石墨铝锭恒温消煮炉

仪器信息网石墨铝锭恒温消煮炉专题为您提供2024年最新石墨铝锭恒温消煮炉价格报价、厂家品牌的相关信息, 包括石墨铝锭恒温消煮炉参数、型号等,不管是国产,还是进口品牌的石墨铝锭恒温消煮炉您都可以在这里找到。 除此之外,仪器信息网还免费为您整合石墨铝锭恒温消煮炉相关的耗材配件、试剂标物,还有石墨铝锭恒温消煮炉相关的最新资讯、资料,以及石墨铝锭恒温消煮炉相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

石墨铝锭恒温消煮炉相关的厂商

  • 我司主要经营石墨制品,石墨坩埚、热解石墨坩埚、石墨消解仪、高温实验耗材、地质分析土壤检测用坩埚、石墨电极板等高纯石墨制品,可来图来样加工异型高纯石墨件。
    留言咨询
  • 北京翔龙同创炉业有限公司位于北京市顺义区南彩工业园,拥有现代化标准厂房,成套的加工设备,现代化的三维产品设计,完善的质量检测体系;公司致力于各类工业炉及实验炉设计、制造、技术改造及配套装置的企业,产品广泛应用于航空、航天、冶金、机械、铁道、汽车、电工合金等行业。公司引进国外先进的热处理设备制造技术,主要生产各类标准的热处理设备,为真空淬火炉、真空粉末冶金热压炉、卧式双室真空淬火炉、真空钎焊炉、高温真空烧结炉、井式炉、卧式预抽真空炉、箱式电阻炉、台车式电阻炉、大型全纤维井式加热炉、井式回火炉、大型新型井式气体渗碳炉、井式气体氮化炉、电加热坩埚炉、铝材时效退火炉、硅钢片退火炉、大中型全纤维台车式电阻炉、大中型全纤维燃油/燃气式台车炉、大中型全纤维箱体移动式罩式炉、熔化炉、滚筒炉、网带炉、模壳焙烧炉、推杆炉、时效炉、铝锭(棒)均热炉、铝板带退火炉、铝型材时效炉等多种类型产品。公司还可以根据用户需求设计制造各种非标的热处理设备及以煤气、天然气、柴油为燃料的自动化热处理生产线。我们始终以“质量第一、信誉第一”的理念服务于用户。我们的工程师愿意与您紧密合作,研发出个性化的方案以解决您的要求,提供最优质的加热设备。本着“客户在我心中、技术在前沿中、品质在服务中”的企业理念,以卓越的产品,满足您的需要,以诚实守信的经营原则,热忱的欢迎您和您的团队光临指导,来完成我们的真诚合作!
    留言咨询
  • 普律化学.科技 –您做实验,剩下的事情交给我们!厦门普律化学科技有限公司,成立于2013年,顾问于完整的实验室仪器(设备)、耗材(配件)、试剂、标准品、玻璃器皿、PPE(个人防护设备)、实验室设计改造、维修、迁移等一站式服务;面向各大食品、化工、电子、环境、医疗、科研、高校、第三方检测事业单位等科学用户,提供精密实验室仪器、耗材及实验室搬迁、建设、维修等一站式的专业科学领域服务! 中国福建授权总经销产品:英国PRIMA公司实验室产品:超声波清洗器、恒温/制冷干浴器、恒温水浴槽、恒温循环水浴锅、mini离心机、手持式匀浆机、高剪切乳化分散机、顶置式搅拌器、便携式超低温冰箱英国PRIMA公司在线监测产品:pH/ORP、DO、MLSS/SS、电导率、余氯及硬度分析仪法国Erlab无管道通风技术领域产品:净气型通风柜、净气型储药柜日本雅玛拓:灭菌器、喷雾干燥器、马弗炉、恒温箱、干燥箱、恒温培养箱、旋转蒸发仪、恒温水循环装置、恒温水槽、通风柜、洁净工作台、实验台、半导体电子、平板显示器、电池、其他。美国Clean:酸碱值/氧化还原电位、溶解氧、电导率和余氯的测量 笔式、便携式、台式、变送器和电极格丹纳Gdana:石墨消解仪、凯氏定氮仪、实验电热板、火焰光度计、食品安全快速检测仪各种系列 其他授权经销产品:瑞典Biotage浓缩、萃取领域产品:正压固相萃取装置、全自动SPE萃取工作站、全自动浓缩仪、泳池水质测试箱、毒性分析仪广州迪澳生物:改良PCR仪深圳国力天:摇床、混合器、冷藏器、熔点仪、PCR仪广州力康:生物安全柜德国Brand:移液、分液、滴定、微量储存管、PCR、微孔板、比色皿上海一恒:干燥箱、培养箱、恒温恒湿箱、药品稳定性试验箱、老化箱、水浴锅、振荡器、药品稳定性试验箱、紫外线耐候试验箱、电阻炉、磁力搅拌器上海增达:高低温交变湿热实验箱、深冷试验箱、温度冲击试验箱、砂尘试验箱、淋雨试验箱、真空气候试验箱、盐雾腐蚀试验箱、压力波动试验装置 实验室仪器配电、供气、常用色谱耗材:*(福建总代理)上海精通:稳压电源、各种系列的净化交流稳压电源山特:UPS电源*(福建总代理)台湾收藏家:电子防潮箱北京中兴汇利:氮气、氢气、空气发生器高效液相色谱柱: Diamonsil( 钻石 ) 、PLATISIL( 铂金 ) 、 Inspire 、Spursil 、Bio-Bond、Leapsil 、Endeavorsil高效液相色谱柱保护柱: EasyGuard气相毛细管色谱柱:DM 、PA样品前处理 SPE 小柱: ProElut溶剂:Dikma Pure 、Meryer标准品:xStandard、AccuStandard、supelco、TCI、USP、标物中心、中国计量科学院针头式过滤器:Promax、贺世注射器:Hamilton 、取样注射器(螺纹口 + 平头针)*(福建总代理)日本Cappaso:果蔬清洗剂(果蔬的前处理清洗-去除农残/微生物/粉尘) 其他实验室多元化服务:实验仪器、化学试剂、化工原料、玻璃仪器、教学设备、劳保用品和医疗三类产品实验室台面装修设计、实验室搬迁、实验室维修、瓶架及各种玻璃器皿非标订制 厦门普律化学科技有限公司 普律化学.科技:www.prima-chem.com
    留言咨询

石墨铝锭恒温消煮炉相关的仪器

  • AAS系列原子吸收分光光度计是由天瑞仪器公司集多年光谱研发经验,历时数年自主研发,制造,独立销售的高性能,高可靠性的光谱分析仪器,具备火焰、石墨炉、氢化物发生等多种原子化方式可供选择。该系列仪器由计算机通过USB2.0标准接口对其进行功能控制和数据处理,自动化程度高;具备多种安全防护措施,操作安全可靠;简单方便的结构设计,人性化的软件操作界面,使您的操作得心应手。AAS 6000单火焰原子吸收火焰原子吸收适用于物质中微量、痕量金属元素的测试,测试元素30多种,具备仪器结构简单,分析测试速度快,重复性好,干扰少的特点,尤其适合于铜、锌、钾、钠、金、银等元素的检测。AAS 6000自动化程度高,技术成熟,操作简单,稳定可靠。AAS 8000单石墨炉原子吸收石墨炉原子吸收适用于物质中痕量、超痕量金属元素的测试,测试元素可达60种,具备灵敏度高,检出限低,进样量少等特点,尤其适合于镉、铬、铅、铝、钼等元素的检测。AAS 8000(含石墨炉自动进样器)以及AAS 8000-M(不含石墨炉自动进样器)灵敏度高,检出限低,操作简单,使用方便。AAS 9000火焰石墨炉一体式原子吸收火焰石墨炉一体式原子吸收具备火焰石墨炉两种原子化器,因此集合了火焰石墨炉两种原子吸收仪器的优点,用户可以根据测试需要,快速切换原子化器,达到佳测试效果。AAS 9000(含石墨炉自动进样器)以及AAS 9000-M(不含石墨炉自动进样器)具备火焰石墨炉双原子化器,通用性强,串联式光路设计,无须机械切换,测试稳定可靠。高度自动化,样品检测更省心多种安全保护,操作更安心人性化设计,使用更舒心完善及时的服务体系,测试更放心性能特点主机1、全反射消色差光学系统。采用轮胎镜代替凸透镜作为仪器的光学聚焦设备,有效解决了不同元素焦点不同的色差问题,提高了光学系统效率。2、C-T型单色器。采用1800线/mm、闪耀波长230nm光栅分光系统。3、八元素灯灯塔。八只灯分别配备八路独立灯电源,一灯工作,多可以七灯预热,节省了换灯和预热时间,使元素测量更加快捷方便。4、全自动化设计。除主机电源开关外,仪器全部功能通过计算机监测与控制。5、USB2.0通讯方式。业内率先采用USB2.0通信接口,提升了通信速度,兼容新计算机系统。6、背景校正系统。具备氘灯与自吸收两种背景校正模式,背景信号1A时,扣背景能力30倍以上。7、外观采用流线型钣金工艺设计,简约时尚,美观大方8、自主知识产权,功能完善,性能强大的分析软件。人性化的操作界面,让您的操作易如反掌,可切换中英文Windows风格软件界面,可在Windows XP, Windows 7等操作系统下完美运行,全自动定性、定量分析,自动计算元素含量,自动生成测试报告。火焰系统1、纯钛雾化室,纯钛燃烧头。有效防止酸气腐蚀,使用寿命更长。2、高效玻璃雾化器。采用专用高效玻璃雾化器,雾化效率高,维护更换方便。3、质量流量控制器实现乙炔流量控制。质量流量控制器精确控制乙炔流量,精度达1ml/min,并对流量进行动态监测,使用方便,安全可靠。4、更多的安全保护措施,使样品分析更加安全可靠。1) 乙炔泄露保护2) 乙炔压力监视3) 空气压力监视4) 燃烧头状态监视5) 火焰状态监视6)水封状态监视石墨炉系统1、石墨炉电源内置。石墨炉电源、原子吸收主机位于同一台仪器内,仪器空间更加紧凑,缩短了电缆长度,减少了石墨炉电源对外界的电磁干扰、提高了石墨管加热效率。2、石墨炉控温精度高,升温速度快。采用大功率变压器、微阻电缆线以及光控升温方式,并配合软件、硬件温度校正系统,高温段控温精度可达±1%。3、更多的安全保护措施,使样品分析更加安全可靠。1) 冷却水流量监控2) 载气压力监视3) 石墨管温度监视4) 石墨炉温度监视4、自动载气流量控制。石墨炉内气,外气全部由计算机根据软件升温流程自动控制。自动进样器150位转盘式火焰石墨炉通用自动进样器。极坐标转盘式自动进样器,定位精度高,运行稳定可靠,使用维护方便。(AAS8000-M和AAS9000-M产品为手动进样模式,不配备自动进样器)技术指标主机单色器类型:切尔尼-特纳型(Czerny-Turner)波长范围:190nm~900nm波长准确度:±0.25nm波长重复性: 0.05nm光谱带宽:0.1/0.2/0.4/0.7/1.4 nm五档自动切换火焰系统火焰法测铜(Cu)精密度: 0.8%火焰法测铜(Cu)检出限: 0.006ug/mL火焰法测铜(Cu)特征浓度: 0.025μg/ml/1%静态稳定性: 0.003 Abs(static)动态稳定性: 0.005 Abs(dynamic)石墨炉系统石墨炉控温范围:室温--3000℃石墨炉升温速率:3000℃/s石墨炉测镉(Cd)精密度:≤ 2%(自动进样模式)石墨炉测镉(Cd)精密度:≤ 5%(手动进样模式)石墨炉测镉(Cd)检出限:≤ 1.0pg可选配置1、低噪音无油空气压缩机2、自动控温冷却水循环装置3、氢化物发生器4、品牌计算机5、品牌打印机6、待分析元素光源人性化的软件界面,全自动的检测流程,精确的测量结果。AAS系列软件工作站完美支持Windows操作系统,可应用于Windows XP、Windows 7等操作系统。软件界面设计采用Windows风格,尽量贴近用户使用习惯,简化操作流程。软件主界面基本涵盖仪器所有功能,参数设置,仪器控制,数据处理,谱图显示,曲线拟合,用户管理,仪器状态监视等。全自动样品测试,自动记录用户前一次的测试参数,测试完毕用户可选择保存项目,打印测试报告,导出为EXCEL文件等多种操作。应用领域相同。
    留言咨询
  • EZ-S/L系列石墨/铝锭恒温消煮炉 产品简介:消煮炉又名消化炉,是依据经典湿法消解原理研制的对不同样品进行消解、转化的设备。主要用于农业、林业、环保、地质石油、化工、食品等部门以及高等院校、科研部门对植株、种子、饲料、土壤、矿石等样品化学分析之前的消解处理,是凯氏定氮仪的最佳配套产品,其中S系列(石墨加热系统)有3个规格,L系列(铝锭加热系统)有3个规格可供用户选择 产品特点:石墨加热系统:石墨加热模块——采用高密度石墨精加工而成,具有温度分布均匀、耐温高(温度可达600℃)、温度缓冲小等特点加热板——采用加热元件与铸铁直接铸造一次成型工艺,其板面耐温高(温度可达700℃)、温度均匀性好,寿命长等特点 铝锭加热系统:铝锭加热模块——采用锌铝合金精加工而成,具有升温速度快、寿命长的特点,长期使用温度可达450℃,是目前国内外生产厂家应用最广的材料加热板——采用加热元件与铝合金直接铸造一次成型工艺,板面最高温度可达500℃,具有升温快、寿命长等特点炉孔温度连续可调、孔间温差小、样品消化一致性好、热效率高、有利于样品的消化双传感器测温系统(中心点与边角点)各1温度传感器测量、采集温度,更可靠、均匀 新一代PLC智能液晶控温系统:控温精度高、温冲幅度小屏幕为中英文双语操作界面、人机对话、易学、易用(见图2)具有1-12段程序(曲线)升温、单点升温功能(见图3)单点控温具有定时关机功能,1—600分钟任意设置具有用户自设配方管理、存储、调用功能,解决了用户样品配方日常管理的难题,提高工作效率 485接口方便信息传输及与计算机连接计算机操作软件可实现计算控制、管理 仪器台面、试管架采用拉丝不锈钢板焊接而成具有一定防腐能力后置消化管降温支架,方便了用户的使用及高温样品的放置难题 技术指标项目名称EZ-10S/LEZ-15S/LEZ-20S/L样品孔数10孔15孔20孔孔径Φ43.5mm(适用于Φ42mm、Φ40mm的管)加热模块材料石墨/铝锭设计温度600℃/450℃温度控制仪表PLC智能液晶控温仪(1-12段程序升温、单点升温、配方管理)计算机接口485计算机操作软件windows系统下控温精度±1℃升温速率≈3--15℃/min定时关机1—600分钟任意设置工作电压AC220V/50Hz加热功率2.2KW3KW3.6KW外形尺寸/包装尺寸净重/毛重 可选配设备、附件:①样品粉碎机②废气收集装置③酸碱中和装置④消化管支架⑤消化管⑥催化片⑦回流漏斗
    留言咨询
  • JKXZ-B系列铝锭恒温消煮炉产品简介JKXZ-B系列铝锭恒温消煮炉又名消化炉,是依据经典湿法消解原理研制的样品消解、转化设备。主要用于农业、林业、环保、地质石油、化工、食品等部门以及高等院校、科研部门对植株、种子、饲料、土壤、矿石等样品化学分析之前的消解处理。本系列产品是一款经济型样品前处理设备,是凯氏定氮仪的配套产品。功能及特点(★为独有特点 )? 铝合金加热模块采用锌铝合金精加工而成,具有升温快、温度分布均匀、寿命长的特点,是目前国内、外生产厂家应用最广的材料? 加热板采用加热元件与铸铁直接铸造一次成型工艺,其板面耐温高(温度可达450℃)、温度均匀性好,寿命长等特点? 炉孔温度连续可调、孔间温差小、样品消化一致性好、热效率高、有利于样品的消化? 采用液晶显示控温仪,具有定时关机、报警等功能,PID智能控制技术,控温精度高,温冲幅度小,简单易学? 仪器台面、试管架采用拉丝不锈钢板焊接而成具有一定防腐能力JKXZ-B系列铝锭恒温消煮炉技术参数项目名称JKXZ06-8B样品孔数8孔孔径Φ43.5mm(适用于Φ42mm、Φ40mm的管)加热模块材料铝合金设计温度450℃温度控制仪表P、I、D智能温度控制器控温精度±1℃工作电压AC220V/50Hz加热功率2KW外形尺寸/包装尺寸530*320*220净重/毛重16Kg/23Kgl 可选配设备、附件:①样品粉碎机消化管支架⑤消化管⑥催化片⑦回流漏斗
    留言咨询

石墨铝锭恒温消煮炉相关的资讯

  • 祝贺上海沛欧红外石英消化炉SKD-08S2入围国产好仪器
    国产仪器腾飞行动”将通过企业自愿免费申报,活动主办方将组织专业编辑及行业资深专家深入调研,实地走访考察用户单位和国产厂商,让广大用户对国产科学仪器进行网上讨论、评议,以“用户说好才是真的好”为宗旨,从科学仪器的可靠性、稳定性、售后服务等方面筛选出具有代表性,经过用户的使用检验,好用、够用,并可对进口仪器形成一定竞争优势的“国产好仪器”。上海沛欧消化炉SKD-08S2的入围,显示了产品实力的重要性,也体现了广大用户超群的眼光,您的选择是对上海沛欧最好的支持!! 红外石英程序升温8孔消化炉特点1、加热体(模块)采用红外石英管,耐强酸强碱、防爆裂,寿命长,2、炉孔温度连续可调,升温速度快3、消化管受热面积大、温差小,样品消化一致性好,有利于样品的消煮4、仪器具有过流保护和漏电保护5、采用双开关,电源和加热单独控制,便于安全参数设置6、仪器有不锈钢排污罩,使消化管内逸出的SO2等有害气体,通过排污管经抽吸泵从水中排入下水道,有效地抑制有害气 体的外逸*杜绝挂壁*一、概述: 红外石英程序升温8孔消化炉SKD-08S2可用于农业、林业、环保、地质、化工、食品等部门以及高等院校、科研部门对植株、种子、饲料、食品、土壤、矿石等消化二、技术指标: 红外石英程序升温8孔消化炉型号 SKD-08S2控制方式 数控 (定时+64阶程序升温) 加热方式 红外石英辐射加热 炉孔数量 8孔 控温范围 室温-680℃ 升温速度 0分钟(室温到400℃) 温度波动 1%(超调后2度) 电 压 AC220V 功率 1600W 消化炉在蛋白质检测中起到了很重要的作用,选择一台合适的消化炉是准确检测的前提。消化炉指标要注意几点:1 温度要恒定,波动要小,每个样品可以有一致的消化时间,2 每一个样品孔温度要一致,以免样品消化时间相差太大。3 能有效的控制温度变化的过程,以免消化时的样品挂壁。4 效地保温措施,以提高炉腔内温度的恒定性所以消化炉的考察需要注意 :* 有效地温度控制,使得消化能按需要控制温度,如果有程序升温控制就能有效达到所需。* 很好的保温措施,如果保温材料势单力薄,必造成温度不稳定。仪器较厚的保温层是温度稳定的需要。故保温材料的厚度和材质是一个重要的指标、* 加热体和热载体的选择,可以根据用户的需要选择不同的热载体。下面我们来讨论加热体和热载体的选择。现在加热主要有三种方式比较好的。# 红外加热,靠热辐射来加热样品,特点是:升温快,热惯性小,温控准确。一般应用于有高要求样品的消化。例如:有较快的升温和降温速度。程序升温可以使用户更具自己样品的特点来选择升温曲线,或选择分段式的升温,更有利益样品的消化,从而杜绝样品的挂壁现象、进而使得样品消化效率的大大提高# 铝锭加热,靠铝锭传导热给样品,特点:升温较慢,热惯性较大,温度较稳定,还由于铝锭的良好的热传导性,每个样品孔间的温度一致性好。广泛应用于消化炉的热载体,但也要注意:一片薄薄的铝锭也不能保持温度的恒定,所以选择铝锭消化炉,铝锭厚度也是一个考察指标。# 石墨加热,靠石墨传导给样品热量,特点:热惯性大升温较慢,由于石墨热传导性较差(相比较铝锭),使得样品孔间温度不均匀,容易造成样品间消化时间拉大。但是由于石墨成本较低,石墨消化炉成本便宜,对部分低端用户有一定的吸引力。(并不可取) 其余要注意消化炉的保护功能:温度稳定均一保护,过流和短路保护。
  • 戏说纵向加热石墨炉(收官之作)
    前 言:  自从70年代起其至今,我使用过好几款仪器的石墨炉,如:PE403,PE5000,PE3010,GGX-3,180-80,Z-8000,Z-5000,Z-2000,ZA3000等。凑巧的是,上述仪器的石墨炉全部是纵向加热类型的。为了活跃论坛这个&ldquo 草根&rdquo 平台,我就将这些年对纵向加热型石墨炉的认识和体会展现给版友。  遗憾的是,一来本人的理论水平有限,二来有关石墨炉的文献与论文,从60年代的石墨炉鼻祖利沃夫和马斯曼起,一直到目前的国内外众多的原吸大咖止,比比皆是,令人目不暇接,且全部是正说。因此,如果我也采用&ldquo 正说&rdquo 石墨炉的形式,则深感力不从心,故只能&ldquo 戏说&rdquo 了,望大家见谅!  (一)纵向石墨炉的历史:  1959年,前苏联科学家利沃夫(L,vov)设计出了石墨炉坩埚原子化器。  1967年,德国学者马斯曼(H.Massmann)从利沃夫的石墨原子化器得到灵感,设计出电热石墨炉并于1970年被PE公司应用到商品原吸仪器上。  由于马斯曼设计的纵向电加热石墨炉首次成为商品仪器,所以之后有人就将这种纵向加热结构的石墨炉称之为&ldquo 马斯曼炉&rdquo ,以示纪念。  (二)纵向石墨管的结构:  首先要搞清楚何为&ldquo 纵向&rdquo ?所谓的纵向就是指作用在石墨管上的加热电流I的流通方向与通过石墨管光轴的方向一致。见图-1 所示:  图-1 纵向加热石墨炉示意图  纵向加热石墨炉的整体外观和结构示意以及实体分解如图-2,3,4所示:  图-2 纵向石墨炉外观图(Z-2000)  图-3 纵向石墨炉结构示意图  图-4 纵向石墨炉实体分解图(Z-2000)  从图-3 和图-4 可以看出,纵向石墨炉主要是由:石墨管,石墨环,电极和石英窗组成。  由于纵向石墨炉问世最早,结构相对简单,石墨管加工的一致性好且成本低廉,加之技术成熟,所以该类型的石墨炉应用较为广泛 目前国内外的原子吸收光度计的生产厂家绝大部分仍然采用的是该类型的石墨炉。  (三)纵向石墨管的种类:  无论是纵向石墨炉还是横向石墨炉,最终做热功的还是石墨管 为此有必要介绍一下纵向石墨管的种类和特点。图-5 所示的就是一部分纵向加热的石墨管的外观图。  图-5 形形色色的纵向石墨管  不知大家注意没有,在上图中最右侧的那个&ldquo 高大上&rdquo 的石墨管,就是我在70年代时使用过的美国PE-403型原子吸收分光光度计中石墨炉上的石墨管,可惜当时没有想起要保存下一只该管子的实物作为留念,不能不说是一件憾事!  (1)筒形石墨管:  纵向加热石墨炉从问世开始(以PE公司原吸为代表),石墨管就是筒形的,直至目前许多国内外仪器生产厂家例如:PE公司,热电公司,瓦里安公司,GBC公司的部分型号的仪器仍然使用着这种石墨管。如下面所示:  图-6 几种进口仪器使用的筒形石墨管  最早的传统筒形石墨管有一个弱点,那就是:由于管子的管壁厚度一致,也就是管子整体的任何一个部位的电阻值是均匀的,所以当石墨管通电加热时,理论上管子的整体的温度应该是均匀一致的才对。这种石墨管的剖面图如下:  图-7 传统筒形石墨管的剖面图  可是遗憾的是,由于纵向石墨管两端紧贴着两个质量很大的石墨环和电极之故(见图-4),所以在原子化加热开始的瞬间,石墨管两端的温度就会因为石墨环和电极的热传导作用而低于石墨管的中央部分的温度 其后经过暂短的时间后(约零点几秒),管子整体才会达到热平衡。这,就是在许多资料中所经常被垢病的&ldquo 温度梯度&rdquo 现象。  为了克服这种&ldquo 温度梯度&rdquo 的弊端,于是后人们便产生了提高筒形石墨管两端电阻值的设想。这样原来的一个阻值均匀的石墨管整体R就会被等效看做为三个串联的单体,即(R左R中   那么如何提高筒形石墨管两端的电阻值呢?方法只有一个,那就是减少管子两端管壁的厚度。我们在初中物理学到过,一个导电体的截面积与其电阻值成反比。所以减少石墨管两端管壁的厚度就可以提高电阻值。但是要想减少管子两端管壁的厚度,却不能通过将管子外径切削变薄来实现 其原因是:石墨管两端还要保持与石墨环大面积的紧密接触才能减少热损耗。所以即要想提高电阻又要保持管子与石墨环的紧密接触,那只能在管子的内壁上做文章。具体的做法是:用车刀在管子内壁两端刻上几刀沟槽,这样既不影响管子与石墨环的接触也可以提高了两端的电阻值了,可谓一举两得。其示意图和实体图见图-8和图-9 所示:  图-8 改良后的筒形石墨管示意图  图-9 改良后的筒形石墨管剖面实体图  (2)鼓形石墨管:  改良型石墨管尽管缩短了管子整体的热平衡时间,但是效果还是不太理想。于是有的仪器厂家就设想:如果让纵向石墨管中央放置样品的部位先行到达原子化温度不就可以忽略石墨环的散热影响了吗?要想做到这一点,就要从改良型筒形石墨管做反向思维了 那就是让石墨管的三部分变为(R左R右)了,于是乎,鼓形石墨管则应运而生了 其外观如下次:  图-10 鼓形石墨管外观  看到上面的鼓形石墨管,也许有人会问:这种石墨管的外径中间粗(8mm)两端细(7mm),如果依照前面导体的截面积与电阻成反比的定律,那么此管子的中央部位外径比两端的要粗1mm,其截面积一定大啊!按道理应该中间部位的电阻要小于两端才对,怎么反而说比两端的阻值要大呢?  下面我将此类管子的实际剖面图展现出来,大家就一目了然了,见图-11所示:  图-11 鼓形石墨管的剖面实例图  从上面的照片可以看到,尽管鼓形管的中间外径较两端大1毫米,但是其管壁厚度却小于两端的厚度,两者之差为(2mm-1.5mm)=0.5mm 千万别小看了这区区的0.5毫米的厚度,他却使石墨管中央部分的截面积整整小了约1/4。这样的差别,就会使该管子在原子化加热的瞬间,其中间部位迅速到达预设的原子化温度。如果用肉眼从石墨炉上盖的进样孔观察石墨管的升温状态就会发现这一过程 如图-12,13所示:  图-12 鼓形石墨管在原子化阶段升温瞬间的状态  图-13 鼓形石墨管在原子化阶段迅速达到平衡的状态  从上面两张照片图可以清晰地看到,鼓形石墨管在原子化开始的瞬间的确是从中央部位先行到达预设的原子化温度的,然后再向两端迅速延伸直至达到整体的热平衡,而这个平衡时间是非常短暂的。目前此类型石墨管主要是应用在岛津和日立的原吸上面。  此外这种鼓形石墨管还有一个优点,那就是管子中间的凹陷部位注入样品后液体不会向两端扩散 这样就保证了全部样品集中在温度最高的区域,有利于原子化。  (3)异形石墨管:  这类石墨管主要是喇叭型和哑铃型两类 由于目前几乎难以见到,故不再赘述。  (4)双进样孔鼓型石墨管:  这是一种新型的石墨管,其特点是:石墨管中央注入样品的部位被分割为两个空间 这样设计的目的是可以加大进样量,对低含量的样品起到了一个富集的效果 但是采用这种石墨管的仪器对自动进样器的精度要求是很高的,目前为止,这种双孔进样方式只有日立ZA3000型原子吸收上采用 而在横向加热石墨管上是不能实现的。该型管子的外观图和剖面图如下所示:  图-14 双孔石墨管的外观图 图-15 双孔石墨管剖面图  (5)平台石墨管:  此类石墨管就是在管子的中央安放一个悬浮的石墨平台,样品加注在平台上以完成原子化过程。平台石墨管的设计理念就是实现石墨炉分析鼻祖B.V.L&rsquo vov提出的&ldquo 恒温原子化&rdquo 的理念而问世的。该石墨管的剖面图如下:  图-16 平台石墨管  (四)纵向石墨炉的特点:  (1)升温速率:  众所周知,无论石墨炉是何种形式的,其最终做功而产生的焦耳热的关键部件是由石墨管来完成的。而影响石墨炉灵敏度和重现性的一个重要的因素则是:升温程序由灰化阶段转为原子化阶段瞬间的升温速率的快慢。  为何这个转换速率对分析的灵敏度的影响是那样大呢?其实原因很简单:当样品完成灰化步骤后,石墨管由灰化阶跃到原子化阶段的时间越短(即升温速率快)样品产生的基态原子数目越多,自然检测到的信号就越强。反之,如果石墨管升温速率慢的话,一部分样品在还未形成基态原子前就会被载气吹跑掉了,自然灵敏度就下降了。这也就是为何石墨炉在原子化阶段采取停止载气的做法的缘由 任何事物都是一分为二的,虽然可以通过停止载气来提高检测信号的灵敏度,但是样品信号的背景值也会随之加大了,熊掌鱼翅不可兼得。  那么影响石墨管升温速率的因素又是什么呢?答案是:石墨管本身的质量的大小 在同等的升温条件下,质量越小升温速率越快。举一个试验例子:如果将一个大铁球和一个小铁球同时放到火炉中,哪一个先红?毋庸置疑,还是小铁球先红(即达到热平衡早),我想这个试验结果大家均会给予认可的。目前的纵向石墨管无论是筒形的还是鼓形的其质量均在1克左右 见下表-1:  表-1  而横向石墨管的质量均比纵向石墨管大的多,一般在2.5~5.4克之间,见下表-2:  表-2  对于横向加热的石墨管而言,由于其本身的质量大于纵向石墨管,所以实际上更加注意升温速率的问题 这些石墨管的设计理念与纵向鼓形石墨管的设计如出一辙,其结构也是中央管壁薄两端管壁厚,从而造成管子整体中央电阻值大二两端小,并且这个厚薄的差异较纵向鼓形石墨管还要明显,远远大于0.5mm。见下图所示:  图-17 PE公司横向石墨管剖面图  图-18 Jena公司横向石墨管侧面图  图-19 GBC公司横向石墨管侧面图  所以,在升温速率上:从整体来看纵向石墨管优于横向石墨管(质量不同) 从局部来看二者接近(使用空间一样)。  (2)温度梯度:  自从纵向加热石墨炉问世以来,关于石墨管整个腔体内空间的温度梯度问题一直就是一个饱受诟病的争论焦点。为此,石墨炉分析鼻祖利沃夫(L,vov)先生就提出了一个&ldquo 恒温原子化&rdquo 的理念。大家熟悉的平台石墨管就是出于这个目的而研发出来的。  前面已经讲到,由于纵向石墨管两端存在石墨环和水冷电极的散热作用,故在原子化的瞬间致使管子的整体产生了一个两端低,中间高的&ldquo 温度梯度&rdquo 现象 这是一个不争的事实。  但是经过了一个暂短的时间后,石墨管会立即达到热平衡了。见下图所示:  图-20 筒形石墨管原子化阶段的升温模型  图-21 鼓形石墨管原子化阶段的升温模型  从上面的两张图的比较可以看出,鼓形管由于中间部分的温度高,故其升温速率要稍高于筒形管。  那么,横向加热的石墨管的究竟有没有&ldquo 温度梯度&rdquo 呢?见下模型图:  图-22 横向石墨炉工作原理  图-23 横向石墨管原子化阶段的升温模型  从图-22,23可以看出,横向石墨管在与电极接触的上下两端,同样也存在水冷电极的散热效应,所以对于横向石墨管整体而言同样也存在着温度梯度,只不过是在光轴通过的区域没有温度梯度罢了。因此纵向与横向石墨管的温度梯度的区别是:从整体来看,二者均有,仅是部位不同 从光轴观察空间来看,在原子化的瞬间,横向石墨管优于纵向石墨管 但是管子温度到达平衡后,二者相差无几了。既然横向石墨管的中间部位没有温度梯度的弊端,但是目前有些横向石墨管(例如PE的)仍然采用平台式的,这是为什么?  现在的问题关键是,纵向石墨管在原子化的瞬间,管子整体确实存在着温度梯度,这是一个无可争辩的事实。这个过程可用下面的模型图来说明:  图-24 鼓形石墨管原子化瞬间的升温模型图  通过上面的模型图不难看出几点:  1)在原子化瞬间鼓形管的确存在温度梯度,并且鼓形管的中央已经先行到达了预设的原子化温度(参看图-12)。  2)当石墨管整体温度到达平衡后,两端与石墨环接触的狭小部位的温度严格地讲要略低于整体的温度,这是因为石墨环的电阻要小于石墨管,因此在做功时其温度肯定比石墨管低,但是却要比水冷电极的温度高多了 由此看来,石墨环在这里不仅仅起到加持石墨管的作用,另一个不可忽略的作用就是:在石墨管和电极之间起到一个温度缓冲的隔离作用 如此就可将石墨管两端的温度梯度的影响降到了最小的程度。  3)鼓形石墨管的容积约600微升,而样品为20微升,仅占总容积的1/30,且位居管子中部。我的疑问:管子两端瞬时的温度梯度能对管子中央部位的20微升的样品产生多大的影响?我想这可能就如同地球一样,尽管南北两极温度很低,但是生活在赤道的居民没有感到寒冷吧?  4)当鼓形石墨管温度平衡后与横向加热石墨管的状态所差无几(参看图-13)。  5)石墨环的质量越小,温度梯度的影响也就越小。  6)石墨炉电路采用温控方式可以减少温度梯度的影响。  (3)零点漂移:  纵向石墨管从室温升高至3000° 时,管子本身因热涨的原因会延伸1毫米。由于纵向石墨管的延伸方向与光轴呈现同心圆的状态,所以尽管子受热膨胀,但是不会因物理挡光而使零点信号漂移。这个状态可由下图模型说明:  图-25 纵向石墨管受热膨胀方向与光轴的关系  但是当横向石墨管在受热膨胀时,其延伸方向会与光轴方向形成正交,从而影响了零点的位移。所以经常听到使用横向加热石墨炉的用户反映:&ldquo 为何我的石墨炉在空烧时会产生一个很大的吸收啊?&rdquo 其原因就在于此。这种横向石墨管在加热时的位移模型图如下所示:  图-26 横向石墨管受热膨胀方向与光轴方向的正交关系  实际上,这种石墨管膨胀方向与光轴形成正交的结果还不仅仅是零点的漂移的问题,因为石墨管在原子化阶段,管腔里面的待测元素和背景的活动非常复杂,据说要用量子力学来解释。正因如此,一直以来许多科学大咖对这个课题的研究从未停止过。  (五)纵向石墨管的加工和价格:  通过前面的介绍可以看到,无论是筒形的和鼓形的石墨管,均是圆桶形的 因此加工起来就非常简单了,仅仅使用车床切削即可 并且由于加工工序简单,所以加工出来的成品的同一性,如尺寸,质量等就很容易保证,所以价格低廉。  而横向石墨管又别称&ldquo 异形石墨管&rdquo ,所以加工起来就相对复杂多了,需要好几道工序,如PE800的石墨管,不但要切削,还要大量的铣床工序,这可以从下图的外观造型上得到印证,所以其价格较为昂贵就在所难免啦!  图-27 PE800石墨管  备 注:  (1)由于本文为&ldquo 戏说&rdquo ,可能难免有些观点不严谨或不科学,那么各位看官就权且当做饭后茶余的消遣罢了 不妥之处,尽可莞尔一笑。  (2)由于本文仅仅是谈谈个人多年来对于自己使用的纵向石墨炉的体会和看法,之所以例举了横向石墨炉的一些特点,也仅仅是为了做对比说明,仅此而已,并无丝毫褒贬和厚此薄彼之意,特此说明。
  • 李昌厚:横向加热石墨炉AAS的特点研究
    李昌厚(中国科学院上海生物工程研究中心上海 200233)摘要:本文根据分析工作的实际需要和作者的实践,从原子化温度、扣背景、原子化时间、重复性和灵敏度等几个方面研究了横向加热石墨炉原子吸收分光光度计(AAS)的特点,并对横向加热和纵向加热AAS的有关问题进行了讨论。0、前言 石墨炉AAS的加热方式有两种:一种是沿光轴方向加热,叫做纵向加热;另一种是与光轴垂直方向加热,叫做横向加热[1]。从仪器学理论[1]的角度来看,横向加热石墨炉AAS有十大优点[2](适合复杂体系、温度均匀、消记忆效应、消拖尾、对试样要求低、原子化温度低、降低炉体要求、温度梯度小、原子化时间短、灵敏度高)。从仪器学和应用的实际要求来看,横向加热石墨炉AAS的十大优点是纵向加热石墨炉AAS 无可比拟的。目前,因为横向加热的AAS难度大、成本高,所以,全世界只有6家[2]AAS生产企业能够生产横向加热的AAS。但是有人说:纵向加热石墨炉AAS的原子化温度最高可达3000℃,而横向加热AAS最高只能达到2650℃,所以纵向加热石墨炉AAS比横向加热石墨炉AAS好。也有人说:氘灯扣背景是横向加热石墨炉AAS一种很好的扣背景方法,但是也有人说:只有具有塞曼扣背景的横向加热石墨炉AAS才能叫横向加热石墨炉的AAS,氘灯扣背景的石墨炉AAS仪器,不能算是横向加热石墨炉的AAS仪器。本文将从仪器学理论和分析化学应用实践的角度,讨论这些问题。作者抛砖引玉,希望引起业内同仁对这个问题的重视和讨论,以帮助广大科技工作者正确理解这个问题,共同努力来提高我国各类AAS仪器及其应用的水平。1、关于AAS的原子化温度1)AAS的基本原理是先将被测物质由分子变成原子,随后原子蒸气中的原子对入射产生吸收,通过检测入射光和出射光的变化来分析元素的含量。横向加热AAS加热温度的最大特点是石墨管里温度基本均匀、原子蒸气浓度基本均匀。AAS的使用者不应一味追求原子化温度高,不是纵向加热的3000℃就比横向加热的2650℃好。只要原子化后,原子蒸汽浓度能满足AAS检出限(或灵敏度)的要求就可以了;并且,要求在相同温度下,原子蒸汽的浓度越高越好、原子蒸汽浓度越均匀越好。一般元素在1500℃-2500℃都能开始原子化;而有些元素1500℃以下、甚至几百度就能开始原子化[2]。目前还没有发现温度必须达到2600℃以上才能开始原子化的元素。纵向加热石墨炉的AAS,即使制造商说仪器能提供3000℃的原子化温度,也只是说石墨管中心这一点处的温度是3000℃,并非整个石墨管里(包括两端)的温度都能达到3000℃;实际上,纵向加热石墨管中心点的温度达到3000℃时,两端的温度只有1600℃左右。原子蒸气的浓度也和温度一样,并且呈正太分布[2]。而横向加热石墨炉AAS的最高加热温度是2650℃,是指石墨管里中心点处的温度是2650℃时,两端的温度可以达到2000℃,比纵向加热高出400℃;并且,横向加热时原子蒸气浓度在石墨管中的分布基本上是均匀的。从整个石墨管里的温度、原子蒸气浓度来看,横向加热优于纵向加热。因为横向加热石墨炉AAS仪器原子化器的温度均匀,所以石墨管内原子化蒸汽浓度均匀,在石墨管中心温度为2650℃的情况下,石墨管里整个空间的原子蒸汽浓度高。因为纵向加热AAS石墨管内的原子化器的温度不均匀,在石墨管中心温度为3000℃情况下,石墨管里两头的原子蒸汽浓度比较低;从下面的图表,可以清楚看出;当加热温度为2000℃时,横向加热时石墨管里的温度基本上为均匀分布的2000℃,而同样情况下,纵向加热时石墨管里的温度不均匀,呈正态分布,石墨管中心温度为2000℃时,两端的温度只有1600℃。2)一般元素对原子化温度的要求[3] 据文献报道[3]、[4]:很多元素1000℃左右就开始原子化(大多如此);各元素原子化温度不同,第一族至第八族元素共61种, 1000℃以下没有能较好原子化的元素。值得提出的是:纵向加热时石墨管中心的温度3000℃时,两端的温度只有℃1600℃[2],石墨管里的温度呈正态分布,原子蒸汽也是呈正态分布;横向加热2650℃,整个石墨管里的温度基本上是平坦的,原子蒸汽的分布基本上也是平坦的。所以,从仪器学角度看,如果只是石墨管中心温度高,而两端的温度梯度太大,说明石墨管里的原子蒸汽也是梯度分布,这样会影响AAS的灵敏度、稳定性、峰拖尾等等。特别应该指出的是:从仪器学理论来讲,Campbell[7]等提出的“原子化起始温度”概念、马怡载等[8] 和王平欣等[9]定义的“原子化出现温度”的概念都非常重要;马怡载等说的是产生0.004吸光度(即:产生1%吸收)时所对应的温度为“原子化出现温度”;王平欣等说的是指产生2倍噪声的吸光度时所对应的原子化温度为“原子化出现温度”。这些概念,对理解石墨管里的原子化温度非常重要。一般来讲,他们说的这些温度基本上都是指在一定条件下,这些温度下产生的原子蒸汽浓度能够测出它们对光的吸收(或者说能产生1%吸收)。也就是说,在这个温度下元素开始原子化产生的原子蒸汽浓度,就能满足检测到2倍噪声的吸光度值的要求。这也就是我们说的原子化温度。马怡载等测出的54种元素的“原子化出现温度”中,最高的为2573K(Tu),其余53种都在此温度以下。所以,横向加热石墨炉AAS的2650℃,完全能满足分析工作的要求。不会有2600℃以上才能开始原子化,更不会有3000℃才会产生“原子化出现温度”的元素。根据李攻科[5]、[6]等人报道,“元素的理论原子化效率,是原子化温度的函数;在一定的原子化温度范围内(如:900℃ -2300℃),理论原子化效率与原子化温度呈线性递增关系”;“… … 在一定的原子化温度范围内,理论原子化效率随原子化温度变化的斜率是相近的”。所以,在同一种加热方式下,AAS仪器能给出温度高者为好;但是,纵向加热的理论极限值是3000℃,横向加热是2650℃,如果温度再增高就会产生多布勒增宽,使谱线变宽,再以峰高计算时会降低灵敏度。上表中的温度不是绝对数值,只能供读者参考;因为随着仪器不同、仪器条件选择的不同、环境的不同等等,数字可能会有变化。2、关于横向、纵向加热的原子化时间、原子化温度、灵敏度和重复性与纵向加热的比较[2]1)原子化时间比较(数据来自各厂商当时市场在用仪器的使用手册)上表中的温度不是绝对数值,只能供读者参考;因为随着仪器不同、仪器条件选择的不同、环境的不同等等,数字可能会有变化。2)关于横向、纵向加热的原子化时间、原子化温度、灵敏度和重复性与纵向加热的比较[2]由表所述,在相同条件下,同一种元素的同样原子蒸气浓度的情况下,横向加热比纵向加热温度低。3)灵敏度比较(数据来自各厂商当时市场在用仪器的使用手册)综上所述,横向加热的灵敏度比纵向加热高。但是,有些AAS使用者在仪器条件的选择、样品前处理上没有认真思考,没有根据仪器学理论要求,没有选择仪器在最佳条件下工作,所以,有些人用横向加热仪器做出的灵敏度不如纵向加热仪器,就误认为横向加热石墨炉AAS的灵敏度不如纵向加热石墨炉AAS的灵敏度高。对于仪器学理论和仪器条件的学习是值得AAS使用者应该特别注意、应该认真研究的问题,所有AAS的使用者都应该对此引起高度重视。4)重复性[2]试样在石墨里的位置、均匀程度等状态,会直接影响其原子化程度,即原子蒸汽浓度;而横向加热试样处在石墨管内的平台上,纵向加热试样处在石墨管内壁上(凹面上)。二者的加热效率是横向加热大大优于纵向加热。因此二者的RSD明显不同。如表所述,横向加热的RSD优于纵向加热的RSD。结论:综上所述,可以得出横向加热AAS与纵向加热AAS优缺点的比较结论如下:(1)横向加热石墨炉AAS的原子化时间短,利于保护炉体、延长炉体寿命;纵向加热石墨炉的原子化时间长,不利于保护炉体、容易损坏炉体;(2)横向加热AAS的灵敏度比纵向加热的灵敏度高;主要是因为前者温度均匀,原子蒸汽浓度均匀所致;(3)横向加热AAS的重复性(RSD)优于纵向加热的AAS;也是因为石墨管内温度均匀所致;3、关于横向加热氘灯扣背景和塞曼扣背景[2]1)横向加热AAS氘灯扣背景的优缺点:优点:空心阴极灯的光不分束(总光能量强大);紫外区光强度大;制造难度小、价格便宜;缺点:只能适用于UV区(但是AAS主要用在紫外区)2)横向加热塞曼扣背景的优缺点:优点:全波段扣背景(但AAS可见区很少使用全波段,基本上使用在紫外段) 缺点:空心阴极灯的光要分成两束光;紫外区光能量弱(AAS主要用在紫外区);制造难度大;价格贵!3)氘灯扣背景的横向加热AAS与塞曼扣背景AAS灵敏度(特征质量)的比较:国产的氘灯扣背景横向加热(某国产)与美国塞曼扣背景横向加热(某国产)灵敏度(特征量)的比较(数据来自有关商家的用户手册);共21个元素;国产TAS-990的灵敏度有19个元素优于美国AA-800。4、结论: 综上所述,可以得出以下结论:1)石墨炉横向加热AAS优于纵向加热的AAS,理由如下:①横向加热石墨炉AAS,其石墨管内原子蒸汽浓度均匀、温度曲线平坦;纵向加热石墨炉AAS的原子蒸汽浓度不均匀、温度曲线呈正态分布;②没有或很少元素要求3000℃才能够开始原子化;③ 使用者不能盲目追求原子化的温度(高);温度过高时会产生多普勒增宽,使谱线变矮、变宽,降低灵敏度,还会可能损坏炉体;④ 横向加热石墨炉AAS有十大优点[2];特别是灵敏度、重复性、原子化时间、原子化温度等技术指标都优于纵向加热石墨炉AAS;2)氘灯扣背景的横向加热AAS,在检测一些元素的灵敏度优于塞曼扣背景的横向加热AAS;并且性价比高、结构简单、操作简便。3)塞曼扣背景只是AAS扣背景的方法之一,有一定优势;氘灯扣背景也是横向加热AAS扣背景的方法之一,也有一定优点;所以,不能简单的说氘灯扣背景的AAS不是横向加热的AAS。4)横向加热AAS最主要的缺点是:仪器结构比较复杂、加工难度大;这也是为什么目前全世界只有六家公司能够生产横向加热AAS仪器的主要原因。5、主要参考文献[1]李昌厚著,仪器学理论与实践,北京:科学出版社,2006 [2]李昌厚著,原子吸收分光光度计仪器及其应用,北京:科学出 版社,2006[3]邓勃等编著,原子吸收光谱分析,北京:化学工业出版社,2004[4]邓勃著,原子吸收光谱分析的原理、技术和应用,北京:清华大学出版社,2004 [5]李攻科等,杨秀环,张展霞, GFAAS中理论原子化效率与原子化温度的关系研究光谱学与光谱分析,2001, 20(l),76 [6]李攻科等,杨秀环,张展霞,原子吸收光谱分析中石墨炉的原子化效率,光谱学与光谱分析, 2002,22(1),278[7] Campbell W C ,Ottaway J M.Atom –formation processes in carbon-furnaceatomizers used in atomic absorption spectrometry .Talanta ,1974,21(8):837[8] 马怡载等,石墨炉原子吸收光谱法,北京:原子能出版社[9] 王平欣等,“出现温度”观念及其在考察原子化机理过程中的应用,光谱学与光谱分析,1986,5(6),56Abstuact:According to the theory of instrumention and analysiss chemistry, The characteristics for Graphite fumace atomic absorption transverse heating and Longitudinal heating of graphite fumace atomic absorption in atomization temperature ,background correction ,atomization time ,repeatability and sensitivity aspect etc compared .Meanwhilsomproble discussed in this paper.作者简介李昌厚,男,中国科学院上海生物工程研究中心原仪器分析室主任、兼生命科学仪器及其应用研究室主任、教授、博士生导师、华东理工大学兼职教授,终身享受国务院政府特殊津贴。主要研究方向:长期从事分析仪器研究开发和分析仪器应用研究。主要从事光谱仪器(紫外吸收光谱、原子吸收光谱、旋光光谱、分子荧光光谱、原子荧光、拉曼光谱等)、色谱仪器(液相色谱、气相色谱等)及其应用研究;特别对《仪器学理论》和分析仪器指标检测等有精深研究;以第一完成者身份,完成科研成果15项。由中科院组织专家鉴定,其中13项达到鉴定时国际上同类仪器的先进水平,2项填补国内空白;以第一完成者身份获得国家级和省部级科技成果奖5项(含国家发明奖1项);发表论文183篇,出版专著5本;现任中国仪器仪表学会理事、《生命科学仪器》付主编;曾任中国仪器仪表学会分析仪器分会第五届、第六届付理事长;国家认监委计量认证/审查认可国家级常任评审员、国家科技部“十五”、“十一五”、“十二五”和“十三五”重大仪器及其应用专项的技术专家组成员或组长、上海市科学仪器专家组成员、《光学仪器》副主编、《光谱仪器与分析》副主编、《生命科学仪器》副主编、上海化工研究院院士专家工作站成员等十多个学术团体和专家委员会成员等职务。

石墨铝锭恒温消煮炉相关的方案

石墨铝锭恒温消煮炉相关的资料

石墨铝锭恒温消煮炉相关的论坛

石墨铝锭恒温消煮炉相关的耗材

  • 斯达沃 红外石英消化炉 其他配件
    红外石英消化炉SKD-08S2杜绝挂壁 程序升温适用范围:可用于农业、林业、环保、地质、化工、食品等部门以及高等院校、科研部门对植株、种子、饲料、食品、土壤、矿石等消化仪器拥有专利:一种应用在消化炉上的消化管防爆装置实用新型zhuan力号:ZL2013201621876用于消化炉排污罩的废液导流装置实用新型zhuan利号:ZL2016209973364蛋白质检测用加热消化炉实用新型zhuan利号:ZL2011205319509消化炉外观zhuan利:ZL201530494164X仪器特点:*温度可控,样品还原性好。*加热体(模块)采用红外加热,石英管辐射,耐强酸强碱、防爆裂,寿命长,符合CE标准*炉孔温度和升温速率连可调,升温速度快且杜绝挂壁*消化管受热面积大、温差小,样品消化一致性好,热效率高*仪器具有过流保护和漏电保护*采用双开关,电源和加热单独控制,便于安全参数设置,节约能源。*采用新一代数显控温仪,PID智能控制技术,控温精度高。*仪器有不锈钢排污罩,使消化管内逸出的SO2等有害气体,通过排污管经抽吸泵从水中排入下水道,有效地抑制有害气体的外逸,消化管,消化架,冷却架。*样品防爆器(选配)技术参数:型号SKD-08S2控制方式单片机+64阶程序升温加热方式红外石英加热管炉孔数量8孔控温范围室温-680℃升温速度10分钟(400℃空载)温度波动±1℃电压AC220V功率1600W消化管尺寸42mm*300mm1.石英结构加热原理远红外石英加热元件我公司采用珠光乳白石英管配用电热材料,使原件具有优良可靠的远红外辐射特性,通电后,热材料发出的红外光与可见光中97%被乳白管所阻挡吸收使管壁温度升高产生硅氧键分子振动辐射远红外线,这样使97%可见光和近红外光可转为远红外辐射。克服了单纯使用透明石英玻璃带来的透过可见和近红外的弊端,从而有效地使电能转化为远红外线。。2.红外石英程序升温消化炉特点远红外石英加热元件是以乳白石英管为红外辐射源,没有涂层,没有污染,没有有害辐射,化学稳定性好,耐高温,形状多样,长久使用不变形,热稳定性好,加热温度可行选择。长期使用辐射性能不退变。并且使用寿命长,结构合理,热惯性极小,使用方便。附件:选择消化炉注意事项选择消化炉注意事项消化炉在蛋白质检测中起到了很重要的作用,选择一台合适的消化炉是准确检测的前提。 消化炉指标要注意几点:*温度要恒定,波动要小,每批样品可以有一致的消化时间,*每一个样品孔温差要小,以免样品消化时间相差太大,引起消化差别。*能有效的控制温度变化的过程,以免消化时样品挂壁。*有效地保温措施,以提高炉腔内温度的恒定性*有效地温度控制,使得消化能按需要控制温度,如果有程序升温控制就能有效达到所需。*很好的保温措施,如果保温材料势单力薄,必造成温度不稳定。仪器较厚的保温层是温度稳 定的需要。故保温材料的厚度和材质是一个重要的指标、*加热体和热载体的选择,可以根据用户的需要选择不同的热载体。下面我们来讨论加热体和热载体的选择。*红外加热,靠热辐射来加热样品,特点是:升温快,热惯性小,温控准确。一般应用于有高要求样品的消化。例如:有较快的升温和降温速度。程序升温使用户,根据样品的特点来选择升温曲线,或选择分段式的升温,有利于样品的消化,从而减少样品挂壁现象、使得样品消化准确率大大提高*铝锭加热,靠铝锭传导热能给样品,特点:升温较慢,热惯性较大,温度较稳定,还由于铝锭的良好的热传导性,每个样品孔间的温度一致性好。广泛应用于消化炉的热载体,但也要注意:一片薄薄的铝锭也不能保持温度的恒定,所以选择铝锭消化炉,铝锭厚度也是一个考察指标。*石墨加热,靠石墨传导给样品热量,特点:热惯性大,升温慢,由于石墨热传导性较差(相比较铝锭),使得样品孔间温度不均匀,容易造成样品间消化时间差拉大,一些样品消化时间太长,而另一些时间又太短。影响数据的准确性。但是由于石墨材料成本低(相对于铝锭),石墨消化炉成本便宜,对部分低端用户有一定的吸引力。进口凯氏消化炉没有采用石墨作为热传导的。其余要注意消化炉的保护功能:加热控制和设置参数要区别控制,过流、漏电、短路保护。以上罗列了一些选择消化炉注意事项,建议选购前,先了解自己的真实需求,别被低的价格所迷惑而招损。
  • 石墨高温电热板样品消解加热板消煮炉
    防 腐 电 热 板铸铝/石墨防腐电热板名 称防腐电热板石墨电热板型 号NJ-DBF-I/IINF-DBF(SM)-I/II传热材料精致铸铝精致石墨性 能导热快、加热均匀更稳定、加热均匀加热区域600*400mm、400*300mm、450*350mm等 可定制工作温度室温-260℃防腐性能带特氟龙涂层、防腐效果优加热方式电加热、PID数显电 源220V/50Hz控温精度±1℃连续时间48小时功 率2KW3KW线 长电源线和信号线常规各1.5米,可定制2.5/3米等产品设计分体式+四氟柱脚+PFA套管+航空接头 优 点1、 多个样品同时处理无交叉污染2、 传热材质:铸铝/石墨表面喷涂耐高温防腐材料处理,传热均匀快速;同时有效避免石墨粉末对样品的污染3、高防腐等级,所有外露部件全部进行聚四氟乙烯/耐高温防腐材料喷涂处理,无金属部件裸露4、分体控制设计,外接控制器可置于通风橱外使用,避免腐蚀性试剂对控制部分的损害,特性:1、进口PFA特氟龙涂层,一抹即净、不生锈,防腐铸铝加热板升温速度快;2、板面与控制盒可以做成分体式,这样在实验过程中的酸雾就不会腐蚀控制盒里的元器件,从而增加了使用时长,多个样品同时处理无交叉污染;3、可定制时间设定功能,分段式温控;4、电源线露出部分采用PFA管子包裹,进一步防止酸气对元器件的腐蚀;
  • 海光石墨炉进样针 小泵头 反应块 分离器 泵管现货包邮 质量保证
    海光石墨炉进样针 小泵头 反应块 分离器 泵管现货包邮 质量保证海光石墨炉进样针 小泵头 反应块 分离器 泵管现货包邮 质量保证
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制