低功率法拉第旋转器

仪器信息网低功率法拉第旋转器专题为您提供2024年最新低功率法拉第旋转器价格报价、厂家品牌的相关信息, 包括低功率法拉第旋转器参数、型号等,不管是国产,还是进口品牌的低功率法拉第旋转器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合低功率法拉第旋转器相关的耗材配件、试剂标物,还有低功率法拉第旋转器相关的最新资讯、资料,以及低功率法拉第旋转器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

低功率法拉第旋转器相关的厂商

  • 深圳市光林通讯科技有限公司是一家专业从事 光无源器件和光有源器件产品的生产和销售的公司,公司产品被广泛的应用于光通信、光纤激光、光纤传感、国防、科研教育领域等行业,我公司的光器件一直保持着国内领先水平。 公司的主要产品有保偏光开光,光隔离器,分路器,波分复用器,偏振分束器,偏振合束器,保偏隔离器,在线起偏器,保偏环形器,保偏耦合器,三端口的光环形器,高功率隔离器,泵浦保护器,法拉第旋转镜,带通滤波器,保偏衰减器,半导体激光器, 等一些列光器件, 公司秉承,客户至上的原则, 用心做好每一个产品, 用心做好每一个客户,欢迎广大新老客户来电来函洽谈咨询。
    留言咨询
  • 400-860-5168转4715
    IPS爱谱斯中国有限公司是IPS德国在华全资子公司,是德国一家半导体仪器设备制造商。 IPS爱谱斯为恒电位/电流仪的工业制造商, 除了开发电化学仪器设备外, 我们还提供燃料电池测试系统,氢标准电极,气体扩散电极,旋转环盘电极、高电阻电压计、零欧电流计、电解池、法拉第屏蔽箱等与电化学相关的设备及配件, 以及提供相关行业的测试服务,并且为客户提供完整的电化学解决方案,针对特殊应用提供量身定制的非标设备!
    留言咨询
  • IPS爱谱斯于1961年在德国成立,是德国第一家半导体恒电位仪的制造商。 除了开发电化学设备,我们还提供旋转环盘电极、高电阻电压计、零欧电流计、电化学扫描显微镜SECM,石英晶体微天平,腐蚀电解池、法拉第屏蔽箱,可逆氢参比电极等与电化学相关的设备及配件,并且为客户提供完整的电化学解决方案,针对特殊应用提供量身定制的非标设备!
    留言咨询

低功率法拉第旋转器相关的仪器

  • 总部在美国的EOT公司成立于1987年,专注于生产和开发高平均功率及高峰值功率法拉第旋转器.隔离器以及高速光电探头,为知名的光 纤激光器厂商批量提供产品,并具有为特殊要求定制产品的开发生产能力。   法拉第光旋转器/光隔离器广泛应用于各种对于返回光极敏感的光学系统中,如多级激光放大器,光参量振荡器,环形激光器,掺饵光纤 放大器(用于隔离980nm泵浦光的反馈),种子注入型激光器,非线性光学,光传输系统等。   产品包括:法拉第旋转器和隔离器,高速光电探测器。 1030-1080nm法拉第旋转器和隔离器
    留言咨询
  • 型号I-780-LM-1.4-0微型法拉第旋转器适用于低功率激光器。I-780-LM-1.4-0采用LPE薄膜制作的法拉第旋转器,体积小巧、适合于OEM应用,能覆盖770到790nm的波长范围。所有的法拉第旋转器都在输入端标记了入光方向。应用:■ 半导体激光模块■ 可调谐激光器模块■ 小尺寸激光模块特征:■ 低插入损耗■ 高隔离度■ 微型尺寸■ 宽带宽■ 宽温度范围■ 偏振对准微型法拉第旋转器,I-780-LM-1.4-0光学仪器
    留言咨询
  • 总部在美国的EOT公司成立于1987年,专注于生产和开发高平均功率及高峰值功率法拉第旋转器.隔离器以及高速光电探头,为知名的光 纤激光器厂商批量提供产品,并具有为特殊要求定制产品的开发生产能力。   法拉第光旋转器/光隔离器广泛应用于各种对于返回光极敏感的光学系统中,如多级激光放大器,光参量振荡器,环形激光器,掺饵光纤 放大器(用于隔离980nm泵浦光的反馈),种子注入型激光器,非线性光学,光传输系统等。   产品包括:法拉第旋转器和隔离器,高速光电探测器。 500-1030nm可调法拉第隔离器
    留言咨询

低功率法拉第旋转器相关的资讯

  • 应用案例 | 基于环形阵列永磁体的法拉第旋转光谱NO2传感器
    近日,来自中国科学院安徽光学精密机械研究所、中国科学院沈阳应用生态研究所、中国科学技术大学、法国蓝海岸大学法国滨海大学的联合研究团队发表了一种基于法拉第旋转光谱的、采用环形阵列永磁体NO2传感器。Recently, the joint research team from Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Institute of Applied Ecology, Chinese Academy of Sciences, University of Science and Technology of China, and Université du Littoral Cô te d’Opale published a NO2 Sensor Based on Faraday Rotation Spectroscopy Using Ring Array Permanent Magnets.法拉第旋转光谱(FRS)通过检测沉浸在外部纵向磁场中的气体介质所引起的线偏振光偏振状态的变化,从而实现对顺磁分子的高选择性和高灵敏度检测。该光谱检测方法对水汽、CO2等抗磁性分子具有天然的免疫力,这使得其表现出高度的样品特异性。同时,由于采用了一对相互接近正交的偏振器极大抑制了激光噪声,因此法拉第旋转光谱具有非常高的检测灵敏度。Farraday Rotational Spectroscopy (FRS) achieves highly selective and sensitive detection of paramagnetic molecules by detecting the changes in polarization state of linearly polarized light induced by the gas medium immersed in an external longitudinal magnetic field. This spectroscopic detection method exhibits inherent immunity to diamagnetic molecules such as water vapor and CO2, which results in a high degree of sample specificity. Additionally, the implementation of a pair of closely spaced orthogonal polarizers effectively suppresses laser noise, thus providing FRS with a very high detection sensitivity.通常情况下,使用螺线管提供纵向磁场来产生磁光效应。然而,这种方法存在功耗过大和易受电磁干扰的缺点。研究团队提出了一种基于钕铁硼永磁体环形阵列和Herriott多次通过吸收池相结合的新型FRS方法。根据磁场的空间分布特性,使用14个相同的钕铁硼永磁体环以非等距形式组合,产生纵向磁场。在长度为380毫米的范围内,平均磁场强度为346高斯。宁波海尔欣光电科技有限公司为该项目提供了前置放大制冷一体型碲镉汞红外探测器(HPPD-B-08-10-150 K),项目团队使用量子级联激光器以40毫瓦的光功率,针对最佳的441 ← 440 Q支氮氧化物跃迁(1613.25 cm–1,6.2 μm)。与Herriott多次通过吸收池耦合,积分时间为70秒,实现了0.4 ppb的最低检测限。实验结果也表明,低功耗FRS二氧化氮传感器有望发展成为一个稳健的现场可部署的环境监测系统。Usually, a solenoid coil is used to provide a longitudinal magnetic field to produce the magneto-optical effect. However, such a method has the disadvantages of excessive power consumption and susceptibility to electromagnetic interference. The research team proposed a novel FRS approach based on a combination of a neodymium iron boron permanent magnet ring array and a Herriott multipass absorption cell is proposed. A longitudinal magnetic field was generated by using 14 identical neodymium iron boron permanent magnet rings combined in a non-equidistant form according to their magnetic field’s spatial distribution characteristics. The average magnetic field strength within a length of 380 mm was 346 gauss. HealthyPhoton Co.,Ltd provided an integrated TE-cooled mercury cadmium telluride (MCT) infrared detector with front-end amplification(HPPD-B-08-10-150 K) for this project. A quantum cascade laser was used to target the optimum 441 ← 440 Q-branch nitrogen dioxide transition at 1613.25 cm–1 (6.2 μm) with an optical power of 40 mW. Coupling to a Herriott multipass absorption cell, a minimum detection limit of 0.4 ppb was achieved with an integration time of 70 s. The low-power FRS nitrogen dioxide sensor proposed in this work is expected to be developed into a robust field-deployable environment monitoring system.静态磁场法拉第旋转光谱传感装置Static magnetic field Faraday rotation spectral sensing device海尔欣前置放大制冷一体型碲镉汞红外探测器(HPPD-B-08-10-150 K)Integrated preamplifier and cryocooler type mercury cadmium telluride (MCT) infrared detector环形阵列永磁体及其纵向磁场分布特征Circular array permanent magnets and their longitudinal magnetic field distribution characteristics(a) 对于等距离的NdFeB永磁环阵列,模拟得到了中央纵向磁场的分布情况。(b) 对于非等距离的NdFeB永磁环阵列,模拟得到了中央纵向磁场的分布情况(黑线),并进行了实测(红线)。(c) 示意图显示了Herriott腔和非等距离的NdFeB永磁环阵列的配置。(a) Simulated distribution of the central longitudinal magnetic field for an equidistant NdFeB permanent magnet ring array (b) simulated (black line) and measured (red line) distributions of the central longitudinal magnetic field for a non-equidistant NdFeB permanent magnet ring array (c) schematic configuration of the Herriott cell and the non-equidistant NdFeB permanent magnet ring array.法拉第旋转光谱信号及其信噪比与检偏器偏转角度的变化关系The Relationship between FRS signal and its SNR and the Deflection Angle of the Polarizer(a) 法拉第旋转光谱信号幅度(b) SNR作为分析器角度α的函数(a) FRS signal amplitude and (b) SNR as a function of the analyzer angle α.Reference:Yuan Cao, Kun Liu, Ruifeng Wang, Xiaoming Gao, Ronghua Kang, Yunting Fang, Weidong Chen,NO2 Sensor Based on Faraday Rotation Spectroscopy Using Ring Array Permanent Magnets, Anal. Chem. 2023, 95, 2, 1680–1685https://doi.org/10.1021/acs.analchem.2c04821Copyright © 2023 American Chemical Society
  • 科学岛团队在静态磁场法拉第旋转光谱研究方面取得新进展
    近日,中科研合肥研究院安光所高晓明研究员团队在静态磁场法拉第旋转光谱研究方面取得新进展,相关研究成果以《基于环形阵列永磁体的法拉第旋转光谱NO2传感器》为题发表在国际TOP期刊Analytical Chemistry上。法拉第旋转光谱(FRS)通过检测沉浸在外部纵向磁场中的气体介质所引起的线偏振光偏振状态的变化,从而实现对基态或上电子态具有磁偶极矩的顺磁性分子的高灵敏度检测。该光谱检测方法对水汽、CO2等抗磁性分子具有天然的免疫力,这使得其表现出高度的样品特异性。同时,由于采用了一对相互接近正交的偏振器极大抑制了激光噪声,法拉第旋转光谱具有非常高的检测灵敏度。目前法拉第旋转光谱信号主要由螺线管线圈产生的交流磁场调制样品吸收线的塞曼分裂而产生。针对正弦电磁场在激发磁光效应时所存在的高功耗、电磁干扰、产生大量焦耳热等缺陷,团队刘锟研究员,博士后曹渊等人提出了一种基于稀土永磁体的静态磁场法拉第旋转光谱传感装置。研究团队将十四个完全相同的环形钕铁硼(NdFeB)永磁体按照非等间距的形式同轴组合,从而在380 毫米长度范围内产生了一个平均磁场强度为346 高斯的外部纵向静态磁场。通过将赫里奥特(Herriott)池与非等间距永磁体阵列同轴配合,极大地增强了线偏振光与样品之间的相互作用。实验以NO2为检测对象,探测了1613.25 cm-1处NO2的ν3基带的Q支光谱特征,在23.7 米的光程范围实现了0.4 ppb的检测极限。本研究工作得到了中国科学院科研装备研制项目、国家自然科学基金、先进激光技术安徽省实验室开放基金、合肥研究院院长基金以及中国博士后面上基金等项目的资助。  静态磁场法拉第旋转光谱传感装置  环形阵列永磁体及其纵向磁场分布特性  法拉第旋转光谱信号及其信噪比与检偏器偏转角度的变化关系
  • 欧盟免除在法拉第旋转器中作为杂质的铅的应用
    2008年12月24日,欧盟委员会发布决议草案,免除在光纤通讯系统稀土铁石榴石法拉第旋转器中作为杂质的铅的应用。该免除将继续到2009年12月31日为止。

低功率法拉第旋转器相关的方案

低功率法拉第旋转器相关的资料

低功率法拉第旋转器相关的论坛

  • 法拉第隔离器Mi-Wave

    [url=https://www.leadwaytk.com/article/5373.html]Mi-Wave[/url][font=Calibri][font=宋体]的[/font][font=Calibri]115[/font][font=宋体]系列法拉第隔离器在宽带介质波导设计上选用法拉第旋转工作原理,从而实现整体波导频段的高隔离度。[/font][font=Calibri]115[/font][font=宋体]系列法拉第隔离器选用优质铁氧体材料,磁场由整体永磁材料形成。为了保障最大化可重复性和性能,配合使用了精准的加工操作控制精致的制造技术。[/font][/font][font=Calibri]115[font=宋体]系列法拉第隔离器具备[/font][font=Calibri]18.0[/font][font=宋体]至[/font][font=Calibri]325 GHz[/font][font=宋体]的标准波导规格。[/font][/font][font=宋体]深圳市立维创展科技有限公司授权代理销售[/font][font=Calibri]Mi-Wave[/font][font=宋体]毫米波产品,[/font][font=Calibri]Mi-Wave[/font][font=宋体]是商用型和军工用毫米波产品全球领航者,可以提供毫米波器件和模块解决方案。产品线涵盖:放大器、混频器、衰减器、滤波器、开关、[/font][font=Calibri]T/R[/font][font=宋体]、天线、反射镜等,所包含频率高达[/font][font=Calibri]320GHz[/font][font=宋体]。欢迎咨询。[/font]

  • 【转帖】法拉第和他的发电机

    看见投票中大家都这么支持法拉第的电磁感应现象,特地搜索了一下法拉第的故事,希望给大家以共勉1、刻苦认真自学成才    迈克尔法拉第,于1791年9月22日出生在萨里郡纽因顿的一个铁匠家庭。13岁就在一家书店当送报和装订书籍的学徒。他有强烈的求知欲,挤出一切休息时间“贪婪”地力图把他装订的一切书籍内容都从头读一遍。读后还临摹插图,工工整整地作读书笔记;用一些简单器皿照着书上进行实验,仔细观察和分析实验结果,把自己的阁楼变成了小实验室。在这家书店呆了八年,他废寝忘食、如饥似渴地学习。他后来回忆这段生活时说:“我就是在工作之余,从这些书里开始找到我的哲学。这些书中有两种对我特别有帮助,一是《大英百科全书》,我从它第一次得到电的概念;另一是马塞夫人的《化学对话》,它给了我这门课的科学基础。”  在哥哥赞助下,1810年2月至1811年9月听他了十几次自然哲学的通俗讲演,每次听后都重新誊抄笔记,并画下仪器设备图。1812年2月至4月又连续听了汉弗莱戴维4次讲座,从此燃起了进行科学研究的愿望。他曾致信皇家学院院长求助。失败后,他写信给戴维:“不管干什么都行,只要是为科学服务”。他还把他的装帧精美的听课笔记整理成《汉弗莱戴维爵士讲演录》寄上。他对讲演内容还作了补充,书法娟秀,插图精美,显示出法拉第一丝不苟和对科学的热爱。经过戴维的推荐,1813年3月,24岁的法拉第担任了皇家学院助理实验员。后来戴维曾把他发现法拉第作为自己最重要的功绩而引以为荣。  法拉第1813年随同戴维赴欧洲大陆作科学考察旅行,1815年回国后继续在皇家学院工作,长达50余年。1816年发表第一篇科学论文。他最初从事化学研究工作,也涉足合金钢、重玻璃的研制。在电磁学领域,倾注了大量心血,取得出色成绩。1824年被选为皇家学会会员,1825年接替戴维任皇家学院实验室主任,1833年任皇家学院化学教授。  2、长期实践大胆探索   他的工作异常勤奋,研究领域十分广泛。1818~1823年研制合金钢期间,首创金相分析方法。1823年从事气体液化工作,标志着人类系统进行气体液化工作的开始。采用低温加压方法,液化了氯化氢、硫化氢、二氧化硫、氢等。1824年起研制光学玻璃,这次研究导致在1845年利用自己研制出的一种重玻璃(硅酸硼铅),发现了磁致旋光效应。1825年在把鲸油和鳝油制成的燃气分馏中发现苯。  他最出色的工作是电磁感应的发现和场的概念的提出。1821年在读过奥斯特关于电流磁效应的论文后,为这一新的学科领域深深吸引。他刚刚迈入这个领域,就取得重大成果──发现通电流的导线能绕磁铁旋转,从而跻身著名电学家的行列。因受苏格兰传统科学研究方法影响,通过奥斯特实验,他认为电与磁是一对和谐的对称现象。既然电能生磁,他坚信磁亦能生电。经过10年探索,历经多次失败后,1831年8月26日终于获得成功。这次实验因为是用伏打电池在给一组线圈通电(或断电)的瞬间,在另一组线圈获得的感生电流,他称之为“伏打电感应”。尔后,同年10月17日完成了在磁体与闭合线圈相对运动时在闭合线圈中激发电流的实验,他称之为“磁电感应”。经过大量实验后,他终于实现了“磁生电”的夙愿,宣告了电气时代的到来。法拉第环  作为19世纪伟大实验物理学家的法拉第,他并不满足于现象的发现,还力求探索现象后面隐藏着的本质;他既十分重视实验研究,又格外重视理论思维的作用。1832年3月12日他写给皇家学会一封信,信封上写有“现在应当收藏在皇家学会档案馆里的一些新观点”。那时的法拉第已经孕育着电磁波的存在以及光是一种电磁振动的杰出思想,尽管还带有一定的模糊性。为解释电磁感应现象,他提出“电致紧张态”与“磁力线”等新概念,同时对当时盛行的超距作用说产生了强烈的怀疑:“一个物体可以穿过真空超距地作用于另一个物体,不要任何一种东西的中间参与,就把作用和力从一个物体传递到另一个物体,这种说法对我来说,尤其荒谬。凡是在哲学方面有思考能力的人,决不会陷人这种谬论之中”。他开始向长期盘踞在物理学阵地的超距说宣战。与此同时,他还向另一种形而上学观点──流体说进行挑战。1833年,他总结了前人与自己的大量研究成果,证实当时所知摩擦电、伏打电、电磁感应电、温差电和动物电等五种不同来源的电的同一性。他力图解释电流的本质,导致他研究电流通过酸、碱、盐溶液,结果在1833~1834年发现电解定律,开创了电化学这一新的学科领域。他所创造的大量术语沿用至今。电解定律除本身的意义外,也是电的分立性的重要论据。  1837年他发现电介质对静电过程的影响,提出了以近距“邻接”作用为基础的静电感应理论。不久以后,他又发现了抗磁性。在这些研究工作的基础上,他形成了“电和磁作用通过中间介质、从一个物体传到另一个物体的思想。”于是,介质成了“场”的场所,场这个概念正是来源于法拉第。正如阿尔伯特爱因斯坦所说,引入场的概念,是法拉第的最富有独创性的思想,是艾萨克牛顿以来最重要的发现。牛顿及其他学者的空间,被视作物体与电荷的容器;而法拉第的空间,是现象的容器,它参与了现象。所以说法拉第是电磁场学说的创始人。他的深邃的物理思想,强烈地吸引了年轻的麦克斯韦。麦克斯韦认为,法拉第的电磁场理论比当时流行的超距作用电动力学更为合理,他正是抱着用严格的数学语言来表述法拉第理论的决心闯入电磁学领域的。  法拉第坚信:“物质的力借以表现出的各种形式,都有一个共同的起源”,这一思想指导着法拉第探寻光与电磁之间的联系。1822年,他曾使光沿电流方向通过电解波,试图发现偏振面的变化,没有成功。这种思想是如此强烈,执着的追求使他终于在1845年发现强磁场使偏振光的偏振面发生旋转。他的晚年,尽管健康状况恶化,仍从事广泛的研究。他曾分析研究电缆中电报信号迟滞的原因,研制照明灯与航标灯。  他的成就来源于勤奋,他的主要著作《日记》由16041则汇编而成;《电学实验研究》有3362节之多。

  • 法拉第屏蔽箱特点说明

    [url=http://www.f-lab.cn/vibration-platforms/faraday-cage.html][b]法拉第屏蔽箱[/b][/url]采用[b]法拉第笼,[/b][color=#333333][b]Faraday Cage[/b]原理,[/color]是降低电磁干扰的有效[b]法拉第箱[/b]和[b]电磁屏蔽箱[/b],非常适合电磁敏感或电磁干扰严重的仪器实验屏蔽电磁干扰使用,比如共聚焦显微镜,电生理学实验,传感器校准定标等。我们可为用户提供任何尺寸的型号的法拉第屏蔽箱,法拉第箱,法拉第屏蔽罩,法拉第罩,法拉第壳,法拉第屏蔽壳,并提供定制服务。[b]法拉第屏蔽箱[/b]采用超轻材料制造,结合优质铝材和细铜网,特殊电导率阳极氧化技术工艺,有效屏蔽电磁干扰对实验仪器和影响。法拉第屏蔽箱前门采用电磁固定,方便移除操作实验。[b]法拉第箱特点[/b]屏蔽电磁干扰和静电干扰独立型防止或可安装到现有桌面上具有隔振台类型采用超轻材料制造方便安装拆卸,方便移动搬运这款法拉第屏蔽箱采用2mm厚不锈钢底板,可作为独立法拉第屏蔽箱使用,可以放置达到任何减振平台或仪器工作台上使用。这种法拉第箱还可与我公司的仪器减振平台组成具有减振功能的法拉第电磁屏蔽工作台,满足仪器隔振和电磁屏蔽的双重需要。[img=法拉第屏蔽箱]http://www.f-lab.cn/Upload/Faraday-cage_.jpg[/img]另外一种是没有底部的法拉第屏蔽箱,用于安装到凭证的电导桌面或表面,比如光学平台或光学平板,也可作为法拉第屏蔽罩或法拉第壳使用,直接罩住现有的仪器设备。法拉第罩壳-没有底板,安装到现有仪器平台上,罩住仪器和工作区法拉第屏蔽箱:[url]http://www.f-lab.cn/vibration-platforms/faraday-cage.html[/url]

低功率法拉第旋转器相关的耗材

  • 法拉第旋转镜
    法拉第旋转镜主要特性: 应用:紧凑封装尺寸 光纤传感系统 低插入损耗 光纤激光器 低温度依赖性 光纤测量仪器 低波长依赖性 其它实验室应用 低偏振依赖性 高功率承受能力 高稳定性及可靠性 特殊光纤尾纤 性能:中心波长1550/1310 nm,1064nm工作波长范围+/-5 nm插入损耗0.6dB法拉第旋转角度90 degrees旋转角度误差 @ 23℃+/-1 degrees偏振依赖性0.05 dB功率承受能力1000mW存储温度-40℃ to 85℃工作温度-5℃ to 70℃光纤尾纤SMF28/ 1060/ fiber or 80 mm fiber尺寸?2.5 × 12mm
  • 法拉第旋光器
    法拉第旋光器,法拉第旋转器,磁光旋转器由中国领先而专业的进口激光器件旗舰型服务商-孚光精仪进口销售!精通光学,服务科学,先后为中科院上海光机所,哈尔滨工业大学等单位提供进口法拉第旋光器,法拉第旋转器,磁光旋转器。法拉第旋光器的原理 法拉第旋光器又叫法拉第旋转器,磁光旋转器,Faraday Rotator, 当光束通过的材料处于轴向磁场时,光的偏振面会发生旋转,这就是大家熟知的法拉第效应。法拉第效应与光线通过石英之类的光学材料发生的现象非常相似,但是 与后者不同的是偏振面旋转的角度与光在介质中传播的方向无关。光通过介质后偏振轴的旋转(如顺时针的旋转)是可被观察者观察到的,光通过又被反射到介质 后,观察者会发现偏振轴又沿原有的方向旋转了同样的角度。 (而在光学介质中,发生的现象确实第一次偏振轴顺时针旋转,而光反射后通过时将发生同样大小角度的逆时针旋转,最终回到原始状态)展示这个过程的器件就是法拉第旋转器,又叫法拉第旋光器,Faraday Rotator。实际中的法拉第旋光器的 构造主要是随意用一个光学材料棒放置于轴向磁场中,再使用一些特殊维尔德常数(偏振磁光常数)的光学玻璃,如SF57玻璃,但是我们使用的是最高质量的单 晶TGG(铽镓石榴石),我们这种使用了TTG单晶的法拉第旋转器的优点是非常明显的:适用波长范围广(从可见到近红外波长都可用),产生的维尔德常数质 量高,可承受的光强大,光学畸变小。我们法拉第旋转器的独特优势:×结构超级紧凑,小巧 ×高透过率((98%)和高消光比(35-40dB)*多种磁光材料任选TGG, MOS*适合任何波长的产品都有×高损伤阈值(3GW/cm2 @ 1ns脉冲)× 可提供大孔径产品 法拉第旋光器,法拉第旋转器,磁光旋转器与法拉第隔离器的区别:法拉第隔离器,Faraday Isolator两端带有偏振器,而光法拉第旋光器,法拉第旋转器,磁光旋转器两端不带有偏振器!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制