闭路涡动相关系统

仪器信息网闭路涡动相关系统专题为您提供2024年最新闭路涡动相关系统价格报价、厂家品牌的相关信息, 包括闭路涡动相关系统参数、型号等,不管是国产,还是进口品牌的闭路涡动相关系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合闭路涡动相关系统相关的耗材配件、试剂标物,还有闭路涡动相关系统相关的最新资讯、资料,以及闭路涡动相关系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

闭路涡动相关系统相关的厂商

  • 济南东仪实验室设备有限公司是是一家专业经营国产、进口实验室设备、分析检测仪器、环境监测仪器、无损检测、测绘仪器、药检仪器、生物医学仪器、煤质石油检测及安检仪器的有限责任公司。公司服务范围涉及各大科研院所、学校、企事业单位的各个领域。 公司代理的主要品牌有:eppendorf艾本德,ATAGO,北京大龙,保定兰格,上海亚荣,安亭,知信,雷磁等国内外一线品牌。 产品主要有移液器,ph计搅拌器,摇床,离心机,蠕动泵,旋转蒸发器,电泳仪,滴定分析仪,各种分析天平,箱体,真空泵,冷水泵等。 本公司技术力量雄厚,产品质量过硬,深受省内广大用户的厚爱,自公司成立以来,在国内具有广泛的客户基础和良好的商业信誉,与国内外多家知名供应商建立了良好的伙伴关系,是多家供应商的省级总代理或一级经销商。公司服务网络遍及省内大专院校、科研机构、建筑、交通、环保及质检等领域。 公司人员均接受过相关的专业培训,对相关行业有丰富经验,为用户提供全方位的售前、售中、售后服务。品质承诺:产品按照国家三包法实行三包;并建立售后客户档案;实行定期技术跟踪回访制度服务;技术支持:本公司销售中心销售的各自品牌产品提供各自的专业技术人员服务,为您提供质量保障。 我们的经营理念:价格公道、品质最好、客户第一 我们公司的精神:言必行,行必果 我们的公司发展目标:拥有优质品牌的科研仪器供应商“言必行、行必果”是我公司一贯的信念,我们希望通过不懈的努力,为您提供更好的产品,更多的便利及更专业的服务,希望我们以真诚的服务为你的成功铺路搭桥,也为我国的科技腾飞尽一己之力! 经营地址:济南市经一路保利中心A座1117 公司电话:0531-87586779 手 机:13573171266 公司邮箱:1844168786@qq.com 公司网址:www.sddnyc17.com
    留言咨询
  • 毕沃(北京)科技有限公司致力于为国内生命科学研究机构和细胞研发创新企业提供全球领先的仪器设备和专业的技术服务。 我们的产品主要聚焦于动物细胞研究领域,包括:Ai4R BeaQuant 超快实时双标放射自显影系统;NanoEntek ADAM-MC2、EVE Plus、Arthur、EVE、ADAM-MC 自动细胞计数仪和分析仪;VWR 部分实验室仪器等。 未来,毕沃科技将始终秉持“提供高质量产品和服务”的宗旨,与国内外知名生命科学仪器企业广泛合作,筛选业界优秀的前沿科技产品分享给广大客户。
    留言咨询
  • 济宁华瑞自动化技术有限公司坐落于济宁国家级新技术产业开发区。公司依托国家级高新技术孵化器和科研单位长期合作的资源优势,聚集了一批经验丰富的管理及技术团队,运用先进的机电一体化技术及高精度生产技术,不断创新已成为国内集科、工、贸一体的综合性企业。公司多年来专业从事流量仪表、物位仪表、温度/压力仪表、电力测试仪器、变频控制系统、视频通讯系统、无线抄表系统、无线监测系统、及工业自动化控制系统等的研发、生产、销售。公司经过努力已经发展成为行业领先技术且具有自主知识产权的专业产品供应商和系统集成商。  公司主要产品:物位类:26G雷达物位计、6.3G雷达物位计、导波雷达物位计、一体超声系列、分体超生系列、微波固体流量计、超声波物位开关、射频物位、射频导纳开关等。流量类:电磁流量计、超声波流量计、涡街流量计、涡轮流量计、V锥流量计、金属管浮子流量计、磁性液位计等。温度类:工业级装配式热电偶/热电阻、铠装热电阻/热电偶、简易式热电阻/热电偶、红外测温仪等。压力类:经济型压力变送器、精巧型压力变送器、智能型压力变送器、1151智能差压系列、3351智能差压等系列。电力测试类:电缆故障测试仪、直流电阻速测仪、全自动变比组测试仪、变比组别极性测试仪、变压器容量测试仪、100A回路测试仪、30KV氧化锌避雷器检测仪、系列绝缘电阻测试仪、数字式高压兆欧表、程控超低频高压发生器、数字直流便携式高压发生器、微机控制继电器保护校验仪、智能型变压器综合试验台等。控制系统类:公司承接各类变频/弱电电系统工程,其中包括安全防范技术工程的设计、施工与维护。  无线数据网络传输系统、无线数据采集监管系统、闭路监控系统、无线电能监控系统、气体监测监控系统、智能管网系统、流量监测控制系统等随着业务规模的扩大和专业队伍的扩大,公司形成了以电气仪表为主题,以PLC和DCS工业控制为平台为基础,依照用户需求,利用丰富的工程总包及服务经验,为客户提供全方位工业自动化解决方案及工程服务。 除了自主产品外,公司与美国精良、美国哈希公司等进口企业有着广泛的技术,商务合作关系。并先后从西门子、德国久茂、德国E+H等引进先进技术,建立友好合作关系。华瑞坚持“服务创造价值,创新成就未来”的方针。秉承客户至上,恪守诚信的经营理念,具有为用户提供满意服务和优质产品的能力,服务的高效率、高水准是华瑞的目标。  公司产品广泛用于煤炭、电力、化工、冶金、热力、造纸、制药、食品、环保、轻工业等行业,并销售全国31省市及自治区。济宁华瑞凭借过硬的质量和优质的服务赢得了用户良好的口碑,得到用户广泛好评。
    留言咨询

闭路涡动相关系统相关的仪器

  • CPEC200闭路涡动相关系统(涡动相关) CPEC200是一个闭路涡动相关系统,其核心组件有Campbell公司的EC155 CO2/H2O分析仪,CSAT3A三维超声风速仪,CR3000数据采集器,进样泵以及可以完成自动校零和跨度的控制阀,上乘实现通量测量。CPEC200将超声风速仪和EC155 CO2/H2O分析仪上乘集成,在响应频率和时滞等方面均有卓越表现,同时安装和维护简单、方便。系统用途:CPEC200闭路涡动相关系统(涡动相关) 用于监测大气层-生物圈之间的二氧化碳,能量,水汽以及热量交换。CPEC200闭路涡动相关系统(涡动相关) 系统组成:三维超声风速仪(CSAT3A)闭路气体分析仪(EC155)数据采集器(CR3000)自动进样泵电子控制阀安装支架气体管路系统CPEC200闭路涡动相关系统(涡动相关) 系统优势:※ 16GB原装CompactFlash卡(10Hz测量情况下,可存储2个月数据)※ 支持远程数据收集,包括Ethernet, RS-232, 短程调制解调器,固定电话,无线电波,移动电话以及卫星等多种方式。※ 卓越的频率响应保证测量结果精度。※ 耗能低,适用于环境恶劣的野外条件安装。※ 应用简单,内置程序系统,实现自动测量和数据采集、自动校零和跨度设置、进样模块自动加热防止冷凝、安装简单。CPEC200闭路涡动相关系统(涡动相关) 性能参数:工作温度:-30° 到 +50°C输入电压: 10.5 到 16.0 Vdc工作功率:12 W(典型),*大35w(冷启动条件)系统主机:尺寸:52.1 x 44.5 x 29.7 cm重量:11.6 kg泵模块:线缆长度: 3.0 m (10 ft)压力测量范围:15 to 115 kPa泵速:3 to 9 LPM(典型 7 LPM)尺寸:35.6 x 29.2 x 13.5 cm重量:5.4 kg阀门模块:三阀模块:零点、CO2跨度、H2O跨度六阀模块:零点、CO2跨度1~4、H2O跨度流速:0.5 to 5 LPM尺寸:14.0 x 12.7 x 14.0 cm重量:三阀模块 1.5 kg 六阀模块:1.9 kg
    留言咨询
  • 系统简介:CPEC200是一个闭路涡动相关系统,其核心组件有Campbell公司的EC155 CO2/H2O分析仪,CSAT3A三维超声风速仪,CR3000数据采集器,进样泵以及可以完成自动校零和跨度的控制阀,完美实现通量测量。CPEC200将超声风速仪和EC155 CO2/H2O分析仪完美集成,在响应频率和时滞等方面均有卓越表现,同时安装和维护简单、方便。系统用途:CPEC200闭路涡动相关系统用于监测大气层-生物圈之间的二氧化碳,能量,水汽以及热量交换。系统组成:三维超声风速仪(CSAT3A)闭路气体分析仪(EC155)数据采集器(CR3000)自动进样泵 电子控制阀安装支架气体管路系统系统优势:2GB原装CompactFlash卡(10Hz测量情况下,可存储2个月数据)支持远程数据收集,包括Ethernet, RS-232, 短程调制解调器,固定电话,无线电波,移动电话以及卫星等多种方式。卓越的频率响应保证测量结果精度。耗能低,适用于环境恶劣的野外条件安装。应用简单,内置程序系统,实现自动测量和数据采集、自动校零和跨度设置、进样模块自动加热防止冷凝、安装简单。 性能参数:工作温度:-30° 到 +50°C输入电压: 10.5 到 16.0 Vdc工作功率:12 W(典型),最大35w(冷启动条件)系统主机:尺寸:52.1 x 44.5 x 29.7 cm重量:11.6 kg泵模块:线缆长度: 3.0 m (10 ft)压力测量范围:15 to 115 kPa泵速:3 to 9 LPM(典型 7 LPM)尺寸:35.6 x 29.2 x 13.5 cm重量:5.4 kg阀门模块:三阀模块:零点、CO2跨度、H2O跨度六阀模块:零点、CO2跨度1~4、H2O跨度流速:0.5 to 5 LPM尺寸:14.0 x 12.7 x 14.0 cm重量:三阀模块 1.5 kg 六阀模块:1.9 kg产地与厂家:美国Campbell公司
    留言咨询
  • CPEC310闭路涡动相关通量观测系统是由美国Campbell Scientific Inc.(CSI)公司自主研发的一款高性能、高可靠性的科研级通量观测系统,可用于大气与生态系统之间的二氧化碳、水汽、热量和动量交换的长期监测。 一套完整的CPEC310闭路涡动相关通量观测系统系统由一套EC155闭路气体分析仪、CSAT3A三维超声风传感器、CR6数据采集器以及其他配件和配套操作软件组成,系统高度集成,包含了使用中所必须的各种仪器及配件,能够为用户提供“交钥匙”系统,极大得方便了用户的使用。 EC155是专为涡动相关通量观测设计的闭路气体分析仪,可同时测量二氧化碳和水汽的绝对密度,采样气室内的温度和压力,其采用5.8ml的小采样气室设计,大大减少了采样停留时间(50ms,7LPM时)。这使系统的功耗大幅降低到12W,并拥有优异的频率响应性能(5.8Hz,半功率带宽)。结合CSAT3A三维超声风传感器即可同步测量三维风速、空气温度和超声虚温。  作为系统控制核心的CR6数据采集器保障了整套系统的高速、稳定运行,其可将采集到的测量数据存储到CF存储卡中(最大支持16GB),亦可以有线或无线方式,通过局域网、Internet、卫星等多种途径实现数据的远距离传输,支持3G、GPRS、WiFi、微波电台等多种无线通讯方式。涡动协方差系统,亦称涡度相关系统,是一种微气象学的测量方法,采用涡度相关原理,利用快速响应的传感器来测量大气下垫面的物质交换和能量交换,它是一种直接测定通量的标准方法,已成为近年来测定生态系统碳、水交换通量的关键技术,得到了越来越广泛的应用,并逐渐成为国际通量观测网络的主要技术。涡动协方差系统可以测量显热通量、潜热通量、动量通量、摩擦风速,以及其它物质通量(如CO2等),主要应用在边界层理论研究、大气扩散、能量收支研究、水分及其它物质收支研究等众多领域。系统特点系统集成度高,包含所需各种仪器及配件频率响应性能优异低功耗,支持多种供电方式可选配零点与阈值标定输出原始参数■ Ux(m/s)■ Uy(m/s)■ Uz(m/s)■ 超声虚温(℃)■ 超声风速仪诊断值■ CO2混合比(μmol/mol)■ H2O混合比(mmol/mol)■ 气体分析仪诊断值■ 采样室温度(℃)■ 采样室压力(kPa)■ CO2信号强度■ H2O信号强度■ 采样室内外压差(kPa)
    留言咨询

闭路涡动相关系统相关的资讯

  • 支持大规模设备更新行动方案,将传统氮吹仪更新为常压闭路快速蒸发浓缩系统
    国务院设备更新行动方案倡导节能降碳、低排放,优莱博推出了不消耗氮气的氮吹浓缩仪。浓缩是实验室中常用的技术。其中氮吹浓缩适用于处理样品量大、体积小、易挥发的实验。氮吹仪采用惰性气体对加热样品进行吹扫,使待测样品迅速浓缩,被广泛应用于农残检测,制药等行业中的样品批量处理。但是传统多通道氮吹仪耗气量很大,气体本身又有较多的安全隐患。此优莱博VAPORNADO Plus常压闭路快速蒸发浓缩系统是一种高效蒸发设备。使用氮气封闭回路循环,在使用过程中几乎不消耗氮气。这样的设计降低了能耗和碳排放,实现了节能减排的目标。VAPORNADO-Plus系统,其蒸发效果是通过使用稳定的载气,将溶剂蒸汽从溶剂表面带走而实现的。在VAPORNADO Plus的闭路循环中,载气通过双层定氮吹针管的内管进入样品瓶,持续吹扫液体表面。饱和载气分别从每个样品瓶(无交叉污染)中通过双层氮吹针管的外管被吸引至冷凝器,载气中的溶剂在冷凝器中被冷凝。冷凝完成后,载气在循环泵的作用下,通过加热模块后,重新回到双层引导管内管中,再次进入样品管吹扫液体表面。热的载气可以为溶剂蒸发提供需要的能量。此外,氮吹针管与溶剂液面的距离自动保持一致,可以保证高的蒸发效率。VAPORNADO Plus 系统还具有高效蒸发能力、高效冷凝能力、运行可靠、“吹入距离”自动控制、无交叉污染风险、可从方法库中调取常见溶剂及混合溶剂的标准蒸发浓缩方法等特点。VAPORNADO Plus 系统以下多个参数可以得到准确控制:被蒸发样品的温度、加热模块的温度、循环气体的流速、氮吹针管的下降速度、液位检测,以保持液体表面与氮吹针管之间的距离恒定。更多细节,请尽快联系优莱博,升级您的用气设备吧。
  • 美国LI-COR涡度相关野外观测技术研讨班在京举行
    仪器信息网讯 2011年9月14-16日,由基因有限公司农业环境科学部暨北京力高泰科技有限公司主办的美国LI-COR公司涡度相关野外观测技术研讨班在京举行。本次研讨班内容主要涉及碳通量研究领域的国内外最新进展,各种碳通量仪器在实际应用中遇到的常见问题及解决方案,EddyPro软件使用,相关数据分析处理方法等内容。150余位来自环境、生态、农业、地理、林业等领域的LI-COR产品用户参加了此次活动。研讨会现场基因有限公司农业环境科学部暨北京力高泰科技有限公司总经理张政先生主持活动  基因有限公司特别邀请到了美国LI-COR公司应用科学家Dave Johnson博士、Liukang Xu(徐六康)博士和Jiahong Li(李加宏)博士作为主讲人。三位专家分别介绍了美国LI-COR公司概况及产品线情况、涡度相关理论、涡度相关系统的设计与规划等内容。他们在报告中介绍到:  目前,全球碳循环研究方面的主要仪器LI-7500/A、LI-8100/A等均由美国LI-COR公司研发生产,其为生态、农业、林业、环境、气象和海洋等研究工作提供了强有力的支持。2009年LI-COR公司正式发布开路式高频甲烷分析仪——LI-7700,从而,真正实现了甲烷的涡度相关野外观测。  与此同时,LI-COR公司改进和升级了涡度相关系统二氧化碳/水汽开路分析器LI-7500A以及高频闭路二氧化碳/水汽分析器LI-7200,作为涡度相关系统在恶劣天气条件下的数据补充。2011年LI-COR公司正式推出了EddyPro免费软件,便于广大研究者更准确、便捷的分析涡度相关研究中的各项数据,极大的方便了研究者的使用。美国LI-COR公司应用科学家Dave Johnson博士美国LI-COR公司应用科学家Liukang Xu(徐六康)博士美国LI-COR公司应用科学家Jiahong Li(李加宏)博士  本次培训还设置了现场操作环节,三位专家现场演示了LI-COR涡度相关系统的安装方法、校准方法、数据处理软件的安装方法,并现场指导用户如何处理、分析原始数据,到场用户反应热烈。现场交流与演示  附录:北京力高泰科技有限公司  http://ecotek.instrument.com.cn/  http://www.ecotek.com.cn/
  • 涡动相关观测与数据处理基础知识系列之一:通量塔的选址与建塔的基本原则
    近年来,采用涡动相关(eddy-covariance,EC)方法测量温室气体通量的站点数量在迅速增加,但是要在科学目的、工程标准、安装运行成本和实用性之间做出平衡,寻找到最佳的解决方法,仍是一个具有挑战的工作。从观测结果准确性和精确度来说,选址、建塔等站点设计的环节是重中之重。1、位置选择站点选址的基本原则是,该站点能够尽量观测到全部的研究对象,这涉及到两个问题,一个是方向,一个是架设高度。首先是确定观测区域近几年的主风向,可以参考近几年的气象数据。由于中国大部分地区是季风气候,一般在春夏和秋冬会有两个主风向,这时候要考虑通量仪器的架设方向,实验观测的主要周期等。如果仪器架设方向可以随主风向的改变方便调整,或者实验周期是明确区分了春夏或者秋冬,那么在选址时可以选在观测对象的下风向,这样可以尽可能多的观测到目标对象;如果不能改变通量仪器的架设方向,且是长期定位观测,那尽量将观测地点选址在观测对象的中央位置,或者沿主风向的中点位置,这样可以尽可能的在不改变仪器方向和位置的前提下,观测到尽可能多的研究对象。确定架设高度要满足通量仪器的基本观测条件, 即满足湍流运动的充分交换。一般的架设高度是下垫面冠层高度的1.5到2倍(具体确定观测高度的经验法则见图 1);在相对平坦和均匀的下垫面条件下,观测距离大约是观测有效高度的100倍(风浪区原理),具体范围需要根据footprint源区计算,随着湍流运动强度和下垫面情况会有所改变。图 1 确定观测高度的经验法则通量源区代表性分析(Footprint分析)是检验一个通量站质量的重要手段,可以用来进行实验方案的设计指导,观测数据的质量控制,以及通过特定传感器的源区分布和来自感兴趣下垫面(植被)的通量贡献,从而对观测结果进行分析解释。图 2 Footprint分析2、下垫面的影响2.1植被类型涡动相关法测量温室气体通量要求仪器安装在常通量层内,而常通量层假设要求稳态大气、下垫面与仪器之间没有任何源或者汇、足够长的风浪区和水平均匀的下垫面等基本条件。在涡动相关传感器能监测到的“源区域”内植被类型均匀一致的情况下,其观测到的通量结果是比较有意义的,可以用来解释生态系统的温室气体收支情况。但当涡动相关传感器的“源区域”覆盖到不同植被类型时,情况就会变得复杂起来。一个极端的例子是:某站点周围具有两种不同的森林植被类型,每天周期性地,白天,风从一种植被类型吹向另一种;夜间,则正好相反。那么,该站点观测得到的通量资料的日平均值将毫无意义。这种极端的情况虽然极少出现,但许多站点都会有微妙的风向变化,在数据分析时需要做仔细考虑。此外,光、土壤湿度、土壤结构、叶面积以及物种种类组成的空间异质性会导致温室气体源/汇强度的水平梯度。而其植被类型的变化也会造成表面粗糙度的变化,当风通过不同粗糙度或者不同源/汇强度表面的区域时,就会产生非常明显的平流效应(Raupach & Finnigan, 1997 Baldocchi et al., 2000)。图 3 不同下垫面的地表粗糙度(参考 于贵瑞&孙晓敏,2006)地表植被类型的突然变化会导致气流的变化,如气流在从高大森林向低矮草地移动时,会在森林边缘形成回流区(如图 4所示),导致近地面和上方气流方向不一致,其水平长度尺度(距离)等于冠层高度的2-5倍(Detto et al., 2008)。图 4森林边缘附近湍流结构的概念模型(参考Detto et al., 2008)2.2冠层高度通量足迹Footprint描述了EC系统能够观测到的“源区域”,提供了每个表面元素对测量的垂直通量的相对贡献。Footprint取决于观测高度、表面粗糙度和大气稳定度等。如图 5所示,通常来说,传感器的观测高度越高,就越能观测到更远、更广的区域(Horst & Weil, 1994),也便于捕捉植物冠层上方混合良好的边界层中的通量交换。但是观测高度也不是越高越好,在大气层结稳定的条件下(如夜间),过高的观测高度可能会使观测到的“源区域”超出感兴趣的研究区域。因此应该预先计算并确保来自感兴趣区域的通量贡献至少为90%(Gö ckede et al., 2004),在稳定条件下至少50%的时间以确保适当的数据覆盖不同的风向和不同的天气条件。图 5观测高度与通量足迹基于Munger(2012)等确定塔/测量高度(hm)的原则(如图 1),可能存在准确测量实际观测高度和冠层高度的困难,需要考虑后期调整高度的可能性。观测高度必须用三维超声风速计测量路径的中心来确定,其值取决于感兴趣的生态系统的冠层高度(hc),冠层高度值不需要特别准确:采用主要冠层的平均预期高度是合理的。对于冠层高度在生长季节中快速变化的农田、草地和种植园以及同样具有快速变化特性的冰雪下垫面,塔架设计必须考虑允许通过改变塔架高度(例如伸缩式塔架设计)或通过移动传感器来改变测量高度。随着时间的推移为了确保相同的通量观测源区,可以考虑改变测量高度,遵循的原则是测量高度与冠层高度的0.76倍之间的差值保持在一个确定数值的±10%左右。但这种调整的频率不用特别频繁,最多在植被生长期或在积雪季节每隔一周进行。假设在植被生长期开始时的裸土,其测量高度为2 m,在冠层高度达到1.2 米前,不需要改变测量高度;在植被达到1.2米后(例如增加约0.5-0.8米)开始提高测量高度,然后保持测量高度与冠层高度的0.76倍之间的差值保持在一个确定数值。改变表面高度(由于生长和积雪)以及改变测量高度必须准确记录,因为这必须在后期数据处理中考虑。2.3地形影响EC法测量通量假设了地形水平,这样可以保证地形的坐标系和传感器坐标系方向一致,避免平流、泄流效应的影响。图 6复杂地形对EC观测的影响在复杂的地形条件下,风吹过小山时会引起气流的辐合或辐散运动,产生平流效应(Kaimail & Finnigan, 1994)。存在有局地风场影响的站点,在夜间大气稳定,垂直湍流输送和大气混合作用较弱,CO2的水平和垂直平流效应的影响是很重要的(于贵瑞&孙晓敏,2006)。Mordukhovish & Tsvang(1966)的研究表明,斜坡地形能导致水平异质和通量的辐散。对于设在地势较高的观测塔,在夜间对流比较弱时,通常会因CO2沿斜坡泄流而造成大气传输的通量低估,最后导致生态系统净生产力的估算偏高;对于在地势较低沟谷中的观测塔,其问题更加复杂,如果外部的大气平流/泄流通过观测界面进入生态系统,会高估光合作用吸收CO2的能力;如果外部的大气平流/泄流不能通过观测界面,而是从观测界面下部直接进入生态系统,则会在生态系统中暂时储存,最终输出生态系统,造成对呼吸作用的高估。在大多数情况下,实际地形难以满足地形水平的假设,这就需要进行坐标旋转,以消除平流项的影响。当安装铁塔的斜坡坡度特别大时,可以考虑将原本应水平安装的超声风速计调整为与地面平行。3、塔及塔附属设施的影响3.1塔体本身塔本身对观测的影响可分为塔本身对风场的影响,以及塔的偏转、震荡对测量过程的影响两种。3.1.1 对风场的影响自然气流无论是经过几十米的观测塔,还是遇到几毫米的仪器翼梁或电缆,各种尺度的障碍物都会使流线发散,从而导致用于计算通量的流线分离,称为流体失真,流动失真以难以看见的方式影响测量,其影响只能在塔的设计建造阶段进行最小化。在塔的迎风侧(上游),风速受到影响会有所降低。受流动失真影响的逆风距离与障碍物大小的立方成比例,并随着距离的立方体而减小(Wyngaard, 1981, 1988)。在塔的背风侧(下游),风速也减弱,这种效果随着风速的增加而减小(湍流的更快速重构)并且受到障碍物的长度和宽度的影响。图 7 展示了在高塔的迎风侧观察到的风向上的偏转与加速, 图 8则展示了高塔顶部和底部方向迥异的风向。这是由于在背风侧下方产生的回流区造成的,障碍物(塔)尺寸越大,回流区就越容易发展得更大。在塔基通量观测中,森林生态系统的观测常需要10m以上的高塔作为基础,容易导致回流区的产生,回流也增加了向上流动的倾向,并加强了烟囱效应,这可能会显著影响风的测量和干扰混合比梯度。图 7 在塔的迎风侧观察到风向上偏转和加速(引自Sanuki and Tsuda, 1957)图 8 塔顶部的西风流(离地面10米)和离地面2米处的东风回流(引自Vaucher et al., 2004)在建造塔时,尽量选择塔身纤细、结构较少的铁塔,避免对风场的影响,也要注意控制林窗的大小,避免人为形成回流区域。此外,应该尽量减少树木和树枝的移除,因为它们对风的阻力作用可以减少这些回流区域的形成。选择纤细塔体的同时也要保证塔体足够坚固,以确保安全的维护通道和应对整个观测周期中的极端环境。当塔架底座和结构由于受到外界辐射而加热引起对流循环时,可以观察到烟囱效应。这增强了气流的垂直偏转,从而使更多的空气向上移动。烟囱效应取决于基础和塔的质量和热容量、塔的形状、对树冠的干扰程度(清理/切割塔构造的树木)和站点的净辐射量等。烟囱效应是不可避免的,应尽量减少混凝土基础和塔架结构,塔的的横截面也尽量不超过2 x 3 m (Munger et al., 2012)。塔体结构对经过气流的扭曲变形和烟囱效应应该通过专业的方式或通过建模方法(Griessbaum & Schmidt,2009)进行调查(Serafimovich et al., 2011)。3.1.2 对测量过程的影响塔体本身随风速的运动会导致测量中的系统不确定性;塔的移动应限制在0.02 m s-1(即测量风速的精度),并且不应具有在1到20 Hz之间与风向共同变化的力矩(谐波效应);快速响应加速度设备可用于量化塔运动,逐点校正还需要快速响应测斜仪测量以确定旋转速率以及加速度;由于在塔上工作的人员而导致的塔架运动不会随着风或标量交换而变化,但可能会扰乱风场。3.2塔上横臂在1976年的国际湍流对比实验中,一些报告显示直径0.05 m的水平支撑结构造成的平均上升风速为0.1 m/s (Dyer, 1981),它大到足以使涡动相关测量无效。因此,风速计安装臂的尺寸也要尽量小,只需要提供一个安全稳定的测量平台就可以了。王国华等利用成熟的计算流体软件,对布置多个支撑观测仪器的支架所导致的大气边界层风场失真进行定量仿真。他们发现,当支架间距小于6倍的支架直径D或来流风向角小于30°时支架附近流场受到明显的相互干扰。通过对不同来流风向及支架间距离模拟结果的对比分析,认为使用多支架进行多点联合观测时,支架应沿垂直于观测地点常年来流主风向的展向布置。为避免不同支架相互干扰,支架间的最小距离L应大于9倍的支架截面直径。此外,横臂本身需要足够稳定以支撑仪表,可以通过增加侧臂和拉索的方式,以避免横臂的扭矩和振荡。3.3塔下建筑物3.1.1一节讨论了塔体本身对风速和风向造成扭曲从而影响风场的作用,塔下其他障碍物(如设备房间、供电小屋等)也存在这种作用,如图 9 所示。图 9 从障碍物侧面看的迎风流畸变和背风侧流畸变的概念图(引自Davies and Miller, 1982)回流效应在高大的森林冠层中最为明显,但较矮的草地和作物冠层也必须考虑,特别是在附近存放其他设备的房屋的情况下。因此,应尽可能地减少这种流动变形源,在不可减少的情况下,障碍物应远离观测塔,避免对风场的影响。参考文献1. Raupach M R , Finnigan J J . The influence of topography on meteorological variables and surface-atmosphere interactions[J]. Journal of Hydrology, 1997, 190(3-4):182-213.2. Baldocchi D , Falge E , Wilson K . A spectral analysis of biosphere-atmosphere trace gas flux densities and meteorological variables across hour to multi-year time scales. 2000.3. 于贵瑞, 孙晓敏. 陆地生态系统通量观测的原理与方法[M]. 高等教育出版社, 2006.4. Detto M, Katul G G, Siqueira M, et al. The structure of turbulence near a tall forest edge: The backward‐facing step flow analogy revisited[J]. Ecological Applications, 2008, 18(6): 1420-1435.5. Horst T W, Weil J C. How far is far enough?: The fetch requirements for micrometeorological measurement of surface fluxes[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11(4): 1018-1025.6. Gö ckede M, Rebmann C, Foken T. A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites[J]. Agricultural and Forest Meteorology, 2004, 127(3-4): 175-188.7. Munger J W, Loescher H W, Luo H. Measurement, tower, and site design considerations[M]//Eddy Covariance. Springer, Dordrecht, 2012: 21-58.8. Kaimal J C, Finnigan J J. Atmospheric boundary layer flows: their structure and measurement[M]. Oxford university press, 1994.9. Mordukhovich M I, Tsvang L R. Direct measurement of turbulent flows at two heights in the atmospheric ground layer(Atmospheric turbulence statistical characteristics dependence on stratification and elevation from heat flux and wind friction stress characteristics)[J]. ACADEMY OF SCIENCES, USSR, IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS, 1966, 2: 477-486.10. Wyngaard J C. The effects of probe-induced flow distortion on atmospheric turbulence measurements[J]. Journal of Applied Meteorology and Climatology, 1981, 20(7): 784-794.11. Wyngaard J C. The effects of probe-induced flow distortion on atmospheric turbulence measurements: Extension to scalars[J]. Journal of Atmospheric Sciences, 1988, 45(22): 3400-3412.12. Sanukii M, Tsuda N. What are we measuring on the top of a tower?[J]. Papers in Meteorology and Geophysics, 1957, 8(1): 98-101.13. Vaucher G T, Cionco R, Bustillos M, et al. 7.3 FORECASTING STABILITY TRANSITIONS AND AIR FLOW AROUND AN URBAN BUILDING–PHASE I[J]. 2004.14. Griessbaum F, Schmidt A. Advanced tilt correction from flow distortion effects on turbulent CO2 fluxes in complex environments using large eddy simulation[J]. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 2009, 135(643): 1603-1613.15. Serafimovich A, Thomas C, Foken T. Vertical and horizontal transport of energy and matter by coherent motions in a tall spruce canopy[J]. Boundary-Layer Meteorology, 2011, 140(3): 429-451.16. Dyer A J . Flow distortion by supporting structures[J]. 1981, 20(2):243-251.17. 王国华, 贾淑明, 郑晓静. 观测支架引起的大气边界层风场的失真规律[J]. 兰州大学学报: 自然科学版, 2012, 48(5): 71-78.Davies M E, Miller B L. Wind effects on offshore platforms-a summary of wind tunnel studies[R]. National Maritime Inst., Feltham (UK), 1982.为了保障各位老师同学从仪器维护的工作中解放出来,做数据的使用者,把更多的时间和精力用在数据深度分析和科学价值发掘方面,我们特提供以下技术服务:站点长期正式运维基于站点管理、工作流程/规范、设备安全、系统优化、设备/数据预警、站点/设备监控、数据分析、科研成果凝练和挖掘等多方面综合执行。站点短期巡检发现目前设备安装、使用、维护、运行状态等影响数据质量的问题。数据远程综汇系统升级建立系统平台,对站点运行状态和数据质量进行预警、监控等。数据整理分析和深度挖掘通过数据整理、插补和分析,形成数据质量分析报告;同时深入挖掘数据背后的科学信息,可以多方面地支撑文章写作、项目申请、专利以及软件著作权申请等工作。通量观测技术培训(涡动相关系统、闪烁仪系统等)根据用户的实际需求,可以有针对性地培训涡动通量观测和设备运行的基本原理,数据处理的基本流程,通量数据处理软件介绍及实际操作演示,通量、气象设备日常维护以及仪器标定,站点选址等相关内容。提供远程视频和上门现场培训等多种方案。

闭路涡动相关系统相关的方案

闭路涡动相关系统相关的资料

闭路涡动相关系统相关的试剂

闭路涡动相关系统相关的论坛

  • 石煤提钒酸性废水闭路循环处理技术

    石煤提钒酸性废水闭路循环处理技术 摘要 石煤提钒是近几十年新产生的行业,其生产工艺尚未完全成熟,相应配套的环保技术设备不完整。本文首次提出酸性废水闭路循环处理技术及工艺,为提钒工艺研究院所以及钒厂技改提供借鉴参考资料。 关键词 石煤提钒 酸性废水 闭路循环处理 本世纪以前,钒制品产品处于缓慢上升趋势,截止上个世纪90年代中期,我国钒制品生产能力1.3-1.5万吨,主要集中在大型企业,环境污染问题不严重,90年代中期以后,随着国际钒价大幅上扬,本世纪初,我国五氧化二钒总产量约为2万吨,目前保守估计5万吨生产能力,尤其是21世纪以后,我国钒业发展更加迅猛。随着钒业发展,带来的环境问题日益严重,虽然国家制定了相应的产业政策,主要是责令关闭一些小型钒厂,提高了行业准入政策等。但在湖南、陕西等地还是陆续发生了一些钒业污染事故,严重破换了当地的生态环境。这些事故大都是石煤提钒型企业,石煤提钒生产工艺一直处于摸索阶段,是从小型生产方式转变而来,生产历史较短。大规模工业化生产工艺尚不完全成熟,但随着资源、环境的限制,石煤提钒设备投资少,生产成本低综合利用等优势,会有一定规模的发展。 1.石煤提钒酸性废水处理现状1.1吸附尾液成份石煤提钒浸岀液经过树脂提钒后的尾液或萃取提钒后的萃余液,都含有大量的残余酸及硫酸盐等。根据多家钒厂矿石成分的分析,可以间接了解尾液的化学成分。通过矿石成分可以看出原液中,第一类是SiO2,第二类是AL、Fe、Mg金属,第三类是S、P阴离子,第四类是H2SO4。焙烧及添加剂、硫酸浓度对原液中杂质含量影响很大,但成分大致相同。石煤矿石成份(﹪) 1.2尾液石灰中和处理 石灰中和处理是目前石煤提钒通常采用的方法,酸性尾液与石灰中和在碱性条件下,金属氧化物与氢氧化钙生成金属氧化物沉淀与水分离,硫、磷阴离子与钙生成新盐仍然溶解在尾液中,不能分离;硫酸与石灰生成硫酸钙溶在尾液里,二氧化硅也溶解在尾液中。所以采用石灰中和并没有把杂质从尾液中分离出来,只是起到调整PH值的作用。石灰中和法没有起到分离作用,同时浪费资源,是一种不可取的处理方法。化学沉淀法难以从硫酸体系中分离杂质,利用阻滞法从尾液中分离残余硫酸。 2.吸附尾液闭路循环处理工艺 2.1处理工艺流程 酸性浸岀液PH值0.5-1.0左右,含钒量1-5g/L左右,经过离子交换或萃取后,形成的酸性尾液,含有大量金属杂质和SiO2等杂质,这些杂质溶解在酸性尾液中,在酸性体系重金属离子不产生沉淀,不能分离,利用酸回收机分离尾液中的残余酸和相应的硫酸盐,回收的再生酸返回浸出工序补充部分新酸循环使用。中性废水进入污水站,絮凝、压滤分离出的泥饼作为资源回收使用,废水可从浸出渣冲洗水或与综合废水处理排放,也可经膜处理后作为酸回收机反洗水,整个系统闭路循环。2.2酸分离回收处理利用特种填料阻滞分离原理,酸性尾液进入酸分离回收设备,填料将硫酸阻滞在填料上,金属离子随溶液流出设备,尾液成为近中性金属废水,根据用户需求,进入下一步处理工序,然后用水溶解填料上的硫酸,流出溶液形成再生酸,返回酸浸工序循环使用。酸性原液分离数据酸性尾液分离曲线酸性尾液分离溶液 3.小结 尾液中残余硫酸是阻碍处理效果的主要原因,酸分离回收设备将残余酸从尾液中分离并回收重新返到生产工序中,不仅变废为宝,节约资源,同时为石煤提钒废水治理,实现吸附尾液闭路循环,解决关键性的技术和设备,为下一步资源回收,钒厂多元化生产奠定了基础。

  • 欧式仿真电壁炉篝火和真火壁炉装饰设计美图

    欧式仿真电壁炉篝火和真火壁炉装饰设计美图

    [img=欧式仿真伏羲电壁炉篝火和真火伏羲壁炉装饰设计美图,690,517]http://ng1.17img.cn/bbsfiles/images/2018/06/201806221214387205_8005_3429559_3.jpg!w690x517.jpg[/img][img=欧式仿真伏羲电壁炉篝火和真火伏羲壁炉装饰设计美图,690,517]http://ng1.17img.cn/bbsfiles/images/2018/06/201806221214387205_8005_3429559_3.jpg!w690x517.jpg[/img][img=欧式仿真伏羲电壁炉篝火和真火伏羲壁炉装饰设计美图,690,517]http://ng1.17img.cn/bbsfiles/images/2018/06/201806221214387205_8005_3429559_3.jpg!w690x517.jpg[/img]

闭路涡动相关系统相关的耗材

  • 德国Cycle飞秒激光同步器TCBOC双色平衡光学互相关器
    德国Cycle飞秒激光同步器TCBOC双色平衡光学互相关器德国Cycle GmbH成立的宗旨是为科学和工业应用构建创新的超快技术。Cycle Laser提供前沿的定时设备,使射频和光学设备彼此同步,具有亚飞秒分辨率。这些技术的主要发展起源于十多年前的麻省理工学院,并在Deutsches Elektronen-Synchrotron德国电子同步加速器研究所(DESY)得到了改进。几千公里内的亚飞秒同步已经得到证实[1]并且目前正在商业化。Cycle GmbH是由Franz X. Kaertner教授和其他科学家创立的DESY衍生公司,拥有从他在麻省理工学院的研究中商业化关键同步技术的专门许可。描述: 德国Cycle飞秒激光同步器TCBOC双色平衡光学互相关器(Two Color Balanced Optical Cross Correlator)能精确地检测两个不同中心波长的光脉冲串之间的相对时间延迟。这是Cycle公司众所周知的(单色)BOC技术的延伸,其用于超过千米距离的亚飞秒光纤链路稳定。由于采用了平衡光学检测方案,TCBOC提供了优异的时间灵敏度、高至阿秒时间分辨率、振幅不变性和抗环境波动的稳定性。它产生一个与相对时间延迟成正比的基带电压信号,然后接着可以用在锁相环结构中,以同步具有不同波长的两个光源(例如,将Ti:Sapph振荡器锁定到一个时间稳定光纤链路输出中)。支持标准波长为800nm,1030nm和1550nm。应用: 不同波长下两个光脉冲重复频率的紧密同步 超快激光器重复频率与稳定光纤链路输出的紧密同步 脉冲激光与主激光器的紧密同步 由放大器在激光放大器链或不同设置中引入的抖动补偿飞秒激光同步器TCBOC双色平衡光学互相关器参数值单位备注时间灵敏度 10mV / fs探测器输出端时间分辨率 0.5fs10kHz 带宽输入光学波长 2000nm根据实际波长确定方案输入光学功率10 - 20mW根据波长和其他参数光学输入方式free space or fiber重复频率 10GHz根据实际重频调整典型尺寸300mm x 270mm x 66mmTCBOC数字同步模块TCBOC数字同步模块参数值单位备注尺寸19英寸宽集成反馈包含优化 PID 参数控制系统界面包含Epics, Tang等可选自动锁定包含德国Cycle飞秒激光同步器TCBOC双色平衡光学互相关器CycleLaser产品列表:1. TDS时间分布同步系统Timing Distribution System2. FLS光纤链路稳定器3. 超快激光同步器BOMPD光学微波平衡相位检测器4. 飞秒激光同步器TCBOC双色平衡光学互相关器
  • 双色平衡光学互相关器/仪 (BOC and TCBOC)
    总览全自动平衡光学互相关器TCBOC可以高精度的检测两个中心波长相同/不同的光脉冲序列之间的相对时延。由于采用了平衡的光学检测方案,TCBOC具有极高的时序灵敏度、阿秒定时分辨率、幅值不变性和对环境波动的鲁棒性。它产生与相对时延成比例的基带电压信号,然后可以在锁相环配置中使用该信号来同步具有不同波长的两个光源(例如将Ti:Sapphire振荡器锁定到时间稳定光纤链路的输出)。标准波长为800nm、1030nm或1550nm。技术参数产品应用两个相同或不同波长的光脉冲序列的重复率精确同步超快激光的重复频率与稳定光纤链路输出的精确同步由激光放大器链或类似设置中的放大器引入的抖动补偿测量两个同步激光器或来自同一光源的两个光束路径之间的抖动和漂移测量光程长度波动(例如由温度引起的变化)特点优势超过10 mV/fs的灵敏度低于0.5 fs的基底噪声低至10 fs RMS的定时抖动和时序漂移采样同步设置双色平衡光学互相关器(TCBOC)同步两个不同波长的超快激光器的脉冲序列。TCBOC有两个版本可供选择:测量设备(MD):独立式双色平衡光学互相关器(TCBOC)同步装置(SD):独立式双色平衡光学互相关器(TCBOC),配备反馈和控制电子设备。请联系我们的专家团队,提出您的定制需求。规格参数参数值单位备注检测器灵敏度 10mV / fs检测器输出(未放大)检测器分辨率 0.5fs10 kHz带宽内的集成检波器基底噪声时间抖动1 15fs在35 μHz - 1 MHz带宽内,根据主/参考激光器的噪声特性和从激光器腔内执行器的性能尺寸(H x W x L)300 x 270 x 66mm重量5kg不同规格重量不同要求光输入波长2000nm可定制光输入功率10 - 50mW取决于波长范围和其他激光参数光学输入类型保偏(PM)光纤FC或SC连接器(自由空间输入可选)脉冲重复频率 10GHz可定制SD版本的控制单元(同步设备)大小机架安装,19英寸宽,4个单元高度综合反馈包括优化的PID参数控制系统界面包括EPICS, TANGO自动锁定包括1当在最高0.5 K温度和3 %相对湿度偏差的环境中运行时。请注意,激光器之间的时间抖动必须低于锁定带宽以上的目标精度。 测量数据
  • hausner比与流动性关系 汇美科LABULK 0335
    hausner比与流动性关系简介LABULK 0335振实密度仪是用来测量粉体振实密度的仪器。该仪器由触屏操作面板、振动组件、电机、打印机、电子天平及量筒组成。根据国际及国内的标准研发的LABULK 0335振实密度仪按照设定好的转速及振实高度进行工作,使振动组件上面安放的盛装干粉样品量筒上下振动,从而测量出该粉体的振实密度。该仪器可以随意设定测量参数,并可以自动测量,自动打印,除振实密度外,还可以自动测出粉体的流动性等指数。广泛用于金属、医药、食品、塑料、矿物等领域。仪器生产厂家与供应商为丹东汇美科仪器有限公司。型号为LABULK0335的振实密度仪采用国际先进的松装测试技术设计制造,仪器的主要参数性能与外国进口设备保持一致,而且该仪器价格合理,汇美科已经成为实验室振实密度分析及仪器采购的SHOU选品牌。技术参数测量特性:振实密度及流动性等装样量:5-250 mL(用户可以随意设定)计时范围:0-99999秒(用户可以随意设定)计数范围:0-99999次(用户可以随意设定)振动高度:3或14 mm振动频率:250或300转/分(用户可以随意设定)仪器尺寸:33x31x18cm(量筒高度未计)电压:220V/50Hz重量:16公斤产品特点新一代智能触屏,通过7英寸LCD显示屏精确控制操作。主机与配件通讯自检功能,让操作者一目了然。测量模式二选一,振实时间或振动次数随意设置测量过程中实时显示操作状态。通过RS-232与电子称相连,实时显示电子称数值。轻轻一触,详细的打印报告呈现眼前应用领域汽车与航空航天生物及药品研发能源及环境食品矿物与金属塑料及聚合物化学品等所有粉末或以颗粒状态存在的物质
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制