微生物显微成像测量系统

仪器信息网微生物显微成像测量系统专题为您提供2024年最新微生物显微成像测量系统价格报价、厂家品牌的相关信息, 包括微生物显微成像测量系统参数、型号等,不管是国产,还是进口品牌的微生物显微成像测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微生物显微成像测量系统相关的耗材配件、试剂标物,还有微生物显微成像测量系统相关的最新资讯、资料,以及微生物显微成像测量系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

微生物显微成像测量系统相关的厂商

  • 全国免费销售咨询热线:400-630-7761公司官网:https://www.leica-microsystems.com.cn/徕卡显微系统(Leica Microsystems)是德国著名的光学制造企业。具有160年显微镜制造历史,现主要生产显微镜, 用户遍布世界各地。早期的“Leitz”显微镜和照相机深受用户爱戴, 到1990年徕卡全部产品统一改为“Leica”商标。徕卡公司是目前同业中唯一的集显微镜、图像采集产品、图像分析软件三位一体的显微镜生产企业。公历史及荣誉产品1847年 成立光学研究所 1849年 生产出第一台工业用显微镜 1872年 发明并生产出第一台偏光显微镜 1876年 生产出第一台荧光显微镜 1881年 生产出第一台商用扫描电镜 1887年 生产出第10,000台 1907年 生产出第100,000台 1911年 世界上第一台135照相机 1921年 第一台光学经纬仪 1996年 第一台立体荧光组合 2003年 美国宇航局将徕卡的全自动显微镜随卫星送入太空,实现地面遥控 2005年推出创新的激光显微切割系统:卓越的宽带共聚焦系统。内置活细胞工作站: 2006年组织病理学网络解决方案:徕卡显微系统公司第三次获得“Innovationspreis”(德国商业创新奖): 2007年 徕卡 TCS STED 光学显微镜的超分辨率显微技术超越了极限。 徕卡显微系统公司新成立生物系统部门:推出电子显微镜样本制备的三种新产品 2008年徕卡显微系统公司成为总部设于德国海德堡的欧洲分子生物学实验室 (EMBL) 高级培训中心的创始合作伙伴。徕卡 TCS SP5 X 超连续谱共聚焦显微镜荣获2008年度《科学家》杂志十大创新奖。徕卡显微系统公司凭借 FusionOptics 融合光学技术赢得 PRODEX 奖项,该技术能够形成高分辨率、更大景深、3D效果更佳的图像。推出让神经外科医生看得更清楚、更详细的徕卡 M720 OH5 小巧的神经外科显微镜, 2009年新一代光学显微镜取得独家许可证:Max Planck Innovation 为徕卡显微系统的全新 GSDIM(紧随基态淬灭显微技术的单分子返回)超分辨率技术颁发独家许可证。 2010年远程医疗服务概念奖:徕卡显微系统公司在年度互联世界大会上获得 M2M 价值链金奖,Axeda Corporation 被誉为徕卡获得此奖项的一大助力。Kavo Dental 和徕卡显微系统在牙科显微镜领域开展合作。Frost & Sullivan 公司颁发组织诊断奖:徕卡生物系统公司获得研究和咨询公司 Frost & Sullivan 颁发的北美组织诊断产品战略奖。 2011年学习、分享、贡献。 科学实验室 (Science Lab) 正式上线:徕卡生物系统(努斯洛赫)公司荣获2011年度卓越制造 (MX) 奖:徕卡生物系统公司获得2011年度“客户导向”类别的卓越制造奖。 2012年徕卡显微系统公司总部荣获2012年度卓越制造奖:位于德国韦茨拉尔的徕卡显微系统运营部门由于采用看板管理体系而荣获“物流和运营管理”卓越制造奖。徕卡 GSD 超分辨率显微镜获得三项大奖:《R&D》杂志为卓越技术创新颁发的百大科技研发奖、相关的三项“编辑选择奖”之一、美国杂志《今日显微镜》(Microscopy Today) 颁发的2012度十大创新奖。 2013年徕卡 SR GSD 3D 超分辨率显微镜获奖徕卡生物系统公司和徕卡显微系统公司巩固在巴西的市场地位:收购合作超过25年的经销商 Aotec,推动公司在拉丁美洲的发展。 2014年超分辨率显微镜之父斯特凡黑尔 (Stefan Hell) 荣获诺贝尔奖:斯特凡黑尔因研制出超分辨率荧光显微镜而荣获诺贝尔化学奖。 他与徕卡显微系统公司合作,将该原理转化为第一款商用 STED 显微镜。徕卡 TCS SP8 STED 3X 荣获两大奖项:《科学家》杂志十大创新奖和《R&D》杂志百大科技研发奖均将超分辨率显微镜评定为改变生命科学家工作方式的创新成果之一。日本宇宙航空研究开发机构的宇航员若田光一 (Koichi Wakata) 使用徕卡 DMI6000 B 研究用倒置显微镜在国际空间站进行了活细胞实验。 2015年首台结合光刺激的高压冷冻仪是一项非常精确的技术徕卡显微系统公司收购光学相干断层扫描 (OCT) 公司 Bioptigen: 2016年徕卡显微系统公司独家获得了哥伦比亚大学 SCAPE 生命科学应用显微技术许可证,同时独家获得了伦敦帝国理工学院 (Imperial College) 的斜面显微镜 (OPM) 许可证。徕卡 EZ4 W 教育用体视显微镜获得世界教具联合会 (Worlddidac) 大奖:新的图像注入技术可引导外科医生进行手术:CaptiView 技术可将来自图像导航手术 (IGS) 软件的图像注入显微镜目镜。 2017年全新 SP8 DIVE 系统的推出,徕卡显微系统公司提供了世界上首个可调光谱解决方案,可实现多色、多光子深层组织成像。 徕卡的 DMi8 S 成像解决方案将速度提高了5倍,并将可视区域扩大了1万倍。为获得超分辨率和纳米显微成像而添加的 Infinity TIRF 模块能够以单分子分辨率同时进行多色成像, 由此开启宽视场成像的新篇章。 2018年LIGHTNING 从以前不可见或不可探测的精细结构和细节中提取有价值的图像信息,将传统共焦范围以内和衍射极限以外的成像能力扩展到120纳米。SP8 FALCON(快速寿命对比)系统的寿命对比记录速度比以前的解决方案快10倍。 细胞培养实验室的日常工作实现数字化PAULA(个人自动化实验室助手)有助于加快执行日常细胞培养工作并将结果标准化快速获取阵列断层扫描的高质量连续切片ARTOS 3D ,标志着超薄切片机切片质量和速度的新水平。随着 PROvido 多学科显微镜的推出,徕卡显微系统公司在广泛的外科应用中增强了术中成像能力。 2019年实现 3D 生物学相关样本宽视场成像THUNDER 成像系统使用户能够实时清晰地看到生物学相关模型(例如模式生物、组织切片和 3D 细胞培养物)厚样本内部深处的微小细节。 2020年STELLARIS是一个经彻底重新设计的共聚焦显微镜平台,可与所有徕卡模块(包括FLIM、STED、 DLS和CRS)结合使用。术中光学相干断层扫描(OCT)成像系统EnFocus 2021年Aivia以显微镜中的自动图像分析推动研究工作,强大的人工智能(AI)引导式图像分析与可视化解决方案相结合,助力数据驱动的科学探索。Cell DIVE超多标组织成像分析整体解决方案是基于抗体标记的超多标平台,适用于癌症研究。Emspira 3数码显微镜——启发灵感的简单检查方法该系统荣获2022年红点产品设计大奖, 不仅采用创新的模块化设计,而且提供广泛的配件和照明选项。2022年Mica——徕卡创新推出的多模态显微成像分析中枢,让所有生命科学研究人员都能理解空间环境LAS X Coral Cryo:基于插值的三维目标定位,沿着x轴和y轴对切片进行多层扫描(z-stack)。这些标记可在所有相关窗口中交互式移动具有高精度共聚焦三维目标定位功能的Coral Cryo工作流程解决方案 徕卡很自豪能成为丹纳赫的一员:丹纳赫是全球科学与技术的创新者,我们与丹纳赫在生物技术、诊断和生命科学领域的其他业务共同释放尖端科学和技术的变革潜力,每天改善数十亿人的生活。
    留言咨询
  • 400-860-5168转3750
    企业概况 英国工业显微镜有限公司是一家专业从事开发和生产人机工学的体视显微镜和非接触式测量系统的制造厂商。自1958年创立以来,英国Vision已成为世界上最具有创新活力的显微镜制造厂商,其分支机构遍及欧亚及北美。 世界各地的工程人员和科学家广泛地使用着我们的产品系统来从事他们在工业领域以及生物工程的日常的放大、检测和测量应用。迄今为止,已在全球各地安装 超过30万套设备系统。 英国Vision主要的生产基地设立在英国伦顿南部的沃京。商业运行及生产装配部门也设立在附近的厂房。英国Vision的北美生产分部设立在美国康州丹堡丽市,并在美国东岸和西岸的独立机构进行直销和分销网络运作。 本公司分别在日本、中国、法国、德国、意大利、以及比利时-荷兰-卢森堡经济联盟等国家建立了多个分支机构,此外加上由120多个拥有库存并经过专业技术培训的分销代理商所组成的服务网络,在所有其它发达国家里为企业提供解决问题的应用方案。同时我们根据发展,不断地扩大新代理的加盟机会。 出口和分销渠道 英国Vision的产品出口占总产值的80%%以上,所以我们认识健全分销渠道的重要性。在1991 年,英国Vision荣获出口成就的英女皇奖。公司获得的其他荣誉还包括:1997年度科技创新的威尔士亲王奖和 1974 年度技术成就的英女皇奖。 **的光学技术 英国Vision所拥有的世界**光学技术改变了在传统双目显微镜上安装目镜的必要。这些技术来源于采用英国Vision的高能光学® (Dynascope® )装置、扩大光瞳和宽阔成像光学系统、以及先进的人-机工学所带来的舒适使用、光学的清晰度、和减轻眼部疲劳。这一系列的功能改善了客户的生产效益和产品质量。Vision 的 Mantis 体视观察器在各行业得以广泛采用的实例可说明无目镜光学技术的优势效益。 在1994 年推出的第一代Mantis体视观察器主要是填补台式放大镜与显微镜之间的空白。 从此Mantis 就成了所有体视观察器的首选,超过13 万套的Mantis设备已在全球安装使用。 英国Vision的新一代Mantis系列产品于2005年开始在各行业里使用,它秉承原型产品的实用价值,并融合人机工学以进一步优化Mantis的设计。 产品研发 近年来,大量的研发投入已成为取得 成功的关键,它确保了新产品和现有产品的持续的发展,以不断满足科学界和制造领域的需求。英国Vision不断地以研发新产品和新技术在光学革新和技术前沿引领全球。
    留言咨询
  • 原FEI公司,2016年被赛默飞世尔科技收购,成为赛默飞材料与结构分析(MSD) 电镜事业部,是显微镜和微量分析解决方案的创新者和供应商。 我们提供扫描电子显微镜SEM,透射电子显微镜TEM和双束-扫描电子显微镜DualBeam?FIB-SEM,结合先进的软件套件,运用最广泛的样本类型,通过将高分辨率成像与物理、元素、化学和电学分析相结合,使客户的问题变成有效可用的数据。更多信息可在公司官网上找到:http://thermofisher.com/EM 或扫描二维码,关注我们的微信公众号
    留言咨询

微生物显微成像测量系统相关的仪器

  • In-vivo 显微CT 全球最高的空间分辨率SKYSCAN 1176是面向临床前研究的高性能体内显微CT扫描仪。大尺寸1100万像素x光相机极其完美地整合了分辨率、像场大小和扫描速度——这些正是繁忙、苛刻的生物医学研究实验室所需要的。像场宽度高达68 mm,支持鼠的全体扫描,以及兔子等大型动物的前肢扫描,像素大小为9、18 和35μm。可变x光外加电压和过滤器可提供扫描灵活性,支持包括肺组织和骨骼(带有钛植入物)在内的广泛样本成像。鼠的动物床可采用碳纤维或聚苯乙烯泡沫进行制作。集成式生理监控子系统可提供呼吸与心跳控制,以可靠地改进同步采集的胸部图像。 特点 提供的全系列SKYSCAN 软件包括快速容积重建、2D / 3D 定量分析软件以及3D可视化。另外还作为标配提供4D时间解析显微断层成像软件。该扫描仪可以“按钮”模式工作,可从触摸屏开始/停止扫描以及设置规程。触摸屏可戴手套操作。机架式主工作站集成于扫描仪下方。扫描仪最好结合四台Dual-QuadCore工作站使用 免维护90千伏X光光源全失真矫正1100万像素X光相机螺旋扫描:无环形伪影,无部分扫描链接每断层最多8000x8000像素最低9μm 体内3D空间分辨率全扫描周期不到1分钟(1Kx1K 片格式)集成式生理检测(呼吸、运动检测、心电图)4D 时间解析显微断层成像2D/3D 图形分析、骨骼形态测量学和仿真可视化的相关软件
    留言咨询
  • 荧光和荧光寿命分子包含多个单能态S0、S1、S2… 和三重态T1… ,每个能态都包含多个精细的能级。正常情况下,大部分电子处在*低能态即基态S0 的*低能级上,当分子被光束照射,会吸收光子能量,电子被激发到更高的能态S1 或S2 上,在S2 能态上的电子只能存在很短暂的时间,便会通过内转换过程跃迁到S1 上,而S1 能态上的电子亦会在极短时间内跃迁到S1 的*低能级上,而这些电子会存在一段时间后通过震荡弛豫辐射跃迁到基态,这个过程会释放一个光子,即荧光。此外,亦会有电子跃迁至三重态T1 上,再由T1 跃迁至基态,我们称之为磷光。荧光特性研究荧光特性时,主要在以下几方面进行分析:激发光谱,发射光谱、荧光强度、偏振荧光、荧光发光量子产率、荧光寿命等。其中荧光寿命(Fluorescence Lifetime)是指荧光分子在激发态上存在的平均时间(纳秒量级)。荧光寿命测试荧光寿命一般在几纳秒至几百纳秒之间,如今主要有两类测试方法:时域测量和频域测量时间稳定性实验测试曲线:1 时域测量由一束窄脉冲将荧光分子激发至较高能态S1,接着测量荧光的发射几率随时间的变化。其中目前广泛应用的是时间相关单光子计数,即TCSPC(Time Correlated Single Photon Counting)时间相关单光子计数(TCSPC) 实现了从百ps-ns-us 的瞬态测试,此方法对数据的获取完全依赖快速探测器和高速电路。用统计的方法计算样品受激后发出的第一个( 也是*一的一个) 光子与激发光之间的时间差,也就是下图的START( 激发时刻) 与STOP( 发光时刻) 的时间差。由于对于Stop 信号的要求,所以TCSPC 一般需要高重复频率的光源作为激发源,其重复至少要在100KHz 以上,多数的光源都会达到MHz 量级;同时,在一般情况下还要对Stop 信号做数量上的控制,做到尽量满足在一个激发周期内,样品产生且只产生一个光子的有效荧光信号,避免光子对的出现。2 频域测量对连续激发光进行振幅调制后,分子发出的荧光强度也会受到振幅调制,两个调制信号之间存在与荧光寿命相关的相位差,因此可以测量该相位差计算荧光寿命。 左图为正弦调制激发光(绿色)频域显示,发射光信号(红色)相应的相位变化频域显示。右图为对应不同寿命的调制和相位的频域显示。TM- 调制寿命,TP- 相位寿命。[1]显微荧光寿命成像技术(FLIM)显微荧光寿命成像技术(Fluorescence Lifetime ImagingMicroscopy,FLIM)是一种在显微尺度下展现荧光寿命空间分布的技术,由于其不受样品浓度影响,具有其他荧光成像技术无法代替的优异性能,目前在生物医学工程、光电半导体材料等领域是一种重要的表征测量手段。FLIM 一般分为宽场FLIM 和激光扫描FLIM。宽场FLIM(Wide Field FLIM,WFM)该技术是用平行光照明并由物镜聚焦样品获得荧光信号,再由一宽场相机采集荧光成像。宽场FLIM 常用于快速获取大面积样品成像。时域或是频域寿命采集都可以应用在宽场成像FLIM 上。宽场FLIM 有更高帧率和低损伤的优势。2 激光扫描FLIM(Laser Scanning FLIM,LSM)激光扫描FLIM 是针对选定区域内的样品逐点获取其荧光衰减曲线,再经过拟合最终合成荧光寿命图像。相比宽场FLIM,其在空间分辨率、信噪比方面有更大的优势。扫描方式有两种:一种是固定样品,移动激光进行扫描,一种是固定激光,电动位移台带动样品移动进行扫描。显微荧光寿命成像系统RTS2-FLIM应用材料科学领域宽禁带半导体如GaN、SiC 等体系的少子寿命mapping 测量量子点如CdSe@ZnS 等用作荧光寿命成像显微镜探针钙钛矿电池/LED 薄膜的组分分析、缺陷检测铜铟镓硒CIGS,铜锌锡硫CZTS 薄膜太阳能电池的组分、缺陷检测镧系上转换纳米颗粒GaAs 或GaAsP 量子阱的载流子扩散研究生命科学领域细胞体自身荧光寿命分析自身荧光相对荧光标记的有效区分活细胞内水介质的PH 值测量局部氧气浓度测量具有相同频谱性质的不同荧光标记的区分活细胞内钙浓度测量时间分辨共振能量转移(FRET):纳米级尺度上的远差测量,环境敏感的FRET 探针定量测量代谢成像:NAD(P)H 和FAD 胞质体的荧光寿命成像显微荧光寿命成像系统RTS2-FLIM应用案例1 用荧光分子对海拉细胞进行染色用荧光分子转子Bodipy-C12 对海拉细胞(宫颈癌细胞的一种) 进行染色。(a) 显微荧光寿命成像图,寿命范围1ns(蓝色)到2.5ns(红色);(b) 荧光寿命直方图,脂肪滴的短寿命约在1.6ns 附近,细胞中其他位置寿命较长,在1.8ns 附近。用荧光分子转子的时间分辨测量*大的好处在于荧光寿命具备足够清晰的标签特性,且与荧光团的浓度无关。[2]2 金属修饰荧光金属修饰荧光:(a) 荧光寿命是荧光团到金表面距离的函数;(b) 用绿色荧光蛋白(GFP)标记乳腺腺癌细胞的细胞膜的共聚焦xz 横截面,垂直比例尺:5m;(c) b 图的FLIM 图,金表面附近的GFP 荧光寿命缩短。[2]3 钙钛矿太阳能电池下图研究中,展示了一种动态热风(DHA)制备工艺来控制全无机PSC 的薄膜形态和稳定性,该工艺不含有常规的有害反溶剂,可以在大气环境中制备。同时,钙钛矿掺有钡(Ba2+) 碱金属离子(BaI2:CsPbI2Br)。这种DHA 方法有助于形成均匀的晶粒并控制结晶,从而形成稳定的全无机PSC。从而在环境条件下形成完整的黑色相。经过DHA处理的钙钛矿光伏器件,在0.09cm小面积下,效率为14.85%,在1x1cm的大面积下,具有13.78%的*高效率。DHA方法制备的器件在300h后仍然保持初始效率的92%。4 MQWs 多量子阱研究在(a) 蓝宝石和(b) GaN 上生长的MQWs 的共焦PL mapping 图像。具有较小尺寸的发光团的最高密度是观察到在GaN 上生长的MQWs。在(c) 蓝宝石和(d)GaN 上生长的MQWs 的共焦TRPL mapping 图。仅对于在GaN 上生长的MQWs,强的PL 强度区域与较长PL 衰减时间的区域很好地匹配。在(e) 蓝宝石和(f)GaN 上生长的MQWs 在A 点和B 点测量的局部PL 衰减曲线,均标记在图中。对于在GaN 上生长的MQWs,点A 和B 之间的PL 衰减时间差更高。显微荧光寿命成像系统FLIM参数配置北京卓立汉光仪器有限公司提供的显微荧光寿命成像系统是基于显微和时间相关单光子计数技术,配合高精度位移台得到微观样品表面各空间分布点的荧光衰减曲线,再经过用数据拟合,得到样品表面发光寿命表征的影像。是光电半导体材料、荧光标记常用荧光分子等类似荧光寿命大多分布在纳秒、几十、几百纳秒尺度的物质的选择。参数指标:系统性能指标光谱扫描范围200-900nm最小时间分辨率16ps荧光寿命测量范围500ps-1μs@ 皮秒脉冲激光器空间分辨率≤1μm@100X 物镜@405nm 皮秒脉冲激光器荧光寿命检测IRF≤2ns配置参数激发源及匹配光谱范围(光源参数基于50MHz 重复频率)375nm 皮秒脉冲激光器,脉宽:30ps,平均功率1.5mW,荧光波段:400-850nm405nm 皮秒脉冲激光器,脉宽:25ps,平均功率2.5mW,荧光波段:430-920nm450nm 皮秒脉冲激光器,脉宽:50ps,平均功率1.9mW,荧光波段:485-950nm488nm 皮秒脉冲激光器,脉宽:70ps,平均功率1.3mW,荧光波段:500-950nm510nm 皮秒脉冲激光器,脉宽:75ps,平均功率1.1mW,荧光波段:535-950nm635nm 皮秒脉冲激光器,脉宽:65ps,平均功率4.3mW,荧光波段:670-950nm660nm 皮秒脉冲激光器,脉宽:60ps,平均功率1.9mW,荧光波段:690-950nm670nm 皮秒脉冲激光器,脉宽:40ps,平均功率0.8mW,荧光波段:700-950nm科研级正置显微镜落射明暗场卤素灯照明,12V,100W5 孔物镜转盘,标配明场用物镜:10×,50×,100×监视CCD:高清彩色CMOS 摄像头,像元尺寸:3.6μm*3.6μm,有效像素:1280H*1024V,扫描方式:逐行,快门方式:电子快门电动位移台高精度电动XY 样品台,行程:75*50mm(120*80mm 可选),最小步进:50nm,重复定位精度:< 1μm光谱仪320mm 焦距影像校正单色仪,双入口、狭缝出口、CCD 出口,配置三块68×68mm 大面积光栅,波长准确度:±0.1nm,波长重复性:±0.01nm,扫描步距:0.0025nm,焦面尺寸:30mm(w)×14mm(h),狭缝缝宽:0.01-3mm 连续电动可调探测器:制冷型紫外可见光电倍增管,光谱范围:185-900nm(标配,可扩展)光谱CCD(可扩展PLmapping)低噪音科学级光谱CCD(LDC-DD),芯片格式:2000x256,像元尺寸:15μm*15μm, 探测面:30mm*3.8mm,背照式深耗尽芯片,低暗电流,*低制冷温度-60℃ @25℃环境温度,风冷,最高量子效率值95%时间相关单光子计数器(TCSPC)时间分辨率:16/32/64/128/256/512/1024ps… … 33.55μs,死时间< 10ns,*高65535 个直方图时间窗口,瞬时饱和计数率:100Mcps,支持稳态光谱测试;OmniFluo-FM 荧光寿命成像专用软件控制功能:控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等数据处理功能:自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示图像处理功能:直方图、色表、等高线、截线分析、3D 显示等操作电脑品牌操作电脑,Windows 10 操作系统软件界面控制测试界面测试软件的界面遵循“All In One”的简洁设计思路,用户可在下图所示的控制界面中完成采集数据的所有步骤:包括控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等。数据处理界面功能丰富的荧光寿命数据处理软件,充分挖掘用户数据中的宝贵信息。可自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示。自主开发的一套时间相关单光子计数(TCSPC)荧光寿命的拟合算法,可对荧光衰减曲线中最多包含4 个时间组分的荧光过程进行拟合,获得每个组分的荧光寿命,光子数比例,计算评价函数和残差。TCSPC 荧光寿命通常并非简单的指数衰减过程,而是与光源及探测器相关的仪器响应函数(IRF)与荧光衰减过程相互卷积的结果,因此适当的拟合方法和参数选择对获得正确可靠的荧光寿命非常重要。该软件可导入实际测量的IRF 对衰减曲线进行卷积计算和拟合。但是大多数情况下, IRF 很难正确的从实验获得,针对这种情况,软件提供了两种无需实验获取IRF 的拟合方法:1.通过算法对数据上升沿进行拟合,获得时间响应函数IRF,然后对整条衰减曲线进行卷积计算和拟合得到荧光寿命。2.对于衰减时间远长于仪器响应时间的,可对衰减曲线下降沿进行直接的指数拟合。该软件经过大量测试,可以很好的满足各种场合的用户需求。MicroLED 微盘的荧光强度像(3D 显示):
    留言咨询
  • 产品简介: DW-3系列生物显微成像测量系统由DW-100型三目生物显微镜、DW-3型高清晰彩色数字摄像头和DW-3型显微成像分析软件组成。DW-100型三目生物显微镜采用了最先进的光学设计,DCIS无限远光学系统,超大而平坦的视场,从而得到卓越的光学成像质质量。 该系统广泛应用于医疗卫生机构实验室、研究所及高等院校等单位作细菌学观察、教学和研究、临床实验及常规医疗检验之用。 产品优势:1. 高清晰彩色数字成像。2. 轻松完成数字图像获取和存储。3. 提供了科学级的无损格式图像输出。4. 可帮助用户轻松完成生物显微图像的获取、图像存储、图像编辑、图像处理和各种图像测量应用。 DW-3-CMOS型 技术参数:1. 显微成像显 微 镜:三目生物显微镜数字成像:500万像素科学级CMOS数字摄像头,真彩分 辨 率:1.0微米2. 显微图像处理图像显示:实时动态观察,随时捕捉任意视野图像图像编辑:具有对图像任意区域裁切、翻转及标注文字输入等功能图像调整:图像亮度、对比度、饱和度、RGB通道任意调节,自动白平衡图像锐化:通过增强图像的高频分量,使图像边缘变得更清晰锐利图像平滑:通过图像平滑处理,使图像背景均匀平滑。3. 显微目标测量校正标定:具有对测量系统在线标定功能,实现精确测量测量标注:测量标注加入、测量参数移位及图像缩放等功能测量功能:对长度、角度、多边形、任意曲线圆弧、点数、面积等的精确测量方形测量:方形测量长、宽、周长、面积圆形测量:圆形测量周长、面积、直径圆弧测量:可测量任意曲线圆弧弧长、角度、半径数据输出:测量数据导出到EXCEL或者TXT 三目生物显微镜:1、光学系统:DCIS无限远色差独立校正光学系统(或相当于),超大而平坦的视场,从而得到卓越的光学成像质量。2、观察筒:铰链式双目,转轴倾斜30°,360°可旋转,瞳孔距调节范围:52-75mm3、目镜:高眼点大视野平场目镜,WF10X/18mm4、物镜:无限远消色差物镜4X、10X、40X(0.65、弹簧)、100X(1.25油镜,弹簧)5、转换器:内倾式4孔转换器6、载物台:142*135mm双层复合式机械移动平台,移动范围:76*52mm7、聚光镜:NA1.25阿贝聚光镜,手轮升降式,配相衬、暗场插槽,配中心调节装置8、调焦机构:低位粗动同轴调焦手轮;微动手轮0.1mm/转,格值0.001mm;微调格值越小,9、调焦越清晰;粗动松紧可调,14mm/转。10、安全设计:工作台上限位安全装置,最大行程20mm11、照明装置:100V-240V开关电源,6V20W卤素灯,亮度连续可调12、500万像素科学级CMOS数字摄像头12.1光学界面: 1/2.5英寸,C型成像接口12.2分辨率: 2560 * 1944,色深12bit,500万像素 12.3像素尺寸:3.4μm * 3.4μm 12.4光谱响应:400nm~1000nm12.5帧频率:5fps@2592x1944,16fps@1024x76813、仪器配置:13.1三目生物显微镜 1台 13.2三目成像接头 1个13.3 500万像素科学级CMOS数字摄像头 1台 13.4显微成像分析软件 1套 DW-3-CCD型 技术参数:1. 显微成像显 微 镜:三目生物显微镜数字成像:500万像素科学级CCD数字摄像头,真彩分 辨 率:1.0微米2. 显微图像处理图像显示:实时动态观察,随时捕捉任意视野图像图像编辑:具有对图像任意区域裁切、翻转及标注文字输入等功能图像调整:图像亮度、对比度、饱和度、RGB通道任意调节,自动白平衡图像锐化:通过增强图像的高频分量,使图像边缘变得更清晰锐利图像平滑:通过图像平滑处理,使图像背景均匀平滑。3. 显微目标测量校正标定:具有对测量系统在线标定功能,实现精确测量测量标注:测量标注加入、测量参数移位及图像缩放等功能测量功能:对长度、角度、多边形、任意曲线圆弧、点数、面积等的精确测量方形测量:方形测量长、宽、周长、面积圆形测量:圆形测量周长、面积、直径圆弧测量:可测量任意曲线圆弧弧长、角度、半径数据输出:测量数据导出到EXCEL或者TXT 三目生物显微镜:1、光学系统:DCIS无限远色差独立校正光学系统(或相当于),超大而平坦的视场,从而得到卓越的光学成像质量。2、观察筒:铰链式双目,转轴倾斜30°,360°可旋转,瞳孔距调节范围:52-75mm3、目镜:高眼点大视野平场目镜,WF10X/18mm4、物镜:无限远消色差物镜4X、10X、40X(0.65、弹簧)、100X(1.25油镜,弹簧)5、转换器:内倾式4孔转换器6、载物台:142*135mm双层复合式机械移动平台,移动范围:76*52mm7、聚光镜:NA1.25阿贝聚光镜,手轮升降式,配相衬、暗场插槽,配中心调节装置8、调焦机构:低位粗动同轴调焦手轮;微动手轮0.1mm/转,格值0.001mm;微调格值越小,9、调焦越清晰;粗动松紧可调,14mm/转。10、安全设计:工作台上限位安全装置,最大行程20mm11、照明装置:100V-240V开关电源,6V20W卤素灯,亮度连续可调12、500万像素科学级CCD数字摄像头12.1光学界面: 2/3英寸,C型成像接口 12.2传感器:Sony ICX282 CCD,彩色 12.3分辨率: 2560 * 1944,,500万像素 12.4像素尺寸:3.4μm * 3.4μm 12.5像素混合模式: 2*2,3*3或4*4 ,彩色 12.6曝光控制: 1.6毫秒到17.9分钟,1微秒递增 12.7制冷类型: 热电制冷(Peltier cooling)至环境温度以下10度 12.8实时预览: 全幅实时预览速度25幅/秒 12.9帧频率:10fps@1280X768;30fps@320X240 13、仪器配置三目生物显微镜 1台 三目成像接头 1个500万像素科学级CCD数字摄像头 1台 显微成像分析软件 1套
    留言咨询

微生物显微成像测量系统相关的资讯

  • 相机显微镜应用于生命科学(显微镜成像系统)
    相机显微镜是一种将显微镜与专业显微镜相机结合在一起的设备,用于拍摄和记录显微镜下的图像。不仅能够帮助我们观察到微观世界,还能进行参数设置和数据采集,提供定量和定性的数据,也可以将图像投射到大屏幕上,供多人观察与分析,方便多人共览分析,是实验教学、科学研究及医学检验的理想工具。显微镜摄像头MHD800相机显微镜在生命科学领域的应用非常广泛,应用于细胞生物学、分子生物学、遗传学、免疫学等多个领域。例如,在细胞生物学中,显微镜成像系统可以用于观察细胞的结构、形态和功能,以及细胞之间的相互作用。在分子生物学中,显微镜成像系统可以用于观察DNA、RNA和蛋白质等分子的结构和功能。通过测量细胞的大小、形状和数量,我们可以了解细胞生长和分化的规律。通过观察蛋白质的分布和数量,我们可以了解蛋白质的功能和调控机制。明慧MingHui显微镜数码成像系统界面明慧MingHui显微镜数码成像系统功能特点:高分辨率:能够捕捉到更清晰、更准确的图像。自动对焦和自动曝光功能:能够快速准确地捕捉到目标物体。多种观察模式:如明场、暗场、微分干涉、荧光、偏光等,可以满足不同实验需求。配备分析软件:可以对图像进行定量和定性分析,为科学研究提供有力支持。应用广泛:适用于生命科学、医学、材料科学等多个领域的研究。产品清单:显微图像分析软件相机显微镜如果您需要一整套显微镜成像系统或者已有的显微镜需要升级拍照功能和安装,请与我们联系。
  • 开发深度学习超分辨显微成像方法 陌讯科技数字显微形态分析系统正式发布
    近日,陌讯科技正式宣布其自主研发的数字显微形态分析系统正式上线。陌讯数字显微形态分析系统是陌讯科技自主研发的科研形态分析系统。能够显示,编辑,分析,处理,保存,打印8位,16位,32位的图片。陌讯显微形态分析系统支持图像栈(stack)功能,即在一个窗口里以多线程的形式层叠多个图像, 并行处理。只要内存允许,陌讯显微形态分析系统能打开任意多的图像进行处理。除了基本的图像操作, 比如缩放,旋转, 扭曲, 平滑处理外,陌讯显微形态分析系统还能进行图片的区域和像素统计, 间距,角度计算, 能创建柱状图和剖面图,进行傅里叶变换。陌讯显微形态分析系统可计算选定区域内分析对象的一系列几何特征。分析指标包括:长度、角度、周长、面积、长轴、短轴、圆度、最佳椭圆拟合、最小外接矩形拟合以及质心坐标等。 陌讯显微形态分析系统首席工程师陈侃介绍说,我司通过“陌讯数字显微形态分析系统”项目研制的科研数字形态分析软件,目前已在多项科研实验中投入使用。陌讯显微形态分析系统在科研实验中支持神经元追踪、神经元分支统计、曲率计算与拟合、基于机器学习的自动细胞分割、图形的量化分析、3D细胞自动分割、线粒体网络形态分析、图像自动配准、细胞划痕实验分析、3D渲染动画生成、图像抖动自动校正、接触角测量、基于深度学习的细胞核自动分割、自动细胞计数、利用宏记录器自动化处理、自动统计气泡的面积直径、荧光共标细胞计数、荧光照片的合并分割、明场图片白平衡、荧光比率图的制作等一系列功能。 陌讯科技自主研发“陌讯数字显微形态分析系统”这一数字显微形态分析软件项目立项以来,项目科研团队历时5年攻关,全面突破在对显微镜图像进行定量分析时的一系列科研难题。支持荧光照片的平均荧光强度分析、径向平均荧光强度检测、荧光共定位分析、计算图片的孔隙率、分析脑片不同分层的灰度值、单个细胞平均荧光强度自动检测、3D体积与表面积测量、免疫组化分析、细胞膜荧光强度检测、Western Blot条带定量、面积测量综述、细胞计数综述等多种定量分析场景应用。还培养出一支集光学、机械、电子、计算机、软件、材料等领域的显微光学软件技术研发与工程化开发团队。业内专家认为,“陌讯数字显微形态分析系统 ”项目的成功实施,极大改善了国内显微成像软件自主研发缺失的状况,对满足中国生物医学等前沿基础研究的定制化需求、提升创新能力,以及推动中国显微成像分析软件行业转型升级具有重要战略意义。陌讯科技CTO赵卓然透露,下一步将结合该工程化及成果转化创新模式,实现“陌讯数字显微形态分析系统”项目科技成果在研发平台、工程化平台、产业化平台、市场平台的高效对接,通过系列化、组合化的产品布局,推动该项目显微形态分析系统实现工程化、产业化。
  • 生物组织红外成像的全新手段——荧光引导光学光热红外显微光谱
    红外显微光谱法是非破坏性、结构敏感的检测方法,目前已在基于分子结构的单细胞领域的研究中发挥重大作用,诸如蛋白构象改变、氧化还原、脂质体的产生与降解等。但是受制于红外光谱仪本身的限制,对于生物组织样品来说制样非常困难,因此极大的限制了红外光谱在生物医学方面的应用。O-PTIR (Optical Photothermal Infrared) 光学光热红外光谱是一种快速简单的非接触式光学技术,通过检测由于本征红外吸收引发的样品表面快速的光热膨胀或收缩,克服了传统IR衍射的极限,空间分辨率可达500 nm。近期,美国PSC公司又推出了非接触亚微米分辨荧光红外拉曼同步测量系统mIRage-LS,将O-PTIR技术与荧光(FL)进一步有机结合,利用落射荧光快速定位 O-PTIR 测量的区域,提供了对样品荧光标记区域以及邻近未标记组织的化学结构的快速光谱分析。图 1. FL-OPTIR 显微镜基本原理和观测方法这项全新的技术对样品要求非常低,而红外光谱的空间分辨率可达亚微米级别,为红外光谱在生物医学方面的应用提供了全新的视角。比如在阿尔茨海默病 (AD) 研究方面,AD的关键病理特征是淀粉样蛋白折叠,这些 β-折叠结构具有特定的振动特征,对于红外光谱来说十分敏感,但是受制于传统红外光谱仪本身的限制,在生物组织样品上直接测量非常困难。而非接触式的FL-PTIR技术却能够很好适用于这些样品,并且已经有多个小组通过实验证明了FL-PTIR能够应用于具有特殊化学敏感性的活细胞成像研究。Craig Prater等人通过这项技术成功实现了荧光定位下的OPTIR红外观测,并且完成了对组织中单个病理结构内的 β-折叠结构进行结构分析、在脑组织的特定细胞和培养的原代神经元分析。首先,作者使用了12个月周龄的 APP/PS1 转基因小鼠的大脑切片,用淀粉样蛋白特异性发光共轭聚电解质探针mytracker R(Ebba Biotech,Solna,Sweden)进行标记,并用OPTIR进行观测β 折叠结构的分布。相比于传统红外很难定位的问题,FL-OPTIR通过宽场荧光能够快速定位淀粉样蛋白斑块。并直接在脑组织中评估其在单个斑块中的结构。通过 k 均值聚类方法对其进行分析,清楚地显示了在 1630 cm–1处具有高振幅和低振幅的两组光谱的存在,并且具有 1630 cm–1高振幅的光谱清楚地与荧光信号共定位。光谱分析表明 Amytracker 没有对酰胺 I 和 II 区域有明显的吸收,因此表明 Amytracker 可用于 OPTIR 测量的荧光引导。图 2. FL-OPTIR 对脑组织中的淀粉样斑块进行成像荧光和红外图谱和热图的展示。 在第二个实验中,作者提供了一个概念性方法验证实验,证明 FL-OPTIR 可用于研究组织中的特定细胞类型,而这对传统红外显微光谱法来说十分具有挑战性。为此作者对脑组织中与淀粉样斑块相关的小胶质细胞进行成像,以评估它们的光谱特征,从而了解小胶质细胞是否可以将 Aβ 原纤维转化为单体的问题。这个实验使用 Aβ 特异性抗体 82E1 标记的 16 μm 组织切片,并用抗体 Iba1 对小胶质细胞进行了免疫标记。通过FL-OPTIR可以定位淀粉样斑块附近的小神经胶质细胞并测量 OPTIR 光谱。通过测量,发现 82E1 阳性小胶质细胞表现出β-折叠含量升高,表明小胶质细胞与 Aβ 原纤维相关。图 3. 脑组织中淀粉样斑块周围小胶质细胞的成像。 在第三个实验中,作者研究了 FL-OPTIR 在培养的原代神经元中 Aβ结构成像的适用性。与组织研究类似,淀粉样蛋白的结构异质性使得研究神经毒性与 Aβ 结构之间的关系仍具有挑战性。因此,为了直接评估神经元中的淀粉样蛋白结构,作者使用FL-OPTIR技术基于荧光信号引导的光谱测量,发现远端比近端神经突部分(分支后)相关的 Aβ 包含更多的 Aβ-聚集体, 作者认为这些神经元隔室可能本质上更容易结合 Aβ或者能够主动运输到远端。图 4. 初级神经元中 Aβ (1–42) 的结构成像。 总结:新型成像方法FL-OPTIR 结合了荧光成像和红外光谱来描述生物组织内的结构变化。能够针对复杂系统中的特定细胞、细胞器和分子进行分析和检测,解决了生物标本中红外光谱定位困难的问题。能够直接在组织中定位和分析淀粉样蛋白和相关的小胶质细胞,这可以解决局部环境在 AD 进展中的作用,帮助识别与淀粉样斑块相关的小胶质细胞,并在亚细胞水平上直接研究小胶质细胞中的纤维结构。为复杂样品中的蛋白质和细胞进行红外光谱分析提供了新的测量方法,为红外在生物领域的应用提供更加便捷实验途径。 作为美国PSC公司在中国的独家代理,Quantum Design中国于2020年将非接触亚微米分辨红外拉曼同步测量系统—mIRage系统引入国内,助力中国科研工作者取得一个又一个重大突破: 国内经典案例分享:南京大学环境学院借助mIRage建立了一种新型的塑料表面亚微米尺度化学变化表征方法。该工作发表在知名期刊Nature Nanotechnology上。 中国农业大学借助mIRage成功实现对玉米粉中痕量微塑料的原位可视化表征。该工作发表在Science of the Total Environment上。为满足国内日益增长的生物红外表征需求,更好的为国内科研工作者提供专业技术支持和服务,Quantum Design中国北京样机实验室引进了荧光引导光学光热红外显微光谱,为您提供样品测试、样机体验等机会,期待与您的合作!

微生物显微成像测量系统相关的方案

微生物显微成像测量系统相关的资料

微生物显微成像测量系统相关的试剂

微生物显微成像测量系统相关的论坛

  • 生物显微镜的成像原理分析

    显微镜(microscope)简称光镜,是一种将肉眼无法看清楚的微生物体进行光学放大成像的常用仪器。在生命科学、材料科学、基础科学及众多的微观领域中都离不开显微镜。1590年.荷兰的Han,父子始创放大10倍显微镜。175.8年,Dollond制成消色差透镜,提高了显微镜放大倍数。1873年,德国科学家Abbe设计成近代显微镜。1953年.上海江南光学仪器厂国产显微镜诞生,并陆续生产了荧光、相衬、偏光等专用显微镜。生物及医用显微镜可分为光学放大及电子放大两大类。前者按用途可分为普通型、特种型、高级型显微镜和手术显微镜。普通型生物显微镜仅供一般用途使用,通常的农用与医用显微镜、倒税显微镜均属这一类。特种型生物显微镜可作某些专用的观察和研究。暗场生物显微镜、荧光显微镜、偏光显微镜、相衬和干涉相衬显微镜等均属于这一类。高级型生物显微镜系指大型多用途的生物显微镜.研究用生物显微镜和万能研究用生物显微镜等属于这一类。一、显微镜放大成像系统显微镜光学系统由物镜和目镜两部分组成。因为被观测的物体本身不发光,而要借助于外界照明,故显微镜需要有一个照明系统,这些部分都是由较复杂的透镜组成,尤其物镜更为复杂。下图是显微镜成像的光路原理图,图中的物镜和目镜均用薄透镜表示。http://www.yi7.com/file/upload/201201/07/14-00-33-93-1.jpg显微镜成像原理显微镜的物体AB处于物镜的2倍焦距之内一倍焦距之外,它首先通过物镜成一放大的倒立实像A'B',且使之位于目镜的物方焦平面上或焦平面以内很靠近的地方,然后目镜将这一实像再次成一个正立虚像A"B"于无限远或人眼明视距离之外,以供眼睛观察。显微镜对物体进行2次放大,因此与放大镜相比,具有更高的放大倍率,能观察到肉眼所不能直接观察的微小物体,分辨更细小的细节。在这里目镜相当于放大镜,只不过这时放大镜的物是物镜所成的像而已。由于物镜所成的像是实像.因而可在实像处(即目镜的物方焦平面处)安放各种用途分划板.供对准或测量用。二、显徽镜的放大率与分辨本领1.显微镜的分辨本领 分辨本领主要指接物镜分辨被检查物体细微结构的能力,也就是说在显微镜下判别的最小微粒的大小或两点之间最短距离及某物点最小直径的限度,便叫做显微镜的分辨本领.或称为鉴别率。通常用d表示:http://www.yi7.com/file/upload/201201/07/14-00-33-14-1.jpg式中.A表示波长;n sins (NA)表示数值孔径。 从式中可知,显微镜的分辨率主要取决于光的波长和数值孔径这两个因素。d值越小,分辨本领也就越强,越能看清物体的细微结构。鉴别率计算单位是Um. 显微镜的鉴别率的提高只有两个办法: (1)增大物镜的数值孔径(镜口率)。从图可以看出,影响数值孔径(n sina)的因素有两个:其一为物体上某点射人物镜光锥角(镜口角)的一半(sina);其二为检品与物镜间媒质的折射率n。即数值孔径为NA = n sine镜口角半数最大能到900,故si na的最大值为1.00,这时物镜的焦距最短而曲度也很大,制造上是极为困难的。即使能办到,在干燥系中的镜口率只有1 x sin90“(控气n二1)。若再增大镜口率便只有从媒质着手,所以便有水、甘油,石蜡油和香柏油等浸润均匀媒质的应用,确实改进了镜口率不少.它最高可到1.40。如果用澳萘液可达1.67左右,更接近盖片和透镜的折射率。http://www.yi7.com/file/upload/201201/07/14-00-33-51-1.jpghttp://www.yi7.com/file/upload/201201/07/14-00-33-44-1.jpg (2)缩短光源的波长:采用紫外线作光源,波长可到0.1Um,这样放大倍数比自然光放大的倍数大3-4倍,普通紫外线光波在0.2 Um左右,即使能产生出0.1 Um波长的紫外线.一般透镜也将把它吸收干净.无法利用。显微镜的最大数位孔径可达1.5 Um左右,在这种情形下: http://www.yi7.com/file/upload/201201/07/14-00-33-33-1.jpg即在这种显微镜里,仍可分辨的两点间最短距离差不多等于所用光波波长的1/30假定绿光的光波的波长http://www.yi7.com/file/upload/201201/07/14-00-33-23-1.jpg那么显微镜能分辨的最短距离为:http://www.yi7.com/file/upload/201201/07/14-00-33-89-1.jpg 则这台显微镜的最高分辨距离也超不过。.182 Um。肉眼在明视距离(250 mm)能分辨的两点之间最短距离为0.1 mm,约为上述d值的560倍.因此I台光学显徽镜的放大率有100()倍也就足够了。这是因为光的本性及光的绕射现象就限制了显徽镜的放大极限。凡是光波超过微粒直径的2倍时,光线就很方便地绕过微粒而继续前进,所以普通干燥系显微镜的最大鉴别率只能达到光源波长的1/2,直径小到0.2 5m的微粒就无法被光学显微镜发觉。虽然后来应用浸润系方法,如油镜,提高了折射率,其鉴别率也只不过能提高到光源波长的1/3而已。而且还要用最好的透镜才能达到。

微生物显微成像测量系统相关的耗材

  • 荧光显微成像系统配件
    荧光显微成像系统配件和欧洲进口的显微成像系统,可用于研究细胞形态、荧光探针检测(GFP)、荧光共振能量转移(FRET)和快速分子过程。荧光显微成像系统配件集成方案 使用的现代荧光成像技术极大得帮助科研人员研究细胞形态、荧光探针检测 量转移和快速分子过程。 提供实验所需的曝光时间,根据相机的设置 有效集成并优化同步各种部件 显微成像系统集成方案 已经成为研究活细胞和分子结构比不可少的科研工具 能够以相机的最大速度连续采集一系列图像 可以产生每秒幅的比率图像 在更短的时间内获得更好的实验数据 荧光显微成像系统配件 可编程控制的光源 时成像控制单元 显微成像系统科研型相机 显微镜适配器 成像软件和工作站 价值尽量减少光毒性 显微成像系统特点 时序控制准确: 满幅图像帧频最高可达图像分析灵活: 非常适合单个细胞或一组活细胞的动态过程的研究 荧光显微成像系统配件特点 图像采集和传输的控制达到微秒精度图像采集快速: 软件具有多维图像分析功能和各种应用模块 三维成像要求在轴上能够快速成像,才能获得重建数据 孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有包括凝胶成像仪在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个一产品是用户满意的完美产品。 我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。 更多关于显微成像系统价格等诸多信息,孚光精仪会在第一时间更新并呈现出来,了解更多内容请关注孚光精仪官方网站方便获取!
  • AFM探针/原子力显微镜探针/生物样品/细胞成像/DNP-10
    布鲁克AFM原子力显微镜探针 - DNP-10布鲁克AFM探针 作为一家能够提供AFM/SPM仪器和AFM/SPM探针的企业,布鲁克公司深刻理解每个单独的组件对于一整套性能AFM系统的价值。布鲁克公司以的生产工艺,专业的AFM领域背景,得天独厚的生产装备,赋予探针制造众多的优势,确保在应用领域中提供完整的AFM解决方案。布鲁克AFM探针制造优势: Class100级别的无尘室 专业的设计、制造工序及制造工具 探针设计团队与AFM设备研发团队通力合作,配合紧密 训练有素的生产团队,能够制造出各种型号的探针 质量管理体系,确保探针性能 在实验中,用户所得到的数据取决于探针的质量及探针的重复性。布鲁克的探针具有严格的纳米加工控制,的质量测试,和AFM领域的专业背景。所以用户尽可放心,我们的探针不仅为您当前的应用提供所需的结果,同时也能为将来的研究提供参考数据。原子力显微镜探针(AFM探针)常用型号一览材料样品大气环境液下环境 智能成像 高分辨SCANASYST-AIRSCANASYST-AIR-HPISCANASYST-FLUID+SNL-10一般成像DNP-10SCANASYST-FLUIDDNP-10轻敲模式 较软样品/相位成像 OLTESPA-R3 , RFESPA-75SNL-10 , DNP-10一般样品TESPA-V2 , RTESPA-300 SNL-10 , DNP-10 快速扫描FASTSCAN-AFASTSCAN-B,FASTSCAN-C接触模式一般成像SNL-10 ,DNP-10 , MLCTSNL-10 ,DNP-10 , MLCT摩擦力显微镜ORC8-10, SNL-10, DNP-10ORC8-10, SNL-10, DNP-10 电磁学测量静电力显微镜MESP-RC-V2, MESP-V2, SCM-PIT-V2 磁力显微镜MESP-RC-V2, MESP-V2 表面电势测量PFQNE-AL, MESP-RC-V2, MESP-V2, OSCM-PT-R3, SCM-PIT-V2 导电原子力/隧穿原子力 MESP-RC-V2 , MESP-V2, SCM-PtSi, OSCM- PT-R3, SCM-PIC-V2, SCM-PIT-V2 峰值力隧穿原子力显微镜PFTUNA, MESP-RC-V2, MESP-V2, SCM-PtSi, SCM-PIT-V2 扫描电容显微镜OSCM-PT-R3, SCM-PIC-V2, SCM-PIT-V2 扫描扩散电阻显微镜SSRM-DIA, DDESP-V2 , DDESP-FM-V2 , OSCM-PT-R3, SCM-PtSi , SCM-PIT-V2 压电力响应显微镜DDESP-V2 , DDESP-FM-V2 , MESP-RC-V2 , MESP-V2, OSCM-PT-R3, SCM-PtSi, SCM-PIT-V2 生物样品 生物小分子 一般成像 MLCT, DNP, DNP-S 高分辨SNL-10, Fastscan-D, AC40细胞一般成像MLCT, DNP-10 力学测量MLCT, DNP-10, ScanAsyst-Fluid, PFQNM-LC探针修饰修饰小球NP-O10 修饰分子NPG-10 力学测量 杨氏模量(E) 探针类型 弹性常数(K) 1 MpaSNL-10 SCANASYST-AIR 0.5N/m 1 MpaSAA-HPl-300.25N/m5 MpaAD-2.8-AS AD-2.8-SS2.8N/m RTESPA-1505NIm10 MpaRTESPA-150-305NIm200 MpaAD-40-AS AD-40-SS40N/mRTESPA-30040N/m100 MpaRTESPA-300-3040N/m1 GpaRTESPA-525 RTESPA-525-30200N/m 10 GpaDNISP-HS PDNISP-HS450N/m 用于高分辨成像的超尖探针Dimension Icon 大气环境ScanAsyst-Air-HPI, PeakForce-HiRs-SSB液下环境PeakForce-HiRs-F-BDimension Fastscan 大气环境PeakForce-HiRs-SSB*, PeakForce-HiRs-F-A 液下环境Fastscan-D-SS *setpoint need to be around 100pN
  • 多光谱显微镜成像系统配件
    多光谱显微镜成像系统配件是美国进口多光谱显微镜,是一种具有美国专利的基于声光可调谐滤波片技术是目前光谱分辨率和光谱转换速度最高的技术和显微多光谱成像系统。多光谱显微镜成像系统配件非常适合容量高,数量大的荧光的研究,光谱反射和透射成像技术是生命科学不可多得的科研工具,而多光谱细胞成像系统的使用对象范围从活细胞到整个动物体多光谱显微镜成像系统配件参数 光谱范围 450-800nn光谱分辨率 1.5nm(450nm波段处), 3nm( 800nm波段处), 每个中心波长处可变波带外滤光能力1000:1输出光线形偏振系统总体效率50nm-800nm内约为30℅转换速度<100微秒图像质量可达衍射极限数据接口USB 2.0应用软件图像采集和高光谱图像分析软件操作系统Windows XP多光谱显微成像系统和欧洲进口多光谱细胞成像系统,也是光谱分辨率和光谱转换速度最高的多光谱成像系统。孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有包括凝胶成像仪在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个一产品是用户满意的完美产品。我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。多光谱显微成像系统,多光谱细胞成像系统由中国领先的进口精密仪器和实验室仪器旗舰型服务商-孚光精仪进口销售!孚光精仪精通光学,服务科学,欢迎垂询!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制