吸湿机

仪器信息网吸湿机专题为您提供2024年最新吸湿机价格报价、厂家品牌的相关信息, 包括吸湿机参数、型号等,不管是国产,还是进口品牌的吸湿机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合吸湿机相关的耗材配件、试剂标物,还有吸湿机相关的最新资讯、资料,以及吸湿机相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

吸湿机相关的厂商

  • 400-860-5168转0665
    生物发光/化学发光及联用分析仪器的专业研发与生产高新技术企业  西安瑞迈分析仪器有限责任公司是专业从事科研、开发、生产生物发光、化学发光及联用仪器的高新技术企业。公司位于西安高新技术科技产业开发区区,是西安高新技术产业开发区首批建立的院士创业企业,并获得国家高新技术企业认证。多年来与国内众多著名科研机构与大学如中国科学院长春应用化学研究所、清华大学,中国科技大学,西安交通大学、陕西师范大学有着密切的合作关系;并与中国科学院长春应用化学研究所电化学国家重点实验室及陕西师范大学发光及光学生物传感技术重点实验室建立了院企及校企科研联合体。 公司自成立以来,一直立足于开发具有自主知识产权的生物化学与分析化学分析测试设备,所研制生产的数控流动注射进样系统与化学发光分析仪器在国内众多大专院校、科研单位及企业有着广泛的应用。近年来公司与陕西师范大学发光及光学生物传感技术重点实验室共同开发了一系列基于WINDOWS系统操作平台的全自动化学发光/生物发光分析系统;与中国科学院长春应用化学研究所电化学国家重点实验室共同完成了十• 五国家科技攻关重大项目“MPI-A型毛细管电泳电化学发光检测仪”,该仪器已于2003年通过国家科技部鉴定,其鉴定结论为:该仪器创新性明显,达到国际先进水平,属国际首创。 近期将推出一系列基于电致化学发光分析和微流控芯片分析的多功能生物发光/化学发光/荧光分析系统,可提供多种用于电致化学发光分析和微流控芯片测试的多参数联用检测方法。 西安瑞迈分析仪器有限公司依托于强大的科技后盾,在发展过程中,始终坚持“以科技创新为先导,以优质产品为基石,以服务科研为己任”的宗旨,努力发展具有高科技,高水平、高质量的分析测试设备,以应对近代科技发展对分析测试设备带来的挑战。科学仪器的研究是基础研究,而且是基础的基础……对于分析化学学科来说,创新的科学仪器是创新成果的一种具体体现,可以说有多少创新的仪器就有多少创新的成果……。 引自《国家自然科学基金化学科学部分析化学学科发展战略研讨会简介》
    留言咨询
  • 400-860-5168转5063
    北京艾若泰克科技有限公司位于北京市丰台区新天地写字楼。公司主营全球气溶胶科技产品,目前主要代理品牌有TOPAS GmbH… 。公司员工具有气溶胶行业10年以上经验,可提供专业的气溶胶应用解决方案。扎实的专业功底是我们立足的根本,对理想的追求是我们发展的动力。现有相关产品如下:气溶胶发生器(雾化、粉尘和单分散等);气溶胶稀释器(固定稀释比、动态稀释比、用户定制流量和稀释比等);气溶胶静电中和器和孔径测试仪;气溶胶测量(激光粒子计数器、气溶胶粒径谱仪和气溶胶光度计等);空气过滤测试系统(滤料、GPF & DPF、高效过滤器、进气滤清器、空调滤清器、HAVC、油气分离器和真空吸尘器等);气溶胶附件(防静电管、DEHS、测试筛、PAO、风机、硅胶、活性炭、Topfog、TOPOR等)公司客户广泛分布于企业、高校、科研单位、军工单位、三方检测单位等… …
    留言咨询
  • 广州市徕康科技有限公司成立于一九九九年,是一家专业经销实验室仪器设备、实验室用品的公司,与国内外多家优秀的仪器制造商及省内多家实验室保持长期友好的合作关系,产品涉及检验、监测、科研生产和医疗等诸多领域。“创新务实、高效合作”是我们的服务理念,客户的满意是我们的追求目标!经过多年实践探索,我们为您的实验室臻选出多款优质、高效、准确、安全的设备,全面提高实验室的自动化水平。同时,我们与用户保持密切沟通,根据不同实验需要,将具有独立功能的设备进行整合及功能开发,打造成套的实验室解决方案,主要有:理化前处理方案、理化检测方案、微生物样品前处理方案、微生物检验方案等。方案涉及的主要产品有:美国Millipore公司空气浮游菌采样器、过滤装置、纯水及超纯水系统;英国先德公司(TREK)微生物药敏及鉴定分析系统、菌液接种系统;西班牙IUL公司全自动菌落成像系统、螺旋加样系统、精密电子稀释、数字式液体稀释仪、均质器、革兰氏染色仪、智能型平皿处理菌落成像分析系统;西班牙GenIUL公司细胞PCR光活化系统;西班牙BioSystems公司全自动葡萄酒分析系统;瑞士IBS公司液体培养基制备系统、全自动试管、平皿分装系统、真空安全吸液仪、可编程蠕动泵、安全感应喷灯;法国Bertin公司空气生物(病毒)采样器、生物样品均质器;美国安捷伦公司气相色谱仪、液相色谱仪、气质联用仪、液质联用仪;德国耶拿公司原子吸收光谱仪、微波消解仪、紫外分光光度计、总有机碳分析仪、元素分析仪;日本资生堂(SHISEIDO)公司的液相色谱柱;上海一恒公司培养箱系列;英国PEAK公司高纯气体发生器等。本公司还专门为实验室、化验室提供国家级标准物质高纯试剂、标准物质、标准气体、实验室装修等。在售后服务方面,我们与厂家通力合作,打造专业的服务团队为您提供高效、及时的售后服务保障及零配件供应,保障您的设备正常开机、运行时间最长。
    留言咨询

吸湿机相关的仪器

  • 工业吸湿机 400-860-5168转3155
    工业吸湿机 技术动态:在降雨比较频繁的季节里,一些工厂企业生产车间内的防潮措施是否到位是此时最为关注的问题;如果没有及时做好产品的生产储存环境的防潮工作,大量湿气进入,大量的产品在潮湿环境的影响下出现受潮发霉变质或腐蚀生锈等问题是不可避免的。 因此,正岛电器建议通过配置正岛ZD-890C工业用吸湿机及ZD系列智能湿度控制除湿机来对车间仓库进行防潮吸湿。吸湿机是近些年普遍使用的一种专业的防潮吸湿设备,已经帮助了我国众多厂家解决了潮湿问题,可以说是目前最为简捷有效的防潮除湿设备。 正岛ZD-890C工业用吸湿机及ZD系列智能湿度控制除湿机具有智能湿度恒定控制系统,用户可根据生产的需要,自动控制除湿机的工作及停机,通过自动控制实现最有效的除湿效果,降低整机运行成本。 正岛ZD-890C工业用吸湿机适用面积100-180平方米左右,除湿量为90公斤/天,广泛的适用于家具的存放,以及印刷,造纸行业的车间和储存!还有地下工程、档案室、图书馆、工厂车间、仓库、计算机房等。 TEL: 欢迎您来咨询工业吸湿机,工业用吸湿机,吸湿机厂家的详细信息!工业用除湿机的种类有很多,不同品牌的工业用除湿机价格及应用范围也会有细微的差别,而我们将会为您提供优质的产品和全方位的售后服务。 正岛ZD-890C工业用吸湿机技术参数: 型 号ZD-890C控制方式湿度智能设定除 湿 量90升/天 (3.75公斤/小时)智能保护三分钟延时 压缩机启动适用面积100~180m 2 (2.8m / 层高)自动检测有无故障 一目了然电 源220V~50Hz排水方式塑胶软管 连续排水输入功率1500w过 滤 网活性碳滤网 循环风量1125 m3适用温度5-38℃体积(宽深高)480X430X970 mm设备重量50 kg 正岛ZD-890C工业用吸湿机及ZD系列智能湿度控制除湿机产品六大核心配置优势: 优势一:【整机内结构精巧】机组框架结构精巧,管路布置合理有序;采用风系统和制冷系统相对独立的结构,便于维修保养。 优势二:【高效节能压缩机】机组制冷系统采用国际品牌涡旋式压缩机和绿色环保制冷剂,更具高效、节能、环保、静音等特点。 优势三:【配套内螺纹铜管】机组优化后的热交换器,配以高亲水性能的铝翅片套内螺纹铜管, 热交换充分;人性化的设计,智能调节简易。 优势四:【大风量高效风机】机组选用工业通风外转子低噪音大风量高效风机,双离心风轮空气循环系统,体积小,效率高,噪声低,运转平稳。 优势五:【微电脑自动控制】机组配有微电脑自动控制器&日本神荣高精度温湿度传感器,全自动控制面板,人机对话界面,智能化轻触式按键操作。 优势六:【配多重安全保护】机组电气组件如空气开关,交流接触器和热继电器等均采用国际品牌,并配置高低压、过载、欠压逆压等安全保护装置。您可能还对以下内容感兴趣...1. 工业抽湿机(ZD-8138C)2. 工业干燥机(ZD-8166C)3.车间除湿机(ZD-890C)4. 仓库抽湿机(ZD-8168C)5. 仓库除湿机(ZD-8240C)工业用除湿机厂家记者核心提示:每次降雨之后,空气湿度都会提高到很高的水平,最让厂家们最为头疼的潮湿问题又将出现;而这个时候如果车间,仓库内没有采取使用正岛ZD-890C工业用吸湿机及ZD系列空气除湿机这样有效的防潮吸湿措施的话; 那么,工业生产车间内的湿度就会超标,仓库中存放的商品也会受潮。以上关于工业吸湿机,工业用吸湿机,吸湿机厂家的相关资讯是正岛电器为大家提供的! 您可以在这里更详细地了解工业用吸湿机的相关信息: 工业除湿机(吸湿机)的原理和应用以及如何选购工业除湿机(吸湿机)。工业除湿机(吸湿机)已广泛应用于家庭、办公室、档案室、资料室、图书馆、电脑房、精密仪器室、医院及贵重物品仓库等场所,使电子产品、光学仪器、精密设备及贵重物品避免了潮湿、霉变的噩运。 特别在梅雨季节,工业除湿机(吸湿机)成了高档服装皮具、高档家用电器的保护神,成了风湿、呼吸系统等疾病的病人以及老人、产妇及婴幼儿的保健员,为所有需要适宜湿度的用户创造一个良好的环境。 工业除湿机(吸湿机)多少钱?工业除湿机(吸湿机)那个牌子好?工业除湿机(吸湿机)的价格范围在2500到几十万。100平方米以内的空间,大约除湿机价格在3000到5000元以内的除湿机就可以了。 具体选型,还需要参考环境的粉尘度和对湿度范围的要求,选型不同,价格也就不一样了。 工业除湿机(吸湿机)制造技术已经有几十年的历史,具体那个牌子好,各自的厂家都说自己的牌子最好,其实工业除湿机(吸湿机)品牌比较好的有正岛品牌工业除湿机(吸湿机),像美的和格力主要专注于家用除湿机。 正岛品牌工业除湿机(吸湿机)已经有十多年的历史,依靠多年的技术引进、技术积累以及与森井电器的强强联合,正岛品牌工业除湿机(吸湿机)品质在这几年突飞猛进,达到了行业领先水平。   工业除湿机(吸湿机)在其构造和原理上大体都是一样的,但是工业除湿机(吸湿机)型号非常多,不同的型号不同厂家的产品价格也不同,如果您确实需要工业除湿机(吸湿机)最好还是通过电话向厂家咨询。
    留言咨询
  • 工业吸湿器 400-860-5168转3155
    工业吸湿器 技术动态:苏州某光伏组件厂的生产车间面积在500平方左右,层高3米,湿度要求控制40-60%RH之间,对车间生产环境对温湿度的要求非常高;但受到潮湿天气的影响,这个车间的湿度就会过高,特别是在南方的雨季,如果控制措施不当就很容易让湿气渗入产品内部出现凝露现象引起线路短路问题。 为此,该光伏组件厂在车间内安装使了2台正岛ZD-8240C工业吸湿器进行吸湿除潮,并将湿度严格控制在工艺所需的范围之内,确保了车间的正常生产,以及产品的出厂品质! 正岛ZD-8240C及ZD系列工业吸湿器配置多重安全保护装置,并设有多项运行和故障显示功能,运行安全稳定。热交换器换热效率高,结构紧凑,因而运行震动小,噪音低,除湿量大,故障率低,使用寿命长。 正岛ZD-8240C工业吸湿器适用面积180-240平方米左右,除湿量为240公斤/天,广泛应用于食品厂、超市、档案室、资料室、图书馆、电脑房、精密仪器室、医院及贵重物品仓库等场所,使电子产品、光学仪器、精密设备、档案资料等避免了潮湿、霉变的噩运。 TEL: 欢迎您来咨询吸湿器,工业吸湿器,工业除湿机厂家的详细信息!工业用除湿机的种类有很多,不同品牌的工业用除湿机价格及应用范围也会有细微的差别,而我们将会为您提供优质的产品和全方位的售后服务。 正岛ZD-8240C工业吸湿器技术参数: 型 号ZD-8240C控制方式湿度智能设定除 湿 量240升/天排水方式塑胶软管 连续排水适用面积180 ~ 240智能保护三分钟延时 压缩机启动电 源380V~50Hz活性碳滤网标 配运转噪音52dB自动检测有无故障 一目了然输入功率4900w适用温度5~38℃体积(宽深高)770X470X1650mm设备重量160 kg 正岛ZD-8240C及ZD系列工业吸湿器产品六大核心配置优势: 优势一:【整机内结构精巧】 优势二:【高效节能压缩机】 优势三:【配套内螺纹铜管】 优势四:【大风量高效风机】 优势五:【微电脑自动控制】 优势六:【配多重安全保护】 您可能还对以下内容感兴趣...1. 工业抽湿机(ZD-8138C)2. 工业干燥机(ZD-8166C)3. 车间除湿机(ZD-890C)4. 仓库抽湿机(ZD-8168C)5. 仓库除湿机(ZD-8240C)工业用除湿机厂家记者核心提示:对于面积在500平方左右的空间,一般来说可以选择1台日除湿量在480升左右的工业吸湿器,也可以选择2台日除湿量在240升左右的工业吸湿器;不过,考虑到整个空间除湿的均匀性,以及除湿效果等方面,正岛电器还是建议你选择使用2台日除湿量在240升的ZD-8240C工业吸湿器,而且在购置成本上也是差不多的;以上关于吸湿器,工业吸湿器,工业除湿机厂家的相关技术动态是正岛电器为大家提供的! 您可以在这里更详细地了解工业吸湿器的相关信息: 科技高速发展中,除湿机使用产品层出不穷,一部分除湿机生产企业在产品研发过程中,开始向人性化方向发展,部分产品针对舒适度上加大研发力度。所以针对室内空气环境,也推出了带空气清新功能机型。 这几年以来,市场上除湿机竞争不断加剧,不同品牌之间的竞争也非常激烈,更多的是想在市场有自己的一足之地。而且我们看到除湿机产品开始在外观和功能做出了文章,于是,一款款外观时尚的除湿机不断出现。 虽然说是功能很多,但是很多都是华而不实,根本就不会去使用,那么又何必去花费这么多钱呢,一些正在市场内选购除湿机是产品消费者介绍道,除湿机是产品上市之后,一种品牌的功能会比其他产品多的时候,价格高一些,消费者会争相购买多功能产品,但是现在是理性消费的年代。 在面对这些变化之后,除湿机销售界的专业认识表示,面对现在市场的竞争力,产品在市场上的占有率会经常出现波动,想要实现盈利很困难,生产商研发一款实用性产品是能够避免竞争,这样的新产品才能在市场上站稳脚步。 面对除湿机的更新换代,变得越来越使用,销量是不断上升,厂家也开始研发出自己的新产品,将目光锁定上使用主义,消费者更加关注的是功能是不是非常实用,理性消费正在流行。 使用除湿机就需要了解除湿机内部由哪些组件构成的,其中包含了:压缩机.热交换器.风扇.盛水器.机壳及控制器组成,主要的工作原理就是风扇将潮湿空气抽入机内,通过热交换器凝结成冰,干燥的空气排出机外,如此空气的循环从而降低室内温度。 对于除湿机的控制方式有两种,分别为机械控制方式和微电脑控制方式: 1.机械控制方式也称之为操作由按钮控制方式,可以自动控制湿度和除霜的温度,但是不够准确和稳定,而且这种方式不能独立空气清净和其他功能,算比较落后的操作方式。 2.微电脑操控也称之为轻触式操控,全自动精确除除湿,全面的控制室内温度,支持各种功能的使用,而且性能比较稳定,效率上来说能够独立的清理空间,比较先进的设备。 跟其它的产品是一样的,微电脑控制的除湿机现在已经成为了市场消费的主流,但是因为造价太高,售价也相对比较高,所以一些机械式的除湿机还在一部分消费者手上使用,但是随着市场的不断发展,机械除湿机一定会被淘汰的。
    留言咨询
  • 猪冻精稀释剂套装 猪精冷冻稀释 应用于畜牧场、兽医站、种猪场、公猪站、育种中心、良种中心等养殖中心的猪人工授精工程升级配套。猪冻精稀释、冷冻、生产和制作; 本品用于猪的精液冷冻,复苏率可达到70%以上,高者可到80%甚至90%。储存温度:2-8℃冷藏。有效期:未开封情况下,E液2-8℃冷藏可保存2个月,其他可保存半年以上。开封后尽快使用,避免高温和冻融。
    留言咨询

吸湿机相关的资讯

  • 蒸汽吸附分析仪在气溶胶吸湿性研究中的应用
    大气气溶胶是指悬浮在大气中的固体和液体颗粒共同组成的多相体系。人们所处的大气环境实际就是由不同相态的颗粒物均匀分散在空气中形成的一个气溶胶体系。常见的大气气溶胶包括直接排放至大气的沙尘、道路扬尘和黑炭等一次颗粒物,以及通过化学反应形成的二次颗粒物,例如二氧化硫和氮氧化物通过大气氧化形成的硫酸盐和硝酸盐等。由于大气气溶胶的环境、气候及健康效应,在过去几十年里,对它的理化性质的研究正日益受到包括化学家、环境学家等科学家等的重视。吸湿性是气溶胶最重要的物理化学性质之一(Tang et al., 2019a)。例如对于研究大气化学来说,吸湿性会影响实际环境条件下大气颗粒物的含水量,从而会影响颗粒物的大气化学反应活性;从大气能见度和直接辐射强迫的角度来看,在实际大气环境中,颗粒物吸水会导致其粒径增大,从而影响颗粒物的光学性质,继而影响气溶胶的消光系数、对能见度的影响以及对直接辐射强迫的影响;另外,气溶胶的吸湿性也与气溶胶颗粒物的云凝结核活性和冰核活性密切相关。1. 已有吸湿性测量技术的局限性现有研究中常用的吸湿性测量技术主要有吸湿性分级差分迁移率分析仪(H-TDMA)、电动力天平、显微镜以及红外光谱等(Tang et al., 2019a)。目前最常用的吸湿性测量技术为H-TDMA,该仪器是通过测定不同相对湿度下气溶胶的电迁移率直径来研究其吸湿性。使用该仪器对气溶胶的吸湿性进行表征时,必须假设气溶胶为球形,但某些颗粒物的形貌并不规则,例如花粉、烟炱以及矿质颗粒物等。另外,H-TDMA的测量精度较为有限,仅可测定颗粒物大于1%的直径变化。电动力天平是通过测量单个颗粒物的质量变化来研究其吸湿性,虽然它对颗粒物的形貌没有要求,但该仪器的灵敏度同样比较有限,一般只能测量大于1%的质量变化。此外,显微镜也常用于测量颗粒物的吸湿性,它可以通过测量颗粒物的形貌变化来直接观察颗粒物粒径的大小变化从而研究其吸湿性。然而该技术同样基于球形颗粒物的假设,且灵敏度有限。另外,红外光谱是一个非常灵敏的吸湿性测量方法,该方法通过测量颗粒物中水的红外光谱来研究吸湿性,但把颗粒物中水的红外吸收光谱定量转换为颗粒物的含水量时存在一定的限制。2. 蒸汽吸附分析仪虽然目前用于颗粒物吸湿性的测量手段较为丰富,但准确测定非球形的或者吸湿性较弱的颗粒物的吸湿性仍然是一个很大的挑战。本课题组自主开发和建立了使用蒸汽吸附分析仪测量大气颗粒物吸湿性的新方法,相关研究成果由Atmospheric Measurement Techniques发表(Gu et al., 2017a)。该方法通过测定不同相对湿度下颗粒物的质量变化来研究其吸湿性,其原理如图1所示。图1. 蒸汽吸附分析仪的装置示意图(Gu et al., 2017a)该仪器对颗粒物的形貌没有要求,且具有卓越的灵敏度,能够准确测定小于千分之一的质量变化;在温湿度控制方面性能突出,所能研究的相对湿度最高可达98%。由于上述卓越性能,这项测量技术非常适用于研究形貌不规则或吸湿性较弱的大气颗粒物(比如矿质颗粒物、烟炱和生物气溶胶等),目前已被成功用于研究花粉颗粒物(Chen et al., 2019 Tang et al., 2019b)、矿质颗粒物(Guo et al., 2019 Tang et al., 2019c Chen et al., 2020)、高氯酸盐(Gu et al., 2017b Jia et al., 2018)等的吸湿性,大幅度提高了我们对上述几类物质吸湿性的科学认识水平。下文将介绍蒸汽吸附分析仪的几个典型应用。2.1 花粉颗粒物花粉颗粒物是最重要的生物气溶胶之一,其年排放量为 47-84 Tg,对大气环境、人体健康和气候变化具有重要影响,同时也在植物繁衍和和生态系统演化中起着关键作用。吸湿性是花粉颗粒物最重要的理化性质之一,其会影响花粉颗粒物的质量与形貌,从而影响花粉在大气环境和呼吸道中的迁移和传输。由于花粉颗粒物的形貌不规则,且吸湿性较弱,因此先前已有的吸湿性测量技术较难准确测定花粉颗粒物的吸湿性,而我们的方法对颗粒物的形貌无要求且非常灵敏,所以非常适合用于研究花粉颗粒物的吸湿性。图2. 花粉颗粒物的产生、传输及其环境、气候及生态效应在我们已经发表的两项工作中(Chen et al., 2019 Tang et al., 2019b),我们研究了25和37摄氏度下共17种国内外代表性花粉(12种风媒、5种虫媒)的吸湿性。我们发现这些花粉颗粒具有相对较强的吸湿性。例如,当相对湿度从0%升高至90%时,花粉颗粒物的质量增加了30%-50%,当相对湿度达到95%时,花粉颗粒物的质量基本接近于干燥条件下的2倍,如图3所示。另外就目前已有的数据(包括本研究和前人的研究)来看,风媒花粉和虫媒花粉的吸湿性似乎没有系统差异,而中国常见花粉与欧洲/北美常见花粉的吸湿性也非常相似。此外,两个温度下(25和37摄氏度)花粉颗粒物吸湿性的差异比较小。本研究对于深入认识花粉颗粒物的环境行为具有重要意义,尤其是37摄氏度下的实验结果,为模拟花粉颗粒物在呼吸系统内的传输和沉降以及评估其对人体健康的影响提供了关键基础数据。图3. (a)松树花粉与(b)梨树花粉分别在25和37摄氏度下的吸湿性2.2 矿质颗粒物由干旱和半干旱地区地表排放进入大气的矿质气溶胶是一种非常常见的大气颗粒物,其年排放量居于全球第二位,大气含量则居于全球第一位。图4展示了一次典型的沙尘暴事件。矿质气溶胶作为对流层中最重要的气溶胶之一,显著影响全球大气污染、气候变化以及生物地球化学循环。吸湿性在很大程度上决定了矿质气溶胶对大气化学和气候的影响。我们使用蒸汽吸附分析仪测量了21种矿质气溶胶的质量随相对湿度(0-90%)的变化,从而定量阐明矿质气溶胶的吸湿性(Chen et al., 2020)。这21种矿质气溶胶包括14种常见矿物(如石英、长石、石灰石和伊利石等)以及7种来自全球不同地区的实际沙尘。图4. 一次典型的沙尘暴事件我们发现矿质气溶胶的吸湿性普遍较弱,如图5所示。除了蒙脱石以外,当相对湿度从0%增加至90%时,矿质气溶胶的质量增加了不到10%,表明绝大部分的矿质气溶胶的吸湿性较低。另外,我们发现矿质气溶胶的吸湿性与其比表面积密切相关,这表明矿质气溶胶的吸湿性可能是由水在颗粒物表面的吸附所决定的。例如对于蒙脱石,其比表面积较大,吸湿性也远远强于其他矿质气溶胶。上述研究结果可显著提高矿质气溶胶吸湿性的科学认识,从而有助于更好地阐明矿质气溶胶在大气化学和气候变化中的作用。图5. 矿物样品的吸湿性与(a)BET比表面积的关系以及(b)粒径的关系2.3 盐尘暴颗粒物最近几年的外场观测表明,矿质颗粒物,尤其是从干盐湖和盐碱地表面排放进入大气的矿质颗粒物,除了吸湿性很弱的矿物之外,往往还含有一定量的水溶性盐(如氯化钠和硫酸钠等)。这类矿质颗粒物常被俗称为盐尘暴颗粒物。然而,目前关于盐尘暴大气颗粒物吸湿性的科学认识还基本上处于空白阶段。在近几年发表的一项研究工作中(Tang et al., 2019c),我们在东起黄河三角洲,西至新疆罗布泊的干旱和半干旱盐碱地采集了13个地表土壤样品,采样点的地理分布如图6所示。我们使用X射线衍射仪测定了这些样品的矿物组分,使用离子色谱仪分析了它们的水溶性离子成分,并使用蒸汽吸附分析仪研究了这些样品的吸湿性。图6. 土壤样品采样点的地理分布研究发现,不同样品的吸湿性存在着很大的差异,如图7所示。对于某些盐尘暴样品,其吸湿性较弱,当相对湿度升高至90%时,其质量仅增加了10%左右,然而对于某些盐尘暴样品,当相对湿度升高至90%时,其质量已增加至干燥状态下的5倍,这基本接近于氯化钠或硫酸钠的吸湿性。随后我们又探讨了颗粒物的吸湿性与其水溶性离子含量的关系。我们发现当水溶性离子的含量越高,颗粒物的吸湿性越强。此外,我们还将颗粒物水溶性离子含量的数据输入至气溶胶热力学模型(ISORROPIA-II)中来计算颗粒物的吸湿性,结果表明该热力学模型并不能很好的模拟实际盐尘暴样品的吸湿性。以上研究结果将改变我们对于矿质颗粒物吸湿性的科学认识,进而帮助我们更好地了解矿质颗粒物在大气化学和气候系统中的作用。图7. (a)新疆自治区吐鲁番市艾丁湖表层盐土与(b)内蒙古杭锦后旗盐碱土样品的吸湿性2.4 蒸汽吸附分析仪与其他表征仪器的联用由于蒸汽吸附分析仪仅可得到颗粒物随相对湿度的质量变化,因此我们通常还会将蒸汽吸附分析仪与其他表征仪器进行联用,从而深入认识颗粒物的吸湿性。例如,在花粉颗粒物吸湿性的研究工作中(Tang et al., 2019b),除蒸汽吸附分析仪以外,我们还使用了透射傅立叶变换红外光谱仪测定样品的红外吸收,以获得花粉颗粒物的化学成分的信息。测量结果表明,花粉颗粒物的吸湿性在很大程度上决定于颗粒物中羟基的相对含量。这一研究结果揭示了花粉颗粒物的化学成分与吸湿性的关系,进一步增强了我们对花粉颗粒物的环境、健康和气候效应的认识。在代表性钙盐镁盐颗粒物吸湿性的研究工作中,我们使用蒸汽吸附分析仪与H-TDMA系统分析了八种钙盐镁盐的吸湿特性,直接得到了颗粒物在不同相对湿度(0-90%)下的液态水含量及粒径变化数据,并讨论了不同初始相态对颗粒物吸湿性的影响以及环境意义。以Ca(NO3)2为例,其在蒸汽吸附分析仪实验中观察到明显的潮解行为,表明初始相态下该颗粒物为结晶态;而在H-TDMA实验中,Ca(NO3)2气溶胶颗粒呈现连续吸湿行为,表明其初始相态为无定形态。但是,颗粒物潮解之后两种手段得到的吸湿性参数均与气溶胶热力学模型模拟值吻合,呈现出良好的一致性。结果表明,两种手段的联用能够互为补充地系统研究颗粒物在不同粒径、不同初始相态下的吸湿特性,并为气溶胶热力学模型的验证提供有效的基础物化数据。2.5 火星上的液态水我们开发的大气颗粒物吸湿性的新方法还可以用来帮助我们认识火星中的液态水。2018年,来自意大利宇航局的团队通过雷达在火星南极附近冰层的地下发现了一个液态水湖。一般来说,由于火星环境条件极度寒冷和干燥,纯净液态水很难在火星环境中稳定存在。而土壤中存在的高氯酸盐可以降低水的冰点,并可在亚饱和条件下通过吸收水蒸气形成水溶液,这可以解释为什么火星这种极度干旱的条件下可能存在液态水。目前一些研究认为,火星土壤中所含的高氯酸盐能够在相对湿度远低于100%时通过吸收大气中的水蒸气发生潮解从而形成稳定的溶液,但关于不同温度和相对湿度下高氯酸盐液态水含量的实验数据仍十分匮乏。图8. 火星液态水湖(来源于网络)我们使用蒸汽吸附分析仪测定了几种常见的高氯酸盐(无水高氯酸镁、六水合高氯酸镁、无水高氯酸钠、一水合高氯酸钠等)在不同温度下的相变和吸湿性 (Gu et al., 2017b Jia et al., 2018)。我们发现,高氯酸盐可在较低的相对湿度下吸水形成稳定的水溶液。如图9所示,对于高氯酸钠盐,在相对湿度低于20%时,其主要以无水高氯酸钠颗粒物稳定存在;当相对湿度升高至30%时,则主要以结晶态的一水合高氯酸钠稳定存在;当相对湿度进一步升高时,结晶态的一水合高氯酸钠将吸收大量水形成稳定的高氯酸钠溶液。另外,我们还发现高氯酸盐的潮解点会随着温度的升高而降低。例如一水合高氯酸钠的潮解点从5摄氏度时的∼51.5%降至30摄氏度时的∼43.5%。这项研究工作大大加深了我们对不同条件下高氯酸盐在土壤中的吸湿性的认识,并在一定程度上揭示了为什么火星上可能存在液态水背后的物理化学机制。图9 (a)高氯酸镁盐与(b)高氯酸纳盐随温度和相对湿度变化的相态图参考文献【1】Chen, L. X. D., Chen, Y. Z., Chen, L. L., Gu, W. J., Peng, C., Luo, S. X., Song, W., Wang, Z., and Tang, M. J.: Hygroscopic properties of eleven pollen species in China, ACS Earth Space Chem., 3, 2678-2683, 2019.【2】Chen, L. X. D., Peng, C., Gu, W. J., Fu, H. J., Jian, X., Zhang, H. H., Zhang, G. H., Zhu, J. X., Wang, X. M., and Tang, M. J.: On mineral dust aerosol hygroscopicity, Atmos. Chem. Phys., 20, 13611-13626, 2020.【3】Gu, W. J., Li, Y. J., Zhu, J. X., Jia, X. H., Lin, Q. H., Zhang, G. H., Ding, X., Song, W., Bi, X. H., Wang, X. M., and Tang, M. J.: Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using a commercial vapor sorption analyzer, Atmos. Meas. Tech., 10, 3821-3832, 2017a.【4】Gu, W. J., Li, Y. J., Tang, M. J., Jia, X. H., Ding, X., Bi, X. H., and Wang, X. M.: Water uptake and hygroscopicity of perchlorates and implications for the existence of liquid water in some hyperarid environments, RSC Adv., 7, 46866-46873, 2017b.【5】Guo, L. Y., Gu, W. J., Peng, C., Wang, W. G., Li, Y. J., Zong, T. M., Tang, Y. J., Wu, Z. J., Lin, Q. H., Ge, M. F., Zhang, G. H., Hu, M., Bi, X. H., Wang, X. M., and Tang, M. J.: A comprehensive study of hygroscopic properties of calcium- and magnesium-containing salts: implication for hygroscopicity of mineral dust and sea salt aerosols, Atmos. Chem. Phys., 19, 2115-2133, 2019.【6】Jia, X. H., Gu, W. J., Li, Y. J., Cheng, P., Tang, Y. J., Guo, L. Y., Wang, X. M., and Tang, M. J.: Phase transitions and hygroscopic growth of Mg(ClO4)2, NaClO4, and NaClO4∙H2O: implications for the stability of aqueous water in hyperarid environments on Mars and on Earth, ACS Earth Space Chem., 2, 159-167, 2018.【7】Tang, M. J., Chan, C. K., Li, Y. J., Su, H., Ma, Q. X., Wu, Z. J., Zhang, G. H., Wang, Z., Ge, M. F., Hu, M., He, H., and Wang, X. M.: A review of experimental techniques for aerosol hygroscopicity studies, Atmos. Chem. Phys., 19, 12631-12686, 2019a.【8】Tang, M. J., Gu, W. J., Ma, Q. X., Li, Y. J., Zhong, C., Li, S., Yin, X., Huang, R. J., He, H., and Wang, X. M.: Water adsorption and hygroscopic growth of six anemophilous pollen species: the effect of temperature, Atmos. Chem. Phys., 19, 2247-2258, 2019b.【9】Tang, M. J., Zhang, H. H., Gu, W. J., Gao, J., Jian, X., Shi, G. L., Zhu, B. Q., Xie, L. H., Guo, L. Y., Gao, X. Y., Wang, Z., Zhang, G. H., and Wang, X. M.: Hygroscopic Properties of Saline Mineral Dust From Different Regions in China: Geographical Variations, Compositional Dependence, and Atmospheric Implications, J. Geophys. Res.-Atmos, 124, 10844-10857, 2019c.作者简介:唐明金,中国科学院广州地球化学研究所研究员,博士生导师。本科和硕士毕业于北京大学,博士毕业于马普化学研究所,并先后在英国剑桥大学和美国爱荷华大学从事博士后研究。主要研究方向为气溶胶化学及地球化学,已在Chemical Reviews、Atmospheric Chemistry and Physics和Journal of Geophysical Research-Atmospheres等国际知名期刊上发表SCI论文60余篇,并自2017年起担任国际SCI期刊Atmospheric Measurement Techniques副主编。曾获第18届侯德封矿物岩石地球化学青年科学家奖、第8届中国颗粒学会气溶胶青年科学家奖。
  • 超导量子计算用mK级国产稀释制冷机实现商用量产
    近日,安徽省量子信息工程技术研究中心及科大国盾量子技术股份有限公司联合发布消息,国产稀释制冷机“ez-Q Fridge”在交付客户后完成性能测试,实际运行指标达到同类产品国际主流水平,成为国内首款可商用可量产的超导量子计算机用稀释制冷机。据媒体报道,2023年下半年,国盾量子向两家科研单位交付了国产稀释制冷机产品,经客户多月测试,设备长时间连续稳定运行,能够结合主动减震系统以及磁屏蔽等,为量子芯片提供低至10mK级别的极低温低噪声环境,制冷功率达到450uW@100mK。在容纳78根低温测控同轴线缆的超导量子计算低温支撑系统中,分别对56比特和24比特超导量子芯片进行测试,稀释制冷机运转效果良好,达到了国际先进水平。实际上近年来,量子科技已引起国内外的广泛关注。而发展先进的量子科技离不开极低温制冷技术,这主要是由于量子本身是微观的效应,很容易受到干扰,而超低温可以将噪音降得很低。比如,对量子比特来讲,它最怕的就是温度,因为温度产生热耦合噪音,低温之后噪音就可以被极大的限制,使它成为孤立系统,这时它的退相干时间就会大大延长,量子比特才会成功,否则包括存储、读取、叠加等都需要时间。目前达到低温的手段主要有吸附制冷、绝热去磁制冷和稀释制冷。稀释制冷技术于 1950 年代首次提出,并在 60 年代建成了第一个完整的稀释制冷系统,随后便成功商业化。稀释制冷技术最低温度可以低至数个mK(10K),具有制冷过程连续不间断及制冷功率较大等优点,随着低温物理研究需求的不断增加,其已经成为目前最为流行的制冷方法。水有普通的水和重水,它们混合到一块是分不开的,但是氦三氦四不一样,液态的氦三和氦四在低温下在大约八九百mK的时候就会自动分开,自动分开的现象过程中会有所谓的制冷效应,其实这就是因为这两者复合在一起就会产生稀释效应,就会有降温效应,连续的补充和打破平衡,就使得混合液一直处于相分离状态,就实现了所谓的稀释制冷,这就是稀释制冷机的原理。随着量子计算等技术的不断发展,对mK级的稀释制冷机提出了更高的要求,当前国内有数家单位和企业在投入精力开发。中科院物理所2021年,中国科学院物理研究所自主研发的无液氦稀释制冷机6月下旬实现近10mK(比绝对零度-273.15摄氏度高0.01度)极低温,标志着中国在高端极低温仪器研制上取得突破性进展,具备了为量子计算等前沿研究提供极低温条件保障的能力。2023年3月28日,中国科学院物理研究所承担的北京市科技计划课题“400微瓦无液氦稀释制冷机研制”顺利通过了第三方技术测试。测试专家组认真听取了项目工作报告,审查了技术测试方案,查验了测试仪器和受试设备,通过现场测试和读取测试数据,一致认为该无液氦稀释制冷机长时间连续稳定运行最低温度已达到7.6mK,制冷功率达到450μW@100mK,两项指标均达到了国外主流中型商业稀释制冷机的水平。合肥知冷低温科技有限公司2023年6月13日,“量子计算用国产极低温稀释制冷机项目”在合肥高新区正式签约,并入驻量子信息未来产业科技园。“量子计算用极低温稀释制冷机”由安徽大学物质科学与信息技术研究院单磊教授、王绍良研究员团队自主研发。安徽大学研究员、合肥知冷低温科技有限公司董事长王绍良表示,项目是合肥“以投带引”的成功案例,在合肥市科技创新集团的支持下,项目公司将拿到第一笔种子基金,打通落地转化的最初一公里。本源量子2023年10月,由本源量子计算科技(合肥)股份有限公司完全自主研发的本源SL400国产稀释制冷机成功下线,这是国内科创企业的研发团队首次成功突破量子计算极低温制冷这一关键核心技术。省量子计算工程研究中心相关负责人张俊峰说:“该稀释制冷机可提供12mK以下的极低温环境及不低于400μW@100mK的制冷量,降温时间在40小时内,升温时间在24小时内,可满足超导量子计算的极低温运行环境和快速回温的要求,达到国际主流产品的水平。”此外,中船重工、飞斯科等国产厂商目前也在投入相关设备研发。中船重工鹏力(南京)超低温技术有限公司市场总监巢伟向仪器信息网透露,当前国内能用的最基础版本的是400-500μW,而国外主流厂商的1mW设备已经成熟了,甚至开展了10mW的研究,比如IBM的10mW的设备已经用起来了。林德等企业已开发了百瓦级、甚至数百瓦级别4K制冷量来预冷的稀释制冷机。当前中船低温已实现4K制冷机每年一千多套的量产。上世纪70年代物理所冉启泽老先生曾研制出湿式稀释制冷机,但后来无人从事相关研究,相当长一段时间内国内处于技术断层和研究空白,目前国内所用到的稀释制冷机均从欧美购买,比如Oxford Instruments ,Cryomagnetics,Janis Research Company,Bluefors Oy NanoMagnetics Instruments, ICE Oxford Ltd,Quantum Design, Inc.,Leiden Cryogenics Entropy等。2019年12月,美国商务部的一份内部文件提出,未来将限制向中国等美国在量子计算上的竞争对手出口稀释制冷机。一旦被限,中国的量子计算研究将面临重大挑战。据了解,国际主流稀释制冷机售价400万元至600万元,稀释制冷机的国产化,在一定程度上扭转了量子计算关键核心技术受限的局面,加快了量子计算领域自立自强步伐,增强我国在量子计算领域完全自主可控能力。
  • AQUALAB VSA 水分吸附测定仪(等温吸湿线测定仪)在烟草行业的应用
    水分含量和水活度是烟叶以及烟草制品的一个重要质量指标。对于原材料烟叶,水分活度的高低决定了烟叶的耐储藏性。水分含量和保水性能与烟卷的加工工艺以及烟草产品的口感有者密切的关系。 众所周知,香烟产品一旦暴露在空气中,水分会很快逸散,造成品质的严重下降,特别是在北方气候干燥的地方,这种现象尤为严重。目前多家烟草研究机构就烟草保润性能展开研究,该课题成为烟草行业的一个前沿课题。为了使烟草的保润性能有所提高,烟草研究机构,烟草添加剂生产厂家在烟草保润剂领域做了大量的尝试,并开发出许多新的品种。但是,就目前情况来看,对于保润剂保润效果的评价还缺乏有效地方法。很多情况下是依赖于研发人员的感官或者是个人经验来评价,这样就造成了标准不一无法比较的情况。 DECAGON公司推出的 AQUALAB VSA水分吸附测定仪(等温吸湿线测定仪) 是专门应用于食品、烟草、化妆品行业的一款针对于水分吸附(脱附)能力评价和研究的仪器。通过其精密的湿度传感器、温度控制模块以及天平组件,可以实现对烟草在干燥环境中的水分散失过程进行模拟。并绘制出水分散失动力学曲线、等温吸湿曲线。根据动力学曲线在一定条件下,样品的失重量与时间有特定的关系,该特性可用于保润剂保润性能的评价。 TIPS: 1.将AQUALAB VSA做好的等温吸湿线导入AQUALAB 4TE DUO后可利用AQUALAB 4TE DUO进行烟草产品水分含量的测试,结果平行性很好。 2.AQUALAB VSA也可作为一个水活度仪使用,并具备AQUALAB 4TEV的所有功能。 更多详情,请联系培安公司: 电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288 Email: sales@pynnco.com 网站:www.pynnco.com

吸湿机相关的方案

  • 沙棘果干吸湿曲线吸湿特性水分活度
    沙棘果干水分活度:0.2199,水分含量7%仪器型号:AquaLab 4TE水分活度仪,测量温度 25℃(美国METER Group, Inc.)动态水分吸附等温线、吸湿曲线、吸湿特性(动态蒸汽吸附分析仪)仪器型号:AquaLab VSA动态水分吸附仪,动态蒸汽吸附仪VSA(美国METER Group, Inc.)测量范围:0.10-0.90 aw,RH 10%-90%
  • 喷雾干燥机在制备双黄连微胶囊及吸湿扩散性的应用
    中药提取物的吸湿性是困扰中药固体制剂生产中的主要问题,最直接的评价指标是吸湿量。中药提取物吸湿后导致粉体黏性增强、分散性降低,使制剂过程非常困难。易吸湿的中药提取物经喷雾干燥微囊化后可降低吸湿性。喷雾干燥主要的工艺参数是进风温度、供液速度和雾化气流速。
  • 吸湿曲线在制药行业中的应用
    吸湿曲线在制药行业中的应用(Decagon AquaSorp Isotherm)(美国培安公司 版权所有 未经允许 不得复制)吸湿(干燥)曲线在制药行业中的应用体现在两个方面:制剂工艺研究和中草药的保存。药品制剂的吸湿性包括吸湿速率和临界相对湿度两方面。吸湿速率属于动力学范畴,系指药品制剂在一定温度下露置于空气或一定湿度环境中,由表面吸附水份的量随时间变化的关系,求得的单位时间吸湿量或吸湿增重百分率;临界相对湿度属于热力学范畴,系指药品制剂吸湿平衡曲线所反映的吸湿量开始明显增大的相对湿度。从干膏粉吸湿曲线(图1)上,我们可以更直观的理解吸湿速率和临界相对湿度。

吸湿机相关的资料

吸湿机相关的试剂

吸湿机相关的论坛

  • 逐级稀释问题

    新手求助:我们实验室稀释一般用重量法稀释,最近比较关注逐级稀释的问题。目前操作的时候,一般直接称重,比如1g样品稀释到10g,算是10%的浓度的,按重量称,不按体积稀释。看大家说稀释超过100倍需要逐级稀释来减小误差,但是我看到的逐级稀释都是称一定重量的样品再用容量瓶加稀释溶剂,比如1g样品用容量瓶加到100ml。现在有个问题,逐级稀释是针对体积稀释还是重量稀释?假如用分析天平,精度为0.00001g,准确称取0.02g左右的样品(这个数字我用天平可以准确读出),再稀释至10g,这样算是2000ppm?这个稀释算1000倍,应该用逐级稀释吗?其实最纠结的点在于:1.天平可以准确的读出这个数字,那么是否还需要逐级稀释,也就是存在的称量的误差是否可以用天平消除2.体积稀释需要用逐级稀释,是否称重法也需要3.如果需要逐级稀释,是否溶质的质量不能太小?比如在天平准确称量的前提下稀释至10%,是1g稀释到10g好还是0.1g稀释到1g好?

  • 逐级稀释和一步稀释的比较

    今天配溶液的时候和同事谈到了逐步稀释和一步稀释哪个好,同事们都说逐步稀释比一步稀释要好,逐步稀释误差比一步稀释要小,我不同意他们的说法,和他们挣了半天也没出结果。他们的观点是无论怎么样逐步稀释都比一步稀释准确,只是实际操作可能一步稀释简单一些,都不使用逐步稀释;我的观点是如果取同样体积的原液稀释100倍,一步稀释比逐步稀释要好一些,例如A:取1ml直接定容至100ml,B:取1ml先定容至10ml,再取1ml定容至10ml,我的观点就是A比B要准确一些,但是我同事都说B比A准确。C:取1ml定容至100ml,D:取10ml定容至100ml,再取10ml定容至100ml,这种情况我和我同事的观点都一样,D要比C准确一些。CD这种情况基本没什么可说的了,D就是比C准确,但是AB这种情况我还是坚持A要好一些,但是我没法用数据来说服他们,他们也找不到能让我心服口服的数据,有没有人能用数据来说一下AB哪个更好?我来说一下为什么我觉着A要比B准确吧。因为我觉着同样取1ml溶液,取一次的误差就是比取两次的误差要小,一步稀释定容至100ml在取样上只会产生一次误差;但是逐步稀释需要2次取样,会产生2次误差。有可能2次取样会产生正负互补,但是如果2次取样都是正正或者都是负负呢?如果一次取样的误差范围是±0.1,而2次取样的误差范围就有可能是±0.2了(数据是随便编的,但是2次取样误差范围一定会比1次取样要大),这种情况下还是一步稀释要准确一些。总体来说我的观点就是:如果取的母液容积一定,一步稀释要比逐步稀释准确,不管你稀释10倍、100倍还是1000倍。还有一点就是,通常说的稀释倍数不能超过100倍,我认为这个也是要看情况的,我还是上面的观点,如果你只有1ml的母液要稀释1000倍,直接取1ml定容至1000ml要比取1ml定容至10ml、再取10ml定容至1000ml(或其他逐步稀释的方法)要准确。如果母液充足,逐级稀释要比一步稀释准确。求大神用数据来支持或反驳我的观点,如能说服我改变观点,感激不尽!!!!!!!

吸湿机相关的耗材

  • 银导电稀释液
    导电胶稀释液主要用于稀释导电胶,导电胶启封后,溶剂容易挥发,粘稠度上升,甚至结块。导电胶稀释液可调整导电胶的粘稠度。导电胶干燥后,可使用稀释剂在超声波清洁器下进行稀释。注意不同导电胶稀释液使用方法相同,但不能混用
  • 稀释器备件和稀释器维护备件
    稀释器备件和稀释器维护备件稀释器备件说明部件号注射器与阀的连接管组件包9910062700自动稀释器替换管组件包,螺纹连接 包括所有管和接头9910083100 清洗池,12 升6610011800稀释器维护备件说明部件号20 毫升注射器4710003000注射器与阀的连接管组件包9910062700自动稀释器活塞连接替换管组件包 包括所有管和接头9910059100 自动稀释器替换管组件包,螺纹连接 包括所有管和接头9910083100
  • 银/金导电胶稀释剂
    银导电胶,室温下即可固化,粘接性能好,适合任何材料。在使用之前不需要做表面特殊处理就可以粘接如陶瓷、玻璃、金属、塑料、玻璃纤维等样品。用瓶盖涂刷器可方便刷涂粘胶。如果银胶变干,可使用稀释剂稀释。粒径:平均小于1.0μm;电阻率为0.02 ohms per square @ 1 mil厚;成分:银含量为60%;使用温度:-40°C-260°C。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制