北久之洋红外系统股份有限公司主要从事红外热像仪、激光测距仪的研发、生产与销售,是国内少有的、同时具备红外热像仪和激光测距仪自主研发与生产能力的高新技术企业,是中国高科技产业化研究会光电科技产业化专家工作委员会常务理事单位、中国光电子协会红外专业委员会常务理事单位、湖北省光学学会常务理事单位。公司主要产品包括具有先进水平的各型制冷红外热像仪、非制冷红外热像仪以及激光测距仪等产品,在红外热成像技术、激光测距技术、光学技术、电子技术、图像处理技术等方面具有综合学科优势,技术水平居国内领先地位。 公司拥有光学、红外、激光技术领域具备丰富研发经验的研发团队,专项负责相关领域的技术创新和新产品研发,组建有非制冷红外、制冷红外、激光产品三条生产线,能够满足不同客户定制产品或批量产品的需求。 凭借强大的研发实力、丰富的生产经验和过硬的产品质量,公司产品的市场占有率不断提升,产品广泛应用于海洋监察、维权执法、安防监控、森林防火监控、水上交通安全监管和救助、搜索救援、工业检测、检验检疫以及辅助驾驶等领域。
    留言咨询
  • 华日激光坚持以市场需求引领新产品的研发,为客户提供纳秒、皮秒、飞秒等多种脉冲宽度,红外、绿光、紫外、深紫外等多种波长的激光器产品,所有产品均具备自主产权,同时产品通过欧盟CE质量安全认证,完全满足严苛条件下的工业加工要求,是超精细加工领域的理想光源。同时通过与全球高端激光设备制造商在电子电路、硬脆材料、半导体、新能源、生命科学等领域开展紧密合作,为用户提供全面的激光技术解决方案。
    留言咨询
  • 本公司是一家专业从事激光产品研发的高科技公司,拥有雄厚的技术设计和生产能力,终身致力于为国内外客户提供品质优良、性能出众、价格有竞争力之产品。目前已开发出多种半导体激光产品,其中激光标线器是一种方便实用的标线工具。可广泛用于作服装钉钮点光源定位、裁布机裁布辅助标线、缝纫机/裁剪机/钉钮机/自动手动断布机辅助标线定位、裁床裁剪对格与对条、电脑开袋机标线等等。方便快捷、直观实用。。  产品主要包括:半导体激光器、激光准直光源、激光平行光管、激光标线仪、光学透镜、实验室教学光源、激光功率计等。  半导体激光器主要包括绿光(532nm)系列激光器、红光(635nm、650nm、780nm)系列激光器和红外(808nm、850nm、980nm)系列激光器。  激光准直光源主要包括:D-系列(点状光斑)激光器、L-系列(一字线)激光器、S-系列(十字线)激光器、T1-系列(功率可调)激光器、T2-系列(频率调制)激光器,P-系列(平行光管)激光器,B-系列激光标线仪。其中D-系列激光器光束发散度可达0.1mrad;L-系列激光器线宽最小可达0.3mm;调制(T2)激光器调制范围0-10KHz。P-系列激光平行光管口径可达40mm,光束发散度可达0.02mrad。  激光功率计可标定532nm、635nm、650nm、780nm、808nm、850nm、980nm、1100nm各波段,工作同时可监测电流。  我公司激光产品及光学产品可广泛应用于科研、工业、勘探、测量及医疗等领域。可以根据用户的特殊要求设计加工专用激光器及光学系统,也可以提供激光系统应用和特殊用途的批量供应。“团结、自信、坚韧、进取”是我们的企业宗旨,我们将一如既往地为用户提供高品质的产品。
    留言咨询

激光红外成像系统相关的仪器

  • 研究微塑料等新兴污染物需要创新的分析技术。Agilent 8700 LDIR 激光红外成像系统采用量子级联激光器光谱技术,具有出众的分析速度和易用性以应对此类分析挑战。8700 LDIR 系统的全自动化微塑料工作流程非常适合分析环境样品、食品等样品中的微塑料颗粒。8700 LDIR 处理样品仅需几分钟或几小时(而非几天),能够在极少的操作人员干预下实现更高的样品通量。这一优势可降低成本并避免潜在错误,为您快速提供所需的结果。Agilent 8700 LDIR 激光红外成像系统——清晰的化学成像和理想的分析速度如果您既可以节省时间又能获得更出色的结果,那将会怎样?Agilent 8700 LDIR 激光红外成像系统为您提供全新的尖端化学成像和光谱分析能力。针对专家和非专家使用而设计的 8700 LDIR 提供了一种简单的高度自动化方法,能够使表面成分获得可靠的高清化学图像。Agilent 8700 LDIR 采用最新量子级联激光器 (QCL) 技术,结合快速扫描光学元件,可提供快速、清晰的高质量图像和光谱数据。这项技术与直观的 Agilent Clarity 软件相结合,可通过“放置样品-自动运行”的简单方法,以最少的仪器交互实现大样品区域快速、详细的成像。使用 8700 LDIR,您可以在更短的时间内更详细地分析更多样品,这种强大的解决方案为您提供了比以往更多的统计数据,有助于完成片剂、多层薄膜材料、生物组织、聚合物和纤维的组成分析。借助更有意义的信息,您可以在产品开发过程中制定更明智、更快速的决策,从而降低成本、缩短分析时间。(从左到右)安捷伦样品切片机、Agilent 8700 LDIR 激光红外成像系统和 Agilent Clarity 软件分析窗口主要优势– 主要应用领域:微塑料测试、制药、科研– 自动完成样品分析– 无需更换任何光学元件,即可分析大样品区域,然后更详细地分析较小的目标区域– 全面软件控制支持自动调节微米级到厘米级的视野范围,或 1 μm 到 40 μm 的像素分辨率– 通过采集像素分辨率小至 0.1 μm 的 ATR 成像数据,可获得无与伦比的图像细节和光谱质量– 借助 ATR 功能,可使用商业或自定义谱库快速鉴定未知物– 无需进行复杂的方法开发,即可获得样品成分的相对定量信息– 无需使用液氮,可降低运行成本并简化维护操作特性:高度自动化的工作流程使您能够从一系列样品基质中定位、描述和鉴定微塑料颗粒无需更换任何光学元件,即可分析大样品区域并成像,然后更详细地分析较小的目标区域。使用 Agilent Clarity 软件实现全面控制,“ 放置样品-自动运行” 方法仅需极少的仪器操作,小巧体积节省了实验台空间用于实时谱图匹配的内置文库。结果随谱图采集持续更新。量子级联激光器 (QCL) 和电冷却检测器无需液氮,降低了运行成本并简化了维护过程。机载 ATR 允许进一步分析未知颗粒,而无需移除样品。谱图可以导出到外部文库用于确认鉴定结果。使专业光谱工作者和受过培训的一般技术人员都能够快速准确地分析和表征样品。工作原理:8700 LDIR — 量子级联激光器光谱分析在对极小的对象(例如微塑料)进行分析时,保持高水平的精度至关重要。8700 LDIR 使用基于半导体的量子级联激光器 (QCL) 光源替代了传统红外光源。QCL 能够以单波长发射红外光,或是在不到一秒的时间内完成完整光谱的扫描。双线工作模式与大功率信号及精密的波长准确度相结合,实现了超越以往仪器的分析选择和分析性能。应用:表征环境样品中的微塑料LDIR 配备的 Agilent Clarity 软件提供了出色的工作流程自动化和灵活的进样选项。了解使用 Agilent 8700 LDIR 激光红外成像系统进行微塑料分析的强大工作流程。对滤膜上源自塑料瓶的微塑料进行快速的大面积直接分析由于废弃物管理不当和塑料污染,现在已知微塑料广泛存在于环境中。但是,微塑料的膳食暴露途径目前尚不明确。了解 8700 LDIR 如何准确鉴定和定量瓶装饮用水中存在的微塑料。同行评审的 8700 LDIR 出版物LDIR 正在迅速成为分析各种样品类型中微塑料的首选技术。在科学文献和可公开访问的数据库(包括谷歌学术)中,可以找到种类繁多的 8700 LDIR 出版物。
    留言咨询
  • 布鲁克HYPERION II是第一款结合了尖端红外激光成像的红外显微镜,具有无与伦比的成像速度,并且在同一台的设备中结合了经典和通用的FT-IR显微镜。布鲁克HYPERION II不负盛名,彰显了我们引领创新的实力。它首次实现在一台仪器中集FT-IR和QCL技术于一体。HYPERION II囊括所有基本技术,首先是应用最广泛的FT-IR显微镜。它可用于一般研究、法医鉴定、故障分析、生命科学和电子学等领域:热电和液氮冷却MCT检测器视觉和红外对比度增强工具提供各式各样的物镜和配件集成了压力传感器的专用ATR物镜借助焦平面阵列(FPA)检测器技术,将化学FT-IR成像提升至新的高度。它可在各种测量模式下实现卓越的空间分辨率和光谱灵敏度:焦平面阵列技术实现真正的红外成像高空间分辨率,全面兼容ATR低倍物镜用于快速化学概览高倍物镜用于观察最微小的细节布鲁克激光红外成像模块(ILIM)打开了一扇新的大门,有助于进一步增强现有应用和探索新的应用。HYPERION II结合QCL技术和FT-IR于一体:以前所未有的速度采集高对比度红外图像无缝组合FT-IR和QCL测量可在实时红外成像下实时观察样品 在所有测量模式下均可进行QCL成像:透射、反射和ATR
    留言咨询
  • 首创、独有的纳米红外功能和性能Bruker公司推出的Dimension IconIR是一款集合了纳米级红外光谱(nanoIR)技术和扫描探针显微镜(SPM)技术的系统。它整合了数十年的技术创新和研究成果,可以在单一平台上提供无与伦比的纳米级红外光谱、物理和化学性能表征。该系统具有超高的单分子层灵敏度和化学成像分辨率,在保留DimensionIcon最佳的AFM测量能力的同时,还提供了极大的样品尺寸灵活性。Dimension IconIR利用Bruker独有的PeakForce Tapping纳米级物性表征技术和专利的纳米红外光谱技术,使得它能够在纳米尺度下对样品进行纳米化学、纳米电学和纳米力学的关联性表征。只有Dimension IconIR具备:与FTIR完全吻合的红外光谱,优于10 nm的空间分辨率和单分子层灵敏度的高性能纳米红外光谱化学成像可与Peakforce Tapping纳米力学和纳米电学属性表征相关联高性能的AFM成像功能和极大的样品尺寸灵活性广泛适用的应用配件和AFM功能模式专利技术保证真实的红外吸收光谱AFM-IR通过采集样品的热膨胀信号(PTIR)还原样品的红外吸收光谱。由于检测区域的热膨胀只与样品在该波长下的吸收强度有关,而常规的傅里叶红外光谱(FTIR)检测的也是样品在该波长下的吸收强度,因此AFM-IR获得的红外吸收光谱与传统的红外吸收光谱高度吻合。红外吸收成像除采集指定区域的红外吸收光谱外,Dimension IconIR同时提供了固定红外脉冲波长,检测样品表面某一区域在该波长下吸收强度的功能。在该工作模式下,Dimension IconIR会将红外脉冲激光固定在研究者所选的波长,用AFM探针扫描需要检测的表面,记录探针针尖在每个位置检测到的红外吸收强度,并同时给出AFM形貌和该波长下的红外吸收成像。专利保护的接触共振技术专利保护的共振增强技术将测量灵敏度提高到单分子层级别,达到最高的光谱检测灵敏度。因为基于原子力系统的红外技术是以探针来检测样品表面在红外激光作用下的机械振动,随着厚度的减小,这种位移量变得极其微小,超出了原子力显微镜的噪音极限。我们利用专利保护的可调频激光优化脉冲信号频率,使之与探针和样品的接触共振频率吻合,那么这种单谐振子共振模式就能把微弱信号放大两个数量级。。智能光路优化调整,保证实验效率红外激光和AFM联用系统的最大挑战在于光路的优化,为了得到最佳的信号,在实验过程中光斑中心应该始终跟随探针针尖位置并保持良好的聚焦。但是在调频过程中,激光光束的发射角度会随着波长的变化而改变,进而改变光斑位置,聚焦状态也会变化。布鲁克采用全自动软件控制automatic beam steering和自动聚焦系统来修正光斑位置的偏移和聚焦,大大改善了传统联用系统需要手动调节的不便和低效率。同时全自动动态激光能量调整保证信号的稳定性,避免红外信号受激光不均匀功率的影响。
    留言咨询

激光红外成像系统相关的资讯

  • 安捷伦激光红外成像系统荣获《分析科学家》杂志创新奖
    p style="text-align: justify text-indent: 2em "2018 年 12 月 20 日,安捷伦科技公司(纽约证交所:A)宣布《分析科学家》杂志已将其产品列入年度最具创新性产品名单。/pp style="text-align: justify text-indent: 2em "该杂志关注分析化学领域的技术发展,并将Agilent 8700 LDIR 激光红外成像系统列为今年的顶级创新产品之一。/pp style="text-align: justify text-indent: 2em "安捷伦于10月推出了8700 LDIR激光红外成像系统。 这一创新系统采用了一种新的化学成像方法,为制药,生物医学,食品和材料科学带来了更高的清晰度和前所未有的速度。/pp style="text-align: justify text-indent: 2em "Agilent 8700 LDIR 激光红外成像系统提供了全新的尖端化学成像和光谱分析能力。针对专家和非专家使用而设计的 8700 LDIR 提供了一种简单的高度自动化方法,能够使表面成分获得可靠的高清化学图像。/pp style="text-align: justify text-indent: 2em "Agilent 8700 LDIR 采用最新量子级联激光器 (QCL) 技术,结合快速扫描光学元件,可提供快速、清晰的高质量图像和光谱数据。这项技术与直观的 Agilent Clarity 软件相结合,可通过“放置样品-自动运行”的简单方法,以最少的仪器交互实现大样品区域快速、详细的成像。span style="text-indent: 2em "使用 8700 LDIR,可以在更短的时间内更详细地分析更多样品,得到更多的统计数据,有助于完成片剂、多层薄膜材料、生物组织、聚合物和纤维的组成分析。可以在产品开发过程中制定更明智、更快速的决策,从而降低成本、缩短分析时间。/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/ae54a009-95dc-4b4c-b5e0-4f6143509cf7.jpg" title="8ca1cde5-f9a5-48b5-b99b-7823a6cac144.jpg" alt="8ca1cde5-f9a5-48b5-b99b-7823a6cac144.jpg"//pp style="text-align: center "Agilent 8700 LDIR 激光红外成像系统/pp style="text-align: justify text-indent: 2em "《分析科学家》创新奖重点关注革命性技术带来的创新成果。获奖者由专家小组选出,小组成员包括杂志编辑顾问委员会的成员和编辑人员。/pp style="text-align: justify text-indent: 0em "  strong关于安捷伦科技公司/strong/pp style="text-align: justify text-indent: 0em "  安捷伦科技公司(纽约证交所: A)是生命科学、诊断和应用化学市场领域的全球领导者,拥有 50 多年的敏锐洞察与创新,我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在 2017 财年,安捷伦的营收为 44.7 亿美元,在全球拥有 14500 名员工。/ppbr//ppbr//p
  • 安捷伦推出用于微塑料分析的增强型激光红外成像系统
    安捷伦科技公司(纽约证交所:A)近日宣布,公司推出增强型 8700 LDIR 激光红外成像系统。该系统针对环境样品中的微塑料分析实施了进一步优化。这一新改进的系统方案包还包含了 Clarity 1.5 软件,这一重大升级可加快分析速度,增强光谱采集、转换和谱库匹配,并提供自动化工作流程,可直接分析滤膜上的微塑料。重新设计的创新样品支架能够更轻松地将滤膜上的样品递送至仪器,并且操作更加一致。   环境中广泛存在的微塑料成为全球日益关注的问题,这也促使政府更加重视微塑料污染,与此同时,环境机构也加强了对河流和海洋的监测。想要充分评估环境中的微塑料污染情况,研究人员就需要确定样品中塑料颗粒的粒径、形状和化学特性,但由于更小的颗粒往往具有更强的生物学相关性,因此该分析必须扩展到微米级的颗粒。   微塑料分析面临的主要挑战是分析周期长且操作复杂,阻碍了对现实系统的研究。此外,方法的差异性也限制了研究之间的可比性,因此难以评估微塑料污染趋势。FTIR 和显微拉曼成像技术等振动光谱提供了一种有用的替代方案,但由于分析时间长且方法过于复杂,这些方法都存在局限性。   VAgilent 8700 LDIR 使红外光谱分析兼具快速分析和易用性,并迅速成为微塑料颗粒分析的基准技术。该平台能够直接对滤膜上的颗粒进行分析,标志着速度和通量的又一次飞跃。测试量显著增加将使研究人员能够更好地了解环境中微塑料的污染程度,并有助于制定合理的标准和法规。   安捷伦副总裁兼分子光谱事业部总经理 Geoff Winkett表示:“当我与微塑料研究人员交谈时,一个反复提及的问题是如何使检测更快速、更简便。如果实际处理的样品数量有限,这可能会掩盖问题的真实本质。目前,其他可用的技术分析周期太长,并且无法捕获饮用水和环境水中大量的微塑料。一些快速且简便易用的分析方法,如 8700 LDIR,提供了一种重要且急需的替代方案,使研究人员能够在一定的区域或时间内采集更多样品,从而应对这些局限。”   作为食品与环境分析解决方案的优质供应商,安捷伦致力于为学术研究领域和商业检测公司提供能够改善用户结果的出色技术。增强型 8700 LDIR 的推出有望加强安捷伦在这一不断发展的市场中的前沿地位。   关于安捷伦科技公司   安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领军者,致力于提供敏锐洞察与创新,帮助提高生活质量。安捷伦提供涵盖仪器、软件、服务及专业技能的全方位解决方案,能够为客户挑战性的难题提供更可靠的答案。在 2021 财年,安捷伦的营业收入为 63.2 亿美元,全球员工数为 17000 人。
  • 【激光成像】AM:从蓝色至近红外的碳点激光用于彩色无散斑激光成像与动态全息显示
    背景介绍随着可溶液加工激光增益材料的不断发展与改进,该类型的激光器在生物医学治疗、柔性可穿戴设备、通信及军事设备等领域的应用也在不断突破。然而,增益材料的毒性、成本和稳定性问题日益显著,这些问题是增益材料在微/纳激光领域可持续发展的主要障碍。因此,寻找低毒、低成本、高稳定性的激光材料成为该领域内的重要的任务。研究出发点碳点(CDs)作为一种环境友好、稳定性优良、制备成本低及荧光性能优异的碳基纳米材料,近年来引起了人们广泛的研究兴趣。基于CDs激光增益介质的研究不断被报道,并且逐渐走向实际应用。虽然这些早期的研究促进了CDs激光的发展,并证明了CDs是一种优异的激光增益介质。然而,跨度广的全彩色激光,尤其是近红外激光器,一直难以实现。考虑到近红外激光器在空间光通信、激光雷达、夜视,特别是临床成像和治疗等方面的广阔应用前景,开发高性能的近红外CDs激光具有重要意义。此外,CDs激光缺乏系统性的研究,这些研究可以指导CD激光材料的开发,并有助于推动其实际应用的发展。全文速览在此背景下,郑州大学卢思宇课题组合成了具有明亮蓝色、绿色、黄色、红色、深红色和近红外荧光(分别标记为B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs)的全色CDs(FC-CDs)的制备,其PL峰值波长范围为431至714 nm。CDs的低含量sp3杂化碳、高PLQY和短荧光寿命是影响其激光性能的重要因素。结果表明,这些FC-CDs的半高宽明显较窄,在44 ~ 76 nm之间;同时,辐射跃迁速率KR为0.54 ~ 1.74 × 108 s−1,与普通有机激光材料相当,表明FC-CDs具有良好的增益潜力。激光泵浦实验证实了这一点,成功实现了从467.3到705.1 nm宽范围(238 nm)可调的CDs激光出射,覆盖了国家电视标准委员会(NTSC)色域面积的140%。结果表明,CDs具有较高的Q因子、可观的增益系数和较好的稳定性。最后,利用这些FC-CDs激光作为光源,实现了高质量的彩色无散斑激光成像和动态全息显示。此项工作不仅扩大了CDs激光的发射范围,而且为实现多色激光显示和成像提供了有益的参考,是推动CDs激光发展和实际应用的重要一步。文章以“Carbon Dots with Blue-to-Near-Infrared Lasing for Colorful Speckle-Free Laser Imaging and Dynamical Holographic Display”为题发表在Advanced Materials上,第一作者为张永强博士。图文解析图1a-f为其透射电子显微镜照片,显示出B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs为球形或准球形颗粒,平均粒径分别为3.09、3.24、3.76、3.25、4.25和5.98 nm。高分辨率透射电镜(HRTEM)显示,所有CDs的面内晶格间距为0.21 nm,这可归因于石墨烯的(100)面。值得注意的是,NIR-CDs是由单分散CD聚集而成的。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的X射线衍射(XRD)峰分别位于20°、22°、22.8°、27°、23°和23.5°。这些值近似于石墨(002)平面25°和层间距(0.34 nm)处的衍射峰。通常,对于脂肪族前驱体,制备的CDs的XRD峰在21°左右,晶格间距比0.34 nm更宽这是因为脂肪族前体在炭化过程中更容易将含氧和含氮杂原子基团引入共轭面,从而扩大了面内间距。R-CDs在27°处有一个清晰的尖锐衍射峰,表明两步溶剂热处理产生了良好的结晶度。此外,NIR-CDs在31.7°和45.5°处有两个尖峰,这两个峰属于NIR-CDs中残留的离子液体(IL),IL具有聚集单分散CDs的功能,有助于形成聚集的颗粒。傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)进一步收集了的结构成分信息(图1h和i)。光谱在3425和3230 cm−1附近显示出广泛的吸收特征,证实了-OH和-NH2的存在。1710和1630 cm−1附近的强信号与C=O拉伸振动有关,1570、1386、1215和1145 cm−1处的峰是由C=C、C-N和C-O- C拉伸振动引起的。这些结果表明,所有的FC-CDs都是由sp2/sp3杂化芳香结构形成的,这些杂化芳香结构在表面被含有杂原子(O和N)的极性基团修饰,这些基团使CDs在极性溶剂中具有良好的溶解性。图1中完整的XPS扫描显示,FC-CDs主要含有碳、氮和氧。高分辨率C 1s在C=C、C-N/C-O/(C-S)和C=O分别为284.6、286.6和288.3 eV处呈现出三个峰。N 1s分别在399.0、399.9和401.4 eV处显示吡啶、吡啶和石墨的N掺杂。O 1s光谱中C=O和C-O基团的峰分别位于531.4 eV和533 eV左右。这些XPS结果与FTIR分析一致。图1 形貌与化学成分表征。(a)B-CDs,(b)G-CDs,(c)Y-CDs, (d)R-CDs,(e)DR-CDs和(f)NIR-CDs;右上方的插图是相应的粒径分布,右下方的插图是单个颗粒的高分辨率TEM(HRTEM)图像。(g)XRD图谱,(h)FTIR谱,(i)XPS全扫描谱图。图2a-f显示了紫外照射下FC-CDs的亮蓝色、绿色、黄色、红色、深红色和近红外荧光,其发射峰分别位于431、526、572、605、665和714 nm。这些PL谱都表现出独立于激发波长的行为。它们的PLQY分别为64.9%、91.2%、41.2%、51.6%、28.3%和37.9%。此外,对于B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs,其PL光谱的半高全宽(FWHM)分别为0.46、0.19、0.18、0.24、0.20和0.14 eV。XPS分析sp3杂化碳含量分别为17.09%、9.01%、11.78%、16.78%、6.26%和11.41%。Yan等人的第一性原理计算表明,C-N、C-O和C-S基团可以导致局域化电子态,并在n -π*间隙中产生许多新的能级。这些sp3杂化碳相关激发能级的密度与C-N、C-O和C-S基团的含量呈正相关,决定了PL光谱的FWHMs。因此,CDs的PL光谱FWHMs可以通过sp3杂化碳的含量来控制。这些CDs的紫外-可见吸收峰存在于高、低两个不同的能带区,分别归因于芳香sp2结构域C=C的π -π*跃迁和CDs表面与C=O相关的不同表面态的n -π*跃迁。图2g显示了FC-CDs溶液的PL光谱的CIE坐标覆盖了NTSC标准色域面积的97.2%,意味着FC-CDs在显示中的具有良好的应用潜力。FC-CDs的时间分辨PL(TRPL)谱显示其荧光寿命分别为12.09、5.24、3.60、3.87、2.43和2.44 ns(图2h)。这些高PLQY、窄发射带和快速的PL衰减寿命的特性都有利于受激辐射(SE)。为了评估CDs的激光增益能力,结合公式(1)和(2)计算了ASE的相关参数。ASE阈值与爱因斯坦系数B和SE截面(σem)成反比:KR = φ / τ, (1) σem(λ)= λ4g(λ)/ 8πn2cτ, (2)B ∝ (c3/8πhν03)KR, (3)其中φ为PLQY,τ为平均荧光寿命,λ为发射波长,n为折射率,c为光速,g(λ)是自发辐射的线性函数,表示为g(λ)dλ = φ,h 为普朗克常数,ν0 为光频率,c 为光速。因此,KR值分别为0.54、1.74、1.14、1.33、1.16和1.55 × 108 s−1(图2i)。计算得到的最大的σem分别为1.46、16.59、13.38、15.45、19.51和38.66 × 10−17 cm2(图2i)。这些值与普通有机激光材料的值相似,表明这些CDs具有优良的增益潜力。基于上述分析,我们认为实现CDs激光有两个重要的因素。首先,需要集中的激发态能级来收集大量的具有相同能量的激发态电子,这有利于粒子数反转。其次,处于激发态能级的电子需要在高KR下跃迁回基态,这样统一的快速过程有利于光放大。这两个因素都可以通过精准的合成来控制:通过减少CDs中sp3杂化碳的含量来获得集中的激发能级,通过增加CDs的PLQY同时降低荧光寿命来获得高KR。 图2 光学表征。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs的吸收光谱和PL发射光谱,插图为对应CDs溶液在紫外灯照射下的光学图片,,线标签表示激发波长,单位为nm。(g)CDs发光光谱的CIE色坐标。(h)FC-CDs的TRPL光谱和(i)KR和最大σem。采用激光泵浦对FC-CDs的激光性能进行了表征。图3a、c、e、g、i和k分别为不同泵浦强度下的B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的发射光谱,显示出在467.3、533.5、577.4、616.3、653.5和705.1 nm处的出现尖峰;输出在可见光区域的跨度为238 nm(图3m)。在垂直于泵浦激光器和比色皿端面的方向上观察到这些FC-CDs产生的远场激光光斑(图4a、c、e、g、i和k的插图),表明激光发射的产生。随着泵浦影响的增加,FWHMs从大约60 nm急剧下降到~5 nm。这些发射光谱表明,泵浦强度的增加使发射强度急剧增加,峰的FWHM迅速窄化。为了明确发射峰强度、FWHMs和泵浦强度之间的量化关系,图3b、d、f、h、j和l绘制了相关曲线。它们都表现出明显的拐点:对于拐点以下的泵浦强度,FWHMs和输出发射强度的强度变化不明显,但在拐点以上增加泵浦能量,FWHMs急剧窄化,发射峰值强度急剧增加,其斜率与拐点以下大不相同。拐点表示激光的阈值,B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的激光阈值分别为319.84、35.89、53.31、11.10、43.90和17.88 mJ cm−2。考虑到这种激光泵浦中无反光镜体系,这些阈值也是合理的。为了评估FC-CDs的激光阈值水平,我们还使用相同的激光泵浦设置测量了罗丹明6G (Rh6G),其激光阈值为32 mJ cm−2,表明FC-CDs具有与常用激光染料相近的激光阈值。为了评估全色激光器的性能和商业化潜力,研究了其CIE颜色坐标、Q因子、增益系数(g)和稳定性。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的激光光谱对应的CIE色坐标分别为(0.131,0.047)、(0.178,0.822)、(0.494,0.505)、(0.684,0.315)、(0.728,0.272)和(0.735,0.265)(图3n)。所形成的封闭区域可以达到NTSC色域面积的140%,表明FC-CDs在全彩色激光显示中的巨大潜力。对于B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs,各自的激光线宽分别为0.17、0.13、0.11、0.21、0.21和0.34 nm,相应的Q因子(Q = λp/∆λp,其中λp为激光峰波长,∆λp为激光线宽)分别为2748.8、4103.8、5249.1、2920.5、3111.9和2073.8,这些值目前位于可溶液加工激光器中的前列。这些发现表明,我们的FC-CDs的激光器在激光质量上具有相当大的优势,这有利于其实际应用。光学增益系数量化了荧光材料实现激光发射的能力,可以用变条纹长度法来计算光学增益系数。激光输出强度可表示为:I(l) = (IsA/g) [exp(gl)-1], (4)其中I(l)为从样品边缘监测到的发射强度,IsA描述了与泵浦能量成正比的自发发射,在固定的泵浦能量下为常数,l为泵浦条纹的长度,g为净增益系数。图3p显示了在2倍激光阈值下,输出发射强度与激发条纹长度的关系。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的增益系数分别为8.9、24.7、17.1、16.0、13.5和21.5 cm−1。这些结果与大多数有机激光材料相当甚至更优,表明这些FC-CDs具有良好的增益特性。稳定性也是评估激光器时的一个重要考虑因素。在2倍激光阈值下连续泵浦FC-CDs激光,G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs连续工作7、7、5.5、5.5和4 h后,激光强度分别为初始激光强度的0.97、0.97、1、0.98、1.03倍(图4)。在CDs的2倍激光阈值下,将相近激光波长的常用商用激光染料与相应的CDs进行了稳定性比较。香豆素153 (541 nm)、Rh6G (568 nm)、RhB (610 nm)、Rh640 (652 nm)和尼罗蓝690 (695 nm)的激光强度分别下降到初始强度的0.60、0.84、0.89、0.76和0.73倍。对于B-CDs,激光阈值大约比其他CDs高一个数量级;在泵浦的0.6 h时,激光输出逐渐降至零。相比之下,香豆素461 (465 nm)的激光在0.2 h的操作时间内消失。与以往的文献相比,本工作对CDs激光进行了更全面的研究,该激光器具有从蓝色覆盖到近红外区域的宽可调激光范围、高增益系数、高Q因子、良好的辐射跃迁率、可观的增益系数和优异的稳定性。这些参数都处于CDs激光的前沿。图3 激光稳定性。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs与具有相近激光波长的商用有机激光染料在相应CDs的两倍激光阈值下的稳定性对比。FC-CDs的上述独特激光特性使其能够实现比传统热光源更亮的照明和色域更宽的全色激光成像。图4a-f分别为以B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs激光为光源对分辨率板(1951USAF)照射后的光学成像。利用互补金属氧化物半导体(CMOS)相机观测到的图像强度分布均匀、清晰、无散斑。作为对比,我们也使用商用激光器作为成像光源,使用波长为532 nm的连续波激光器和脉冲(7 ns, 10 Hz)激光器分别产生如图4g和h所示的光学图像,具有明显的激光散斑。从根本上说,这是由于图像质量受到激光高相干性带来的斑点的限制。我们进一步展示了这些CDs激光在全息显示中的潜在适用性,全息显示被认为是在3D空间中重建光学图像的最现实的方法之一,并且作为下一代显示平台为用户提供更深入的沉浸式体验而受到广泛关注。图4i为其实验设置。将CDs激光作为照明源照射到空间光调制器(SLM)上,在SLM上加载不同相位掩模(全息图)以重建全息显示所需的图案,在本例中为郑州大学的徽标。徽标分为三个部分,每个部分都可以使用B-CDs、G-CDs、和R-CDs出射的激光进行全息成像(图4j)。第一行是设计好相位掩模并输入SLM的原始图像。第二到第四行分别是CMOS相机在B-CDs、G-CDs、和R-CDs激光照射下拍摄的光学图像。第一列显示了会徽作为一个整体,并被分成几个部分。不同的组件可以简单地组合起来,以获得完整的彩色徽标(图4k)。这些静态图像具有高分辨率和高对比度,为了更接近实际应用,我们制作了一系列不同运动姿势的人物彩色全息图像,以获得彩色动态人物视频。图4l中的第一行给出了这些运动姿势的原始图片。第二至第四行分别显示了在B-CDs、G-CDs、和R-CDs激光照射下每个运动姿势不同部位的独立全息图像。然后将每个运动姿势的不同颜色部分合并到图41的第五行中。然后以每秒3帧的速度将从左到右依次输出,从而实现动态全息显示。虽然成像质量和显示方案还需改进,但我们的实验证明了未来基于CDs的激光成像的可行性。图4 基于FC-CDs激光的无散斑全彩色激光成像和彩色全息显示。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs激光,以及(g)连续波激光器(532 nm)和(h)脉冲激光器(7 ns, 10 Hz,532 nm)的商用激光源下的1951USAF的光学图像,标尺均为100 μm。(i)以CDs激光为光源的全息显示器实验装置(S1、S2、A、P分别为狭缝1、狭缝2、衰减器和偏振器;L1-L4分别为焦距40、100、100、50 mm的镜头 圆柱透镜的焦距为100 mm)。(j)郑州大学校徽全息静态展示。(k)为(j)中部分成像合并后的彩色徽标。(l)运动角色的全息动态显示。全息显示器中的比例尺都是1 mm。总结与展望综上所述,在无反光镜体系的光泵浦中,FC-CDs实现了467.3、533.5、577.4、616.3、653.5和705.1 nm的波长可调谐随机激光发射,从蓝色到近红外区跨越238 nm,覆盖了NTSC色域的140%。sp3杂化碳的低含量在n -π*隙中引入了集中的激发态能级,从而实现了较窄的FWHMs和粒子数反转,高KR(高PLQY和小寿命)有利于光放大。这两个因素决定了FC-CDs的激光增益特性,在CDs激光阈值的2倍能量泵浦下,FC-CDs也表现出高Q因子、可观的增益系数和比普通商业有机染料更好的稳定性。最后,我们成功地演示了使用这些FC-CDs激光作为光源的彩色无散斑激光成像和高质量的动态全息显示。我们的研究结果扩展了CDs激光的波长范围,提供了对其激光性能的全面评估,并为全彩色激光成像和显示应用打开了大门,从而显著促进了可溶液加工的CDs基激光器的实际应用和发展。文献链接:https://doi.org/10.1002/adma.202302536

激光红外成像系统相关的方案

激光红外成像系统相关的资料

激光红外成像系统相关的试剂

激光红外成像系统相关的论坛

  • 激光荧光成像仪特点

    [b][url=http://www.f-lab.cn/vivo-imaging/rp2.html]激光荧光成像仪[/url][/b][url=http://www.f-lab.cn/vivo-imaging/rp2.html]Lab-FLARE[/url]是采用激光发射激发荧光技术的实验室近红外荧光成像系统和多功能光子荧光成像控制器,与各种手持式荧光成像仪一起,提供近红外荧光高清成像,同时提供700 nm近红外荧光图像,800nm近红外荧光成像和彩色视频。[b]激光荧光成像仪特点[/b]控制使用2个4K高清监测器与所有我公司荧光成像头一起工作,获得高清荧光图像满FLARE容量的四个独立的视频流高功率665nm 和760nm激光激发,提供几乎没有近红外光的白光同时700 nm近红外荧光,800纳米近红外荧光成像,彩色视频输出,几何/数学融合。综合GPIO的大功率继电器统一的FLARE软件与脚本笔记本电脑集成锁存器及一套RC系列成像头带关节臂定位RC系列成像头的可选推车可选的VESA安装做它自己的RC系列成像安装头激光荧光成像仪Lab-FLARE:[url]http://www.f-lab.cn/vivo-imaging/rp2.html[/url]

  • 高分辨率激光共焦显微成像技术新进展

    共焦显微镜因其高分辨率和能三维立体成像的优点被广泛应用在生物、医疗、半导体等方面。文章首先分析了影响共焦显微镜分辨率的因素,主要有光源、探测器孔径和杂散光等;并结合这些因素介绍了双光子共焦碌微镜、彩色共焦显微镜、荧光共焦显微镜、光纤共焦显微镜;然后从提高系统成像速度的方面介绍了波分复用共焦显微镜和频分复用共焦显微镜;最后分析了共焦显微镜的发展趋势。一、引言随着人们对于生物医学的研究,传统的光学显微镜已经无法满足研究的需要,人们需要可以实现三维成像的显微镜。1957年Marvin Minsky提出了共焦扫描显微镜的原理。1969年,耶鲁大学的Paul Davidovits和M.David Egger设计了第一台共焦显微镜,1987年第一台商业化共焦显微镜的问世,真正实现了三维立体成像。与普通光学显微镜相比,共焦显微镜具有极其明显的优点:能对物体的不同层面进行逐层扫描,从而获得大量的物体断层图像;可以利用计算机进行图像处理;具有较高的横向分辨率和纵向分辨率;对于透明和半透明物体,可以得到其内部的结构图像;还可以对活体细胞进行观察,获取活细胞内的信息,并对获得的信息进行定量分析。自共焦显微原理被提出以来,引起了研究者的广泛关注,提高显微系统的分辨率和改善系统的性能是研究者开发新型显微镜时考虑的主要因素。近几十年,国内外学者通过对共焦显微成像系统的三维点扩散函数、光学传递函数等方面的分析,得出影响显微系统分辨率的因素,主要包括系统的激励光源、探测器孔径、杂散光等。此外,共焦显微镜的成像速度也是决定系统性能的一个重要因素,专家们也一直在进行提高系统成像速度的研究。本文主要从提高显微系统分辨率和系统成像速度这两个方面来介绍共焦显微镜的发展情况。二、共焦扫描显微镜分辨率的提高光源、探测器孔径和杂散光等是影响共焦显微镜分辨率的几个主要因素,因此可以通过改善这些方面来提高显微系统的分辨率。1.光源显微镜的成像性质在很大程度上取决于所采用光源的相干性,有关研究表明,光源相干性好的系统其分辨率要比相干性差的系统要好,并且照明光源对分辨率的改变范围达到了26.4%。因此,选取适合的照明光源对提高显微系统的分辨率有很大帮助。常规的共焦扫描显微镜主要使用普通单色激光作为光源,随着技术的进步,目前已经出现了使用飞秒激光、超白激光、高斯光束作为光源的共焦显微镜,以提高系统性能,获得更高的分辨率。①飞秒激光为光源的双先子扫描共焦显微镜双光子扫描共焦显微镜通常使用近红外的飞秒激光作为激发光源,由于红外光具有较强的穿透性,它能探测到生物样品表面下更深层的荧光图像,并且生物组织对红外光吸收少,随着探测深度的增加衰减会变小,另一方面红外光的衍射低,光束的形状保持性好。2005年,Wild等人利用双光子扫描共焦显微技术实时观察和定量分析了PAHs在植物叶片表面和内部的光降解过程。后来又进一步研究了菲从空气到叶片的迁移过程、菲在叶片内部的运动及其分布情况等,该技术可观测PAHs在叶片内部的最大深度约为200μm。②白激光( supercontinuum laser)为光源的彩色共焦显微镜彩色共焦显微镜是利用光学系统的彩色像差,光源的不同光谱成分会聚焦到样品的不同深度,通过分析由样品反射的光谱能有效地获得样品的扫描深度。2004年,美国宾夕法尼亚州立大学的Zhiwen Liu课题小组使用光子晶体光纤产生的超连续谱白光作为彩色共焦显微镜的光源,这种超连续谱白光具有大的带宽,能够提高系统的扫描范围,能达到7μm扫描深度。另外超白激光有较高的空间相干性,无斑点噪声,能提高系统的信噪比和扫描速度。③使用高斯光束的荧光共焦显微镜荧光共焦显微镜是通过激光照射样品激发样品发出荧光,再通过探测器接受荧光对样品进行观察的共焦显微镜。华南农业大学的杨初平等人研究了不同光源孔径和束斑尺寸的高斯光束对荧光共焦显微镜分辨率的影响表明:与一定孔径尺寸的平行光束相比,采用高斯光束系统可以获得更好的分辨率。 2. 探测器孔径和杂散光共焦显微镜中探测器孔径能滤除部分杂散光,提高系统的分辨率和信噪比。根据相关文献对共焦扫描显微镜的三维光学传递函数与探测器孔径之间的依赖关系的研究,可以得到探测小孔直径为:d=β*1.22λ/NA,式中,β为物镜的放大率,λ为光的波长,NA为物镜的数值孔径。由该公式确定探测器小孔的直径,一方面满足了共焦扫描系统对探测器小孔直径的要求,从而保证高的横向和纵向分辨率,另一方面,又最大限度地使由试样中发射的荧光能量被探测器接收。为了更进一步提高系统分辨率,许多研究者对共焦显微镜中探测孔径进行了改进,例如使用单模光纤代替普通针孔孔径,还有双D型孔径等。① 使用单模光纤的光纤共焦显微镜在光纤共焦显微镜中用光纤分路器代替传统共焦显微镜中的光束分路器,并以单模光纤来代替光源和探测器的微米尺寸针孔孔径。使用单模光纤的优点在于:首先,在采用寻常针孔制作的共焦显微镜中,光源、针孔、探测器等有可能不在一条直线上从而会引起像差;但是在光纤作为针孔的共焦显微镜中,即使有的部件偏离直线时也不会引入像差。其次,使用单模光纤代替微型针孔,容易清除针孔的污染,而且不易受污染。第三,在使用光纤的系统中,可以自由移动显微镜部分而不必挪动探测器。2006年德克萨斯大学使用光纤共焦显微镜进行口腔病变检测,测得的系统横向和轴向分辨率分别为2. 1µm和10µm,成像速度为15帧/s,可观测范围为200µm×200µm。② 具有D型孔径的共焦显微镜近几年,具有对称D型光瞳的共焦显微成像技术引起广泛的关注,图1所示是该系统示意图。2006年美国东北大学的Peter J.Dwyer等人使用这种共焦显微镜进行了人体皮肤内部成像的实验,测得横向分辨率为1.7士0.1µm。2009年新加坡国立大学的Wei Gong等人采用傍轴近似方法理论分析了在共焦显微镜中使用双D型孔径对轴向分辨率的影响。分析表明在图1中的d值给定时,进入瞳孔的光信号强度l会随着探测器尺寸的增加而增加;但是在探测器尺寸给定时,光信号强度I会随着d的增加而单调递减。在使用有限大小的探测器时,改变d的大小,轴向分辨率可以得到改善。 http://www.biomart.cn//upload/userfiles/image/2011/11/1321512815.png 图1 双D型孔径共焦成像系统示意图在共焦成像光学系统中,到达像面的杂散光会在像面上产生附加的强度分布,从而进一步降低了像面的对比度,限制了系统分辨率的提高,因此在显微系统设计时,杂散光的影响也是不容忽视的。一般除了使用探测小孔来抑制杂散光,其他的一些设备例如可变瞳滤波器等对杂散光也有很好的过滤作用。最近以色列魏茨曼科学研究所的O.sipSchwartz and Dan Oron等人提出在系统中使用可变瞳滤波器,这个滤波器能够使多光子荧光共焦显微镜达到分辨率阿贝极限的非线性模拟,从而改善系统的分辨率。三、共焦扫描显微成像速度的提高共焦显微镜快速的成像速度为研究者观察生物细胞中快速动态反应提供了良好的条件。在共焦扫描显微成像系统中,传统的方法是通过改善扫描探测技术来提高成像速度。现有的扫描探测技术主要有Nipkow转盘法、狭缝共焦检测法、多光束的微光学器件检测法。这些方法可以改善扫描速度,但是与系统分辨率,视场之间都存在矛盾,因此又诞生了两种提高成像速度的新型显微镜:波分复用共焦显微镜和频分复用共焦显微镜。

  • 【分享】激光雷达/激光探测及测距系统

    【分享】激光雷达/激光探测及测距系统

    激光雷达可以按照所用激光器、探测技术及雷达功能等来分类。目前激光雷达中使用的激光器有二氧化碳激光器,Er:YAG激光器,Nd:YAG激光器,喇曼频移Nd:YAG激光器、GaAiAs半导体激光器、氦-氖激光器和倍频Nd:YAG激光器等。其中掺铒YAG激光波长为2微米左右,而GaAiAs激光波长则在0.8-0.904微米之间。根据探测技术的不同,激光雷达可以分为直接探测型和相干探测型两种。其中直接探测型激光雷达采用脉冲振幅调制技术(AM),且不需要干涉仪。相干探测型激光雷达可用外差干涉,零拍干涉或失调零拍干涉,相应的调谐技术分别为脉冲振幅调制,脉冲频率调制(FM)或混合调制。按照不同功能,激光雷达可分为跟踪雷达,运动目标指示雷达,流速测量雷达,风剪切探测雷达,目标识别雷达,成像雷达及振动传感雷达。激光雷达最基本的工作原理与无线电雷达没有区别,即由雷达发射系统发送一个信号,经目标反射后被接收系统收集,通过测量反射光的运行时间而确定目标的距离。至于目标的径向速度,可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度,这是、也是直接探测型雷达的基本工作原理。由此可以看出,直接探测型激光雷达的基本结构与激光测距机颇为相近。相干探测型激光雷达又有单稳与双稳之分,在所谓单稳系统中,发送与接收信号共同在所谓单稳态系统中,发送与接收信号共用一个光学孔径。并由发射/接收(T/R)开头隔离。T/R开关将发射信号送往输出望远镜和发射扫描系统进行发射,信号经目标反射后进入光学扫描系统和望远镜,这时,它们起光学接收的作用。T/R开关将接收到的辐射送入光学混频器,所得拍频信号由成像系统聚焦到光敏探测器,后者将光信号变成电信号,并由高通滤波器将来自背景源的低频成分及本机振荡器所诱导的直流信号统统滤除。最后高频成分中所包含的测量信息由信号和数据处理系统检出。双稳系统的区别在于包含两套望远镜和光学扫描部件,T/R开关自然不再需要,其余部分与单稳系统的相同。美国国防部最初对激光雷达的兴趣与对微波雷达的相似,即侧重于对目标的监视、捕获、跟踪、毁伤评(SATKA)和导航。然而,由于微波雷达足以完成大部分毁伤评估和导航任务,因而导致军用激光雷达计划集中于前者不能很好完成的少量任务上,例如高精度毁伤评估,极精确的导航修正及高分辨率成像。较早出现的一种激光雷达称为“火池”,它是由美国麻省理工学院的林肯实验室投资,于60年代末研制的。70年代初,林肯实验室演示了火池雷达精确跟踪卫星,获得多普勒影像的能力。80年代进行的实验证明,这种CO2激光雷达可以穿透某些烟雾,识破伪装,远距离捕获空中目标和探测化学战剂。发展到80年代末的火池激光雷达,采用一台高稳定CO2激光振荡器作为信号源,经一台窄带CO2激光放大器放大,其频率则由单边带调制器调制。另有工作于蓝-绿波段的中功率氩离子激光与上述雷达波束复合,用于对目标进行角度跟踪,而雷达波束的功能则是收集距离――多普勒影像,实时处理并加以显示。两束波均由一个孔径为1.2M的望远镜发射并接收。据报道,美国战略防御局和麻省理工学院的研究人员于1990年3月用上述装置对一枚从弗吉尼亚大西洋海岸发射的探空火箭进行了跟踪实验。在二级点火后6分钟,火箭进入亚轨道,即爬升阶段,并抛出其有效负载,即一个形状和大小均类似于弹道导弹再入飞行器的可充气气球。该气球有气体推进器以提供与再入飞行器和诱饵的物理结构相一致的动力学特性。目标最初由L波段跟踪雷达和X波段成像雷达进行跟踪。并将这些雷达传感器取得的数据交给火池激光雷达,后者成功地获得了距离约800千米处目标的像。[~116966~][~116967~][~116968~][img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_624049_1602049_3.jpg[/img]

激光红外成像系统相关的耗材

  • 红外热成像系统配件
    红外热成像系统配件是经济型的红外热成像系统,以超低的价格提供多样的热成像功能。它能够提供电路板,电子元器件,芯片等样品的精确而详细的温度信息和温度分布。红外热成像系统配件可以用于实验室研发,检测,产品设计,电路失效分析等领域,是红外热成像系统的最佳选择。远远超过传统的温度探测器如热敏电阻,热电偶,RTD之类的测温能力。红外热成像系统配件应用热点Hot spot和短路探测电路板失效分析产品研发和检测评估医学研究材料分析红外热成像系统配件特色实时热图像分析软件精准的热点/hot spot 探测功能-20到500°C测温范围0.08°C的热灵敏度30幅/秒的热图像拍摄能力探测器分辨率高达320x240像素具有广角镜头增大拍摄面积
  • 中红外可调谐光纤飞秒激光器UltraTune 3400
    中红外可调谐光纤飞秒激光器UltraTune 3400 中红外可调谐光纤飞秒激光器UltraTune 3400是一款商业中红外超快激光器,其结构紧凑、免维护和可调谐激光系统是科学研究的理想工具。相对于传统激光器操作复杂、机械调谐、笨重且昂贵,中红外可调谐光纤飞秒激光器Femtum UltraTune 3400的主要优点有:瓦级功率、单模光纤输出、电动调谐、紧凑轻便。其在中红外大范围调谐和高峰值功率使得在激光与物质作用方面有很广泛的应用,比如很多大分子像水分子、二氧化氮分子和甲烷分子。具体在光频梳、大光谱、种子源(OPO、OPA、OPC、OPCPA和DFG)、量子光纤、太赫兹波以及超连续谱产生、泵浦探测实验、飞秒化学和高光谱成像以及显微等方面都有应用。 主要特性:-紧凑和交钥匙系统-自动锁模-脉宽500 fs-平均功率高达1 W-单模输出应用: -光频梳-中红外图像-非线性频率转换-超连续谱产生-高能物理技术参数:光学参数标准中心波长2.8-3.4μm半高宽(FWHM)10-75nm平均功率30-1000mW脉冲能量1-30nJ重频~35MHz 峰值功率~1-100KW脉宽500 fs光束直径3 mmM^2(X轴方向与Y轴方向平均值)1.3输出偏振态椭圆偏振系统参数尺寸(W*H*D)24 × 5.2 x 17.3 in.冷却形式风冷电压100-240V光束传输自由光或者光纤输出控制器电脑控制或者集成触摸屏烃类吸收光谱: *对于有机材料来说,C-H基本键的吸收光谱在3.3μm-3.4μm之间的窗口。在这波长范围内,激光物质的相互作用会达到多于100次,效率远高于近红外激光器。对于工业应用来说Femtum UltraTune 3400将紫外激光器的强激光吸收(聚合物变性不在考虑之内)与稳定光束质量的光纤激光器结合在一起。*中红外可调谐光纤飞秒激光器UltraTune 3400典型光谱图和自相关曲线
  • 中红外光纤飞秒激光器Femtum ultra 2800
    中红外光纤飞秒激光器Femtum ultra 2800 中红外光纤飞秒激光器Femtum ultra 2800首次提供3-μm级别的超快光纤谐振腔,可用于中红外方面的研究。对于其他激光器来说主要一些问题有:操作复杂、低效率、光束质量差、维护成本高等。而中红外光纤飞秒激光器Femtum ultra 2800对于具有自动锁模、衍射极限光束质量、高重频、紧凑免维护等特性。主要特征:紧凑及交钥匙系统自启动自动锁模脉宽600 fs平均功率大于100 mW单模输出应用:-中红外光频梳 -非线性频率转换-超连续谱产生-高能物理-非线性光谱及成像中红外光纤飞秒激光器Femtum ultra 2800技术参数:光学参数标准定制中心波长2800 (± 20 ) nm半高宽(FWHM)10-30 nm平均功率35 mW 100 mW脉冲能量 1 nJ 3 nJ重频~ 35 MHz40 - 100 MHz峰值功率 1 kW 5 kW脉宽~ 500 fs200- 500 fs光束直径 3 mmM^2(X轴方向于Y轴方向的平均值) 1.3输出偏振态线偏振态系统参数尺寸(W*H*D)24 × 5.2 x 17.3 in.冷却形式 风冷电压100到240V光束传输自由光光纤输出控制器电脑控制或集成触摸屏 中红外光纤飞秒激光器Femtum ultra 2800典型光谱和自相关曲线。水吸收光谱*中心近于水吸收光谱峰值的周围,Femtum Ultra 2800可与水分子和其他分子进行相互作用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制