中红外大面积功率探测器

仪器信息网中红外大面积功率探测器专题为您提供2024年最新中红外大面积功率探测器价格报价、厂家品牌的相关信息, 包括中红外大面积功率探测器参数、型号等,不管是国产,还是进口品牌的中红外大面积功率探测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合中红外大面积功率探测器相关的耗材配件、试剂标物,还有中红外大面积功率探测器相关的最新资讯、资料,以及中红外大面积功率探测器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

中红外大面积功率探测器相关的厂商

  • 深圳市汇成探测科技有限公司始建于2007年是一家专业从事金属探测器研发、生产、销售为一体的企业。公司严格依照ISO9001国际质量标准体系的要求,从产品的研发设计、生产制造到销售及售后服务全过程,已建立一套严谨的品质管理和保证体系。目前公司主营品种齐全有地下可视成像仪、可视地下金属探测器、远程地下金属探测器、探盘式地下金属探测器、手持金属探测器。品质彰显价值,服务缔造信誉。为广大客户提供更优质的服务,公司以“专业、信誉、质量第一、用户至上”为经营宗旨,以高品质的产品与服务满足客户的梦想。追求卓越是我公司致力追求的目标。我们更坚信:有了您的支持和我们不断的努力,我们与社会各界同仁携手并进,开拓创新,共创美好未来。
    留言咨询
  • 东莞市嘉乐仕金属探测设备有限公司是一家专业金属探测器,金属探测仪,金属检测仪,金属检测器,食品金属探测器,金属分离器,x光机,x射线异物检测仪的集研发、生产、销售于一体的民营高科技企业.经过多年的经营发展和科技上的不断创新,已成为中国最大的金属探测器生产厂家之一,嘉乐仕凭借优质的产品,卓越的技术和完善的服务,产品遍及祖国各地,并远销美洲,欧洲,非洲,中东,东南亚等国际市场。   东莞市嘉乐仕金属探测设备有限公司以“诚信是我风格,质量是我生命“ 为宗旨,视用户为“上帝”,一贯秉承“质量第一、顾客满意,持续改进,争创一流”的方针,从产品的研发设计、生产制造到销售及售后服务全过程,已建立一套严谨的品质管理和质量保证体系,且采取有效的市场保护措施,确保为每个用户提供最优质的产品和最完善的服务。   展望未来,嘉乐仕将一如继往的秉承”敬业,诚信,融合,创新“的企业精神,研制出更好的产品,提供更好的服务,树立更好的形象,愿与各界新老朋友进行更广泛的合作,共创辉煌!   嘉乐仕热忱欢迎企事业单位前来参观考察,洽商合作,愿与您携手共创更辉煌的明天! 联系人:卢生15907693763(微信同号)QQ:2777469253 欢迎来电咨询!官网:www.jls668.net
    留言咨询
  • 400-860-5168转4180
    上海续波光电技术有限公司是一家专业从事高性能薄膜沉积及处理设备、光电材料及软件、金刚石合成及应用、激光等离子体仿真和诊断等产品及服务进口的技术贸易服务型公司。公司至今已与法国、德国、英国、瑞士、意大利、美国、加拿大、日本、俄罗斯等国家的多家企业建立了战略合作关系,并服务于国内从事微电子、半导体、光学、纳米技术等领域的研究所和大学。公司从事领域及产品主要包括:加速器质谱仪:第三代14C加速器质谱仪系统(AMS),包括全套可兼容第三代石墨化系统AGE3、气动压样装置PSP、铁制分配器FED、管密封装置TSE、气体电离探测器GID、气体接口系统GIS、碳酸盐处理系统CHS2、同位素比质谱仪IRMS。薄膜制备及处理:磁控溅射仪(magnetron sputtering system)、电子束蒸镀设备(E-beam Evaporation system)、离子束溅射沉积(IBS system)、化学束外延镀膜(CBE/GSMBE)、分子束外延设备(MBE)、离子减薄仪(Ion Milling)、超高真空多功能镀膜设备、高精密光学镀膜设备(Optical Coating system)、刻蚀机(RIE, RIEB)、超导约瑟夫森结制备(Josephson Junction, Qubits)、DLC类金刚石镀膜设备。金刚石制备及应用:纳米晶金刚石制备设备、热丝化学气相沉积(HFCVD)、CVD单晶金刚石合成设备、CVD光学级金刚石窗口合成、微波等离子化学气相沉积(MPCVD)、工具级金刚石涂层制备(tool coating)、金刚石单晶/多晶掺杂(single crystal diamond and doping)、CVD金刚石单晶及其应用、高温高压金刚石单晶(HPHT diamond)、金刚石抛光设备(diamond polishing)、激光切割设备(laser cutting)、钻石净度及切工评定仪器;高能密度物理:辐射流体力学模拟、原子光谱分析软件、多维碰撞辐射软件、三维热辐射CAD软件、状态方程和不透明度、原子物理数据库;微波干涉仪、金刚石靶丸、超高功率输出窗口;激光等离子体气体/固体靶、粒子加速器源、激光等离子体加速器及应用(无损测试)激光器与设计:固体激光器设计软件(Solid-state Laser)、光纤激光器设计软件(Fiber laser)、半导体激光器设计软件(Semiconductor laser)、激光镜面镀膜设备(Lasers coating system)、高功率激光输出窗口(High power output window)、高功率激光热沉片(Heat Sink)、高功率钻石激光器(Diamond Laser)、金刚石窗口镀增透膜(AR coating service);磁场分布测量:微霍尔阵列磁场相机(1D/3D)、大面积磁场分布测量解决方案、永磁转子表磁测量解决方案,多功能表磁测试平台
    留言咨询

中红外大面积功率探测器相关的仪器

  • 太阳能电池量子效率测试系统——SolarCellScan100系列系统功能系统可以实现测试太阳电池的:光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度、量子效率Mapping、反射率Mapping。系统适用范围1、适用于各种材料的太阳电池包括:单晶硅Si、多晶硅mc-Si、非晶硅α-Si、砷化镓GaAs、镓铟磷GaInP、磷化铟InP、锗Ge、碲化镉CdTe、铜铟硒CIS、铜铟镓硒CIGS、染料敏化DSSC、有机太阳电池Organic Solar Cell、聚合物太阳电池Polymer Solar Cell 等2、适用于多种结构的太阳电池包括:单结Single junction、多结multi junction、异质结HIT、薄膜thin film、高聚光HPV 等不同材料或不同结构的太阳电池,在测试过程中会有细节上的差异。比如说:有机太阳电池的测试范围主要集中在可见光波段,而GaAs 太阳电池的测试范围则很可能扩展到红外1.4um 甚至更长波段;单晶硅电池通常需要测内量子效率,而染料敏化太阳电池通常只需要测外量子效率;有机太阳电池测试通常不需要加偏置光,而多结非晶硅薄膜电池则需要加偏置光……SolarCellScan100 通过主机与各种附件的搭配,可以实现几乎所有种类电池的测试。这种模块化搭配的方式,适合科研用户建立测试平台。 选型列表:型号名称和说明主机SCS1011太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯光源SCS1012太阳能电池量子效率测量系统,含直流测量模式,氙灯光源SCS1013太阳能电池量子效率测量系统,含直流、交流测量模式,溴钨灯光源SCS1014太阳能电池量子效率测量系统,含直流测量模式,溴钨灯光源SCS1015太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯溴钨灯双光源SCS1016太阳能电池量子效率测量系统,含直流测量模式,氙灯溴钨灯双光源附件QE-A1偏置光附件,150W氙灯QE-A2偏置光附件,50W溴钨灯QE-B1标准太阳电池(单晶硅)QE-B1-SP标准太阳电池QE-B2标准铟镓砷探测器(800-1700nm,含标定证书)QE-B3标准硅探测器(300-1100nm,含标定证书)QE-B4标准铟镓砷探测器(800-2500nm,含标定证书)QE-B7透过率测试附件(300-1100nm)QE-B8透过率测试附件(800-1700nm)QE-BVS偏置电压源(±10V可调)QE-C2漫反射率测试附件(300-1700nm)QE-C7标准漫反射板QE-D1二维电动调整台QE-D2手动三维调整台QE-IV-Convertor短路电流放大器专用机型介绍系统功能部分太阳能应用方向的研究人员需要测量量子效率,但本身却不是光电测量方面的行家,卓立汉光在测量平台SolarCellScan100的基础上,进一步开发出以下几套极具针对性的专用机型配置,方便客户使用。以下的专用配置也适合产业化的工业客户使用。1、通用型太阳电池QE测试系统SCS100-Std系统特点符合IEC60904-8国际标准;测量结果高重复性;内外量子效率测量功能;快速导入参数功能;适用于科研级别小样品测试适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、CdTe薄膜电池、CIGS薄膜电池等; 光谱范围: 300~1100nm; 电池结构: 单结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、短路电流密度; 可测样品面积: 30mm×30mm 2.通用型太阳电池QE测试系统SCS100-Exp系统特点符合IEC60904-8国际标准;测量结果高重复性;高度自动化测量;双光源设计;红外光谱范围扩展;薄膜透过率测试功能;小面积、大面积样品测试均适用;适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、有机薄膜电池、CdTe薄膜电池、CIGS薄膜电池、三结砷化镓GaAs电池、非晶/微晶薄膜电池等; 光谱范围: 300~1700nm; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度; 可测样品面积: 156mm×156mm以下 3.晶体硅太阳电池测试专用系统 SCS100-Silicon系统特点集成一体化turnkey系统晶体硅电池测试专用内外量子效率测试快速Mapping扫描功能快速高效售后服务适用范围: 单晶硅电池、多晶硅电池 光谱范围: 300~1100nm 电池结构: 单结太阳电池 可测参数: 光谱响应度、外量子效率、反射率、内量子效率、短路电流密度、*量子效率Mapping、*反射率mapping 可测样品面积: 156mm×156mm 4.薄膜太阳电池QE测试专用系统 SCS100-Film系统特点集成一体化turnkey系统;大面积薄膜电池测试专用;超大样品室,光纤传导;背面电极快速连接;反射率、内外量子效率同步测试;快速高效售后服务。适用范围: 非晶硅薄膜电池、CIGS薄膜电池、CdTe薄膜电池、非晶/微晶双结薄膜电池、非晶/微晶/微晶锗硅三结薄膜电池等; 光谱范围: 300~1700nm ; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、反射率、透射率、内量子效率、短路电流密度; 可测样品面积: 300mm×300mm 5.光电化学太阳电池测试专用系统 SCS100-PEC系统特点光电化学类太阳电池专用配置方案;直流测量模式;低杂散光暗箱;电解池样品测试附件;经济型价格适用范围: 染料敏化太阳电池; 光谱范围: 300~1100nm; 电池结构: 光电化学相关的纳米晶太阳电池; 可测参数: IPCE; 可测样品面积: 50mm×50mm
    留言咨询
  • 仪器简介:■ 常温型铟镓砷探测器(InGaAs) ———常温型近红外探测器,波长范围:0.8-1.7μm ■ TE制冷型铟镓砷探测器(InGaAs) ——TE制冷型近红外探测器,波长范围:0.8-2.6μm TE制冷型铟镓砷探测器DInGaAs(x)-TE具有相同的外观设计,其中x-1700/ 1900/ 2200/ 2400/ 2600,均采用进口二级TE制冷铟镓砷探测元件。技术参数:■ 常温型铟镓砷探测器(InGaAs) ———常温型近红外探测器,波长范围:0.8-1.7μm 三种常温型铟镓砷探测器DInGaAs1600/ DInGaAs1650/ DInGaAs1700具有相同的外观设计,其中: ◆ DInGaAs1600型内装国产小面积InGaAs探测元件(光谱响应度曲线参考图1) ◆ DInGaAs1650型内装国产大面积InGaAs探测元件(光谱响应度曲线参考图2) ◆ DInGaAs1700型内装进口大面积InGaAs探测元件(光谱响应度曲线参考图3)主要特点:■ 常温型铟镓砷探测器(InGaAs) ———常温型近红外探测器,波长范围:0.8-1.7μm ■ TE制冷型铟镓砷探测器(InGaAs) ——TE制冷型近红外探测器,波长范围:0.8-2.6μm TE制冷型铟镓砷探测器DInGaAs(x)-TE具有相同的外观设计,其中x-1700/ 1900/ 2200/ 2400/ 2600,均采用进口二级TE制冷铟镓砷探测元件,光谱响应曲线参考图如下:铟镓砷探测器使用建议: ● DInGaAs系列和DInGaAs-TE系列铟镓砷探测器均为电流输出模式的光电探测器,在接入示波器、锁相放大器等要求电压输入的信号处理器前,建议采用I-V跨导放大器ZAMP(Page85)做为前级放大并转换为电压信号;标明可输入电流信号的信号处理器可直接接入信号,但仍建议增加前置放大器以提高探测灵敏度; ● DInGaAs系列和DInGaAs-TE系列铟镓砷探测器配合DCS103数据采集系统(Page95)使用时,建议采用I-V跨导放大器以提高探测灵敏度; ● DInGaAs系列和DInGaAs-TE系列铟镓砷探测器配合DCS300PA数据采集系统(Page95)使用时,由于DCS300PA双通道已集成信号放大器,故可不再需要另行选配前置放大器; ● 制冷型DInGaAs-TE系列铟镓砷探测,在制冷模式时须使用温控器(型号:ZTC)进行降温控制;
    留言咨询
  • 应用:QCLs的功率探测DFBs的功率探测特点:增益放大2x或者100x与热敏探测器相比,该探测器响应速度非常快,且更易于达到稳定状态。 PbSe中红外大面积功率探测器可以用于测量的波长范围是1.5μm-5.0μm,增益可调倍数为2X或100X,有效面积达到5mm x 5mm,易于校准。基于光电导器件,与热敏探测器相比,该探测器响应速度非常快,且更易于达到稳定状态。中红外大面积功率探测器 ET-6000光学测量仪
    留言咨询

中红外大面积功率探测器相关的资讯

  • 重庆研究院单晶二维材料GeSe大面积单原子层研究获新进展
    p   近日,中国科学院重庆绿色智能技术研究院量子信息技术中心团队在以GeSe为代表的IV sup A /sup VI sup B /sup 大面积单原子层材料制备和能带结构确定,及其器件测试分析研究中取得最新进展。 /p p   目前已有近百种二维材料被人们发现,包括第四主族单质、第三和第五主族构成的二元化合物、金属硫族化合物、复合氧化物等。这些发现不仅打破了长久以来二维晶体无法在自然界中稳定存在的说法,其自身的特性更是呈现出许多新奇的物理现象和电子性质,如半整数、分数和分形量子霍尔效应、高迁移率、能带结构转变等。IV sup A /sup VI sup B /sup 单晶二维材料MX(M=Ge,Sn;X=S,Se)因极高稳定性、环境友好性、丰富蕴藏量,以及从材料结构到性能上与黑磷烯的相似性而受到广泛关注。基于第一性原理方法对MX的能带结构的计算、对其从间接带隙到直接带隙的临界层厚,以及基于其C sub 2v /sub 对称结构的压电性能理论预测的研究已多有报道。但受其脆性影响,该类型材料难以直接采用物理撕裂法制备得到单原子层材料。采用化学合成方法,也难以获得较大面积的单原子层(大于1微米)。因此,对IV sup A /sup VI sup B /sup 单晶二维材料的研究迄今仍停留在理论预测阶段。 /p p   在MX中,GeSe理论上被认为是唯一具有直接带隙的材料,且该材料的光谱范围预测几乎覆盖了整个太阳光光谱,这使它在量子光学、光电探测、光伏、电学等领域有巨大的应用潜力。据此,重庆研究院量子信息技术中心团队研究发现,利用单晶硅表面二氧化硅的隔热效果和激光减薄方法,可以在一定激光功率密度下不断地减薄GeSe的层厚,直至单原子层。其减薄机理是激光在GeSe表层产生高热,由于GeSe材料本身的层状特性,难以将热量及时传导出去,导致层厚被不断减薄。当GeSe的层厚被减薄至单原子层时,整个SiO sub 2 /sub /Si可以被看作热沉而无法继续减薄。利用此方法,该团队首次实验制备出了100微米以上的GeSe单原子层材料,基于荧光谱、拉曼谱等方法对GeSe单原子层的原子和能带结构进行研究,并基于第一性原理方法理论印证了实验结果的可靠性。实验和理论计算表明,GeSe单原子层的荧光谱非常宽,从可见光波段到近红外波段发现了8个荧光峰,从间接带隙到直接带隙的转变发生在第三层。此外,该团队分别实验制备出了基于GeSe体材料和二维材料的晶体管,其I-V和光反应性能表明,二维材料的光敏度是相应体材料的3.3倍,同时二维材料器件的光反应度也远优于相应体材料器件。 /p p   相关研究成果发表在 em Advanced Functional Materials /em 上。该研究得到了重庆市基础前沿重大项目、中科院“西部之光”西部青年学者A类项目、国家自然科学基金面上项目的资助。?? /p p br/ /p
  • 中国首颗碳卫星成功发射 大面积光栅让“地球体检师”想测就测
    我国首颗全球二氧化碳监测科学实验卫星在酒泉卫星发射中心成功发射。中科院声像中心 任晖摄  我国二氧化碳监测水平跻身世界前列  根据联合国政府间气候变化专门委员会(IPCC)第四次评估报告,受人类活动的影响,主要温室气体二氧化碳和甲烷的浓度已上升到2500万年以来的最高值,且依然呈上升趋势,地表温度也在逐年升高。温室效应正直接威胁着全人类的生存和发展。精确监视全球二氧化碳的排放状况已成为有效开展气候变化研究和应对的迫切要求。阿拉斯加冰川过去30年消融的景象,图片来自网络  本次发射的碳卫星作为我国首颗用于监测全球大气二氧化碳含量的科学实验卫星,围绕全球气候变化这一当今国际社会普遍关心的全球性重大问题,以大气二氧化碳遥感监测为切入点,利用高光谱与高空间分辨率二氧化碳探测仪、多谱段云与气溶胶探测仪等探测设备,通过地面数据接收、处理与验证系统,定期获取全球二氧化碳分布图,大气二氧化碳反演精度将优于4ppm,使我国在大气二氧化碳监测方面跻身国际前列。  碳卫星是国家科技部为应对全球气候变化、提升我国全球二氧化碳监测能力部署的一项重大任务。通过863计划地球观测与导航技术领域“全球二氧化碳监测科学实验卫星与应用示范”重大项目立项实施。由中科院国家空间科学中心负责工程总体 中科院微小卫星创新研究院负责卫星系统,中科院长春光学精密机械与物理研究所研制有效载荷 中国气象局国家卫星气象中心负责地面数据接收处理与二氧化碳反演验证系统的研制、建设和运行。  负责本次发射任务的为长征二号丁运载火箭。本次发射还搭载发射中国科学院微小卫星创新研究院自主安排研制的1颗高分辨率微纳卫星和2颗高光谱微纳卫星。  小卫星肩负大使命工作人员在低温实验室进行仪器调试,图片来自网络  22日凌晨3时22分,我国首颗全球二氧化碳监测科学实验卫星发射升空。它成为巡游在地球上空700公里的第三位全球二氧化碳“体检师”。碳卫星将在宇宙中跳起“华尔兹舞步”,不断变换观测模式,完成对全球二氧化碳的监测,并借助模式同化和反演技术,最终形成全球碳排放情况的“体检报告”。  “小卫星肩负大使命。”国家遥感中心总工程师李加洪说。监测全球二氧化碳分布情况,这是中国应对全球气候变化采取的积极行动,也体现了我国的“大国担当”。而且,“知己知彼”,才能在全球气候谈判中掌握主动权,发出“中国声音”。  二氧化碳浓度监测,不是想测就能测  二氧化碳浓度监测,不是你想测,想测就能测。目前为止,只有美国和日本发射了自己的碳卫星。美国OCO-2卫星,图片来自网络  二氧化碳在大气中的浓度本就非常低。碳卫星总设计师尹增山介绍,从2011年到2016年年底,经过近六年研制,我国碳卫星探测精度达到了优于4ppm(百万分比浓度)。也就是说,当大气中二氧化碳含量变化超过百万分之四时,碳载荷就会发现。  如何发现?实际上,碳卫星对二氧化碳浓度采用的是“间接测量”法。大气在太阳光照射下,二氧化碳分子会呈现光谱吸收特性,碳卫星通过精细测量其光谱吸收线,可以反演出大气二氧化碳浓度。  但这根线非常窄。要获取高精度的大气吸收光谱,就要依靠碳卫星的主载荷——高光谱与高空间分辨率二氧化碳探测仪。二氧化碳探测仪核心的技术指标和难点就是要同时实现高光谱分辨率和高辐射分辨率,这就如同检查人的指纹,普通仪器只看得到纹理,而二氧化碳探测仪可以把指纹放大一百倍,精细测量每条指纹的宽度和深度。  “要达到这么精细的分辨率,必须要有大面积光栅。”中科院长春光机所研究员郑玉权告诉记者,为突破这项关键技术,科研人员从最基础的制造全息光栅所需的高精度曝光系统研究出发,一点点攻克技术难关,最终在碳化硅基底上制造出高精度衍射光栅,并在航空校飞试验中进行了验证。  碳卫星探测仪上的大面积衍射光栅,能够探测2.06µm、1.6µm、0.76µm三个大气吸收光谱通道,最高分辨率达到0.04nm,这样的分辨率,在国内光谱仪器的研制上也尚属首次。  说起研制过程,郑玉权感慨颇多。六年的载荷研制,是预研攻关和工程实施的结合。他们从“无”到“有”,实现技术突破 又迎头赶上,比肩国际先进水平。“反正,遇到问题的彷徨、解决问题的艰辛和最终找到答案的欢乐,我们全尝遍了。”  碳卫星上的“配角”  将为研究雾霾提供重要数据支撑  碳卫星上的“配角”——云与气溶胶探测仪也不可小觑。气溶胶,通俗点说,就是大气中的尘埃。探测仪可以帮忙排除探测时云和气溶胶的影响,提升二氧化碳探测数据的可靠性。碳卫星地面应用系统总设计师杨忠东表示,从设计能力上来讲,这款探测仪可以为研究雾霾提供重要数据支撑。碳卫星载荷系统,图片来自网络  “碳卫星本身,就肩负着‘创新’使命。”李加洪说。作为一颗科学实验卫星,碳卫星身上,至少有四项大胆的技术创新——大面积光栅、多模式定标、敏捷姿态调控以及复杂的反演验证系统。“我们碳卫星的整体水平,比日本的还要高。虽是‘后发’,但我们已经实现了‘并跑’。”  技术上的卓越,并非这颗碳卫星的唯一追求。在大约半年的在轨测试之后,碳卫星将正式开始两年半的工作——让二氧化碳浓度数据到碗里来。“我们将按照应用需求,对后期数据进行加工、处理、共享和服务。”李加洪透露,科技部联合中国科学院和中国气象局已经制定了碳卫星数据管理办法。碳卫星数据将加载到国家综合地球观测数据共享平台,向国内各类用户提供数据共享服务。在国际合作方面,这些数据也会向地球观测组织(GEO)共享,这也是中国对GEO的实质贡献。  “一颗卫星远远不够。”不过,让杨忠东欣慰的是,六年来,他们不仅收获了这颗卫星,还了解和掌握了二氧化碳高精度遥感监测仪器的制备过程。“要满足中国社会经济的发展需求,我们还要更多碳卫星。”第一颗有了,后续的,也就不再遥远。
  • Henry H. Radamson院士团队在红外探测器方面取得多项重要进展
    01 研究背景随着红外成像技术的不断发展,市场对红外探测器的灵敏度、红外成像的清晰度要求越来越高。由于氧化钒(VOx)探测器的灵敏度要高于非晶硅,目前已成为非制冷探测器领域的主流路线,氧化钒探测器占据非制冷探测器的比例近七成,部分氧化钒探测器甚至表现出了接近制冷型红外探测器的优异性能。缺点是它不兼容标准的 CMOS 工艺生产线,需要有单独的CMOS工艺生产线。国内外多数企业选择氧化钒技术路线。相比于非晶硅和氧化钒等热红外探测器,工作于短波红外波段的探测器具有极强的天气适应性,穿透雾、霾、烟尘的能力更强,识别度更高,目标细节表达更清晰,有效探测距离更长。同时,短波红外成像技术具有在湿热天气下仍表现良好等优势。常见的铟镓砷(InGaAs)、硫化铅(PbS)和碲镉汞(MCT)等短波红外材料存在有毒(砷化物摄入过量会导致中毒,引起贫血、肠胃炎、肺炎肝炎等疾病;铅中毒会严重影响人体的神经系统、心血管系统、骨骼系统、生殖系统和免疫系统等;汞中毒会导致人体肾脏损害、皮肤损害、神经系统障碍、肌肉震颤、肝肾功能不全等)、大面积污染环境、不兼容标准的CMOS制造工艺、良率低、无法大规模量产、不宜进入消费电子领域等劣势,限制了短波红外成像技术的应用场景。在此背景下,研究院首席科学家、光电集成电路研发中心主任Henry教授长期致力于无毒且环保、大面积均匀性良好、高度兼容CMOS工艺生产线、可大批量生产的红外成像技术,相关技术有望逐渐取代现有红外成像技术的军用市场,并将创造红外成像技术在民用领域的新市场(特别是短波红外成像技术),比如汽车辅助驾驶系统、工业检测、医疗诊断、消费电子、智能安防、森林防火和商业航天等应用,对促进国民经济健康发展具有重大的科学价值和现实意义。02 研究进展近期,Henry教授团队在大尺寸硅衬底上异质外延了高质量的SiGe/Si和GeSi/Ge多量子阱传感材料,并采用标准的CMOS制造工艺制备了PIP和PIN两种结构的量子阱红外探测器。结果表明SiGe/Si和GeSi/Ge多量子阱传感材料在长波红外波段展现出了优异的电阻温度系数(如图1所示),超过了商用的氧化钒(VOx)和非晶硅(a-Si)长波红外探测器。同时,GeSi/Ge多量子阱探测器在短波红外波段的光电响应优于Ge半导体材料,它是非常重要的短波红外光电传感材料。相关结果分别以“A SiGe/Si Nanostructure with Graphene Absorbent for Long Wavelength Infrared Detection”和“High-performance GeSi/Ge multi-quantum wells photodetector on a Ge-buffered Si substrate”为题目发表于国际知名期刊ACS Applied Nano Materials和Optics Letters,两篇论文的第一作者均为Henry教授指导的联合培养博士生王贺,两篇论文的共同通讯作者均为研究院赵雪薇博士、中国科学技术大学胡芹研究员和研究院Henry教授。其中,硅基异质材料外延、探测器设计与制造、实验和表征分析方面均是在Henry教授及其团队成员的通力合作下完成。图1 不同温度下GeSi/Ge MQW探测器(直径为10 μm):(a)电流-电压特性曲线(b)TCR曲线此外,Henry教授团队创新性的在大尺寸的绝缘体上锗(GOI)晶圆上制备了谐振腔增强型GOI短波红外光电探测器,证明了谐振腔结构有效的提升了GOI短波红外光电探测器在1550nm波段的光电响应,可与商用的InGaAs短波红外光电探测器相媲美,被认为是颠覆InGaAs短波红外成像技术的重要技术方案(如图2所示)。相关结果以“High-Performance Ge PIN Photodiodes on a 200 mm Insulator with a Resonant Cavity Structure and Monolayer Graphene Absorber for SWIR Detection”为题目发表于国际知名期刊ACS Applied Nano Materials,论文的第一作者为Henry教授指导的博士生余嘉晗,共同通讯作者为研究院赵雪薇博士、研究院苗渊浩副研究员和研究院Henry教授。图2 谐振腔增强型GOI短波红外光电探测器的光响应谱(器件直径为100 μm)综上,Henry教授团队近期开发了多类型兼容CMOS工艺的红外探测器,系统地研究了SiGe/Si多量子阱材料、GeSi/Ge多量子阱材料和GOI谐振腔结构对红外探测器的作用机理,红外探测器的响应度、暗电流、电阻温度系数及量子效率等关键性能指标均处于国际领先水平。此前,Henry教授团队在人民日报展示了应变GOI短波红外成像芯片的高清晰成像效果,实现了廉价且高性能的短波红外成像技术的范式创新,突破了现有技术在民用消费领域的新市场,具有非常重要战略意义与现实价值。迄今为止,Henry教授团队围绕红外成像晶圆、红外探测器结构与制造工艺、红外成像芯片以及芯片集成方法等方面进行了全方位的专利布局,旨在形成完善的专利池。03 Henry H. Radamson院士简介Henry教授,“中国政府友谊奖”获得者,“广东省友谊奖”获得者,欧洲科学院院士,国际知名的纳米光子学、电子学和半导体光电材料研究领域专家,欧洲材料研究协会(E-MRS)执行主席,Springer-Nature期刊编辑,Fundamental Research期刊编委,在国际会议和重要学术期刊上发表了250余篇高水平论文。2023年,Henry教授撰写了名为《Analytical methods and instruments for micro-and nanomaterials》的英文书籍(研究院为第一单位),这本书详细介绍了用于表征纳米结构材料的分析仪器,提供了评估材料质量、缺陷、表面和界面状态、元素分布、应变、晶格畸变以及电光特性的方法。广东省人民政府给Henry教授颁发了2022年度“广东省友谊奖”,感谢Henry教授对促进广东省经济社会发展和对外交流合作做出的重要贡献。Henry教授经广东省人民政府推荐,荣获2023年度中国政府友谊奖,国务院总理李强于2024年2月4日下午在人民大会堂亲切会见了在华工作的外国专家代表,Henry教授作为获奖者受邀参加了座谈。

中红外大面积功率探测器相关的方案

  • 【前沿技术】大面积/少层PtS2材料制备与物理特性研究
    作者通过物理气相沉积与化学气相沉积相结合的方式实现了大面积、均匀性的PtS2材料制备,同样地,将实验与计算模拟相结合的方式对PtS2的合成、结构以及物理特性进行了探究,展示了PtS2的原子结构示意图、温度依赖极化拉曼光谱及光电器件搭建测试等工作。大面积的少层材料制备可降低光电器件的搭建难度以及提高材料转移的成功率。该项制备策略提供了作为合成部分其他TMDs材料的通用方法。
  • 氦质谱检漏仪红外探测器杜瓦封装检漏
    随着空间遥感技术的不断发展, 对空间探测器的性能和光谱提出越来越高的要求. 红外探测器是红外探测系统的核心元件, 在航天和天文领域有广泛的应用, 随着波长向长波扩展和探测灵敏度的提高, 红外探测器必须在超低温下工作. 因此需要将红外探测器封装在杜瓦瓶中, 组装成杜瓦封装器件, 目前红外探测器在空间应用中多采用机械制冷方式, 将外部制冷机与杜瓦封装器件连接. 从而实现低温工作. 真空度的保持是杜瓦封装器件的重要指标. 真空度差或者真空度保持时间短将直接影响红外探测器组件的性能. 因此需要进行泄漏检测, 上海伯东德国 Pfeiffer 氦质谱检漏仪提供无损的检漏方法, 成功应用于红外探测器杜瓦封装器件检漏!
  • 大面积阴极发光高谱成像用于地质矿石检测
    长期以来阴极发光成像是地质研究的有力工具。最新的技术说明(technical note)为您讲解大面积高光谱阴极发光成像的采集模式。大面积(large area)光谱采集模式主要用于面积较大标本的阴极发光成像,例如锆石和其他矿物。为了达到大面积阴极发光成像,特地调整光学模组中的光学器件,故意使狭缝平面中的CL焦点散焦。通过这一技术,我们就可以均匀地收集到较大阴极发光视场(FOV),视场大约~300× 200μ m2。通过调整狭缝宽度,平衡高效率(HE)和视野大小(与正常CL采集相比)

中红外大面积功率探测器相关的资料

中红外大面积功率探测器相关的试剂

中红外大面积功率探测器相关的论坛

  • 【分享】正比计数管探测器

    正比计数器proportional counter  用气体作为工作物质,输出脉冲幅度与初始电离有正比关系的粒子探测器,可以用来计数单个粒子,并根据输出信号的脉冲高度来确定入射辐射的能量。这种探测器的结构大多采用圆柱形,中心是阳极细丝,圆柱筒外壳是阴极,工作气体一般是隋性气体和少量负电性气体的混合物。入射粒子与筒内气体原子碰撞使原子电离,产生电子和正离子。在电场作用下,电子向中心阳极丝运动,正离子以比电子慢得多的速度向阴极漂移。电子在阳极丝附近受强电场作用加速获得能量可使原子再电离。从阳极丝引出的输出脉冲幅度较大,且与初始电离成正比。正比计数器具有较好的能量分辨率和能量线性响应,探测效率高,寿命长,广泛应用于核物理和粒子物理实验。  1-50keV的X射线经常用正比计数器进行探测。要求是具有较薄的入射窗口,以获得较低的低能端探测下限,较大的观测面积,以及良好的气密性。常用的是铍窗正比计数器。当代X射线探测器多采用正比计数器阵列和装有多根阳极丝和阴极丝的多丝正比室,以获得更大的有效观测面积。  近年来制作的气体闪烁正比计数器,能量分辨率比一般气态正比计数器约高一倍。为了观测较弱的X射线源,需要高灵敏度的探测器,为此制作了大面积窗口正比计数器,如小型天文卫星-A携带的窗口面积为840厘米的铍窗正比计数器,采用的是正比计数器组合的方法。此外,确定X射线源的位置需要有高分辨率的探测器;而为了制造这种探测器,就相应地需要制作对测定位置灵敏度高的正比计数器。

  • 关于红外探测器的探测率D*

    D*=(A*f)^0.5/NEP,其中A是探测器光敏元面积,f是电子学带宽,NEP是噪声等效功率。相信大家都知道,光谱成像在探测器光敏元上不可能只占一个像元,而是有一定面积的,请问此时计算D*,A 是用一个像元的面积还是光谱所占的面积?

中红外大面积功率探测器相关的耗材

  • AMPTEK X射线探测器FASTSDD大面积探测器 X光探测器
    匠心艺术之作70mm2 FAST SDD Amptek最新研发了一款TO-8封装的70mm2 FAST SDD探测器。它的封装和Amptek其他所有探测器封装一样。这样使得70mm2 FAST SDD成为非常方便的替代品。在同样性能下,计数率是25mm2SDD探测器的3倍。特性 l 70mm2有效面积准直到50mm2l 123ev FWHM @5.9keVl 计数率2,000,000cpsl 高峰背比-26000:1l 前置放大器上升时间60nsl 窗口:Be(0.5mil) 12.5um或C2(Si3N4)l 抗辐射l 探头晶体厚度500uml TO-8封装l 制冷ΔT 85Kl 内置多层准直器 应用l 超快台式和手持XRF光谱仪l SEM中EDS系统的样品扫描或测绘样品l 在线过程控制l X射线分拣机l OEM FASTSDD-70规格参数 通用探头类型硅漂移探头(SDD)探头大小70mm2准直到50mm2硅晶体厚度500um5.9keV处55Fe能量分辨率峰化时间4us时,分辨率为123-135eV峰背比20000:1(5.9keV与1keV计数比)探头窗口Be:0.5mil(12.5um)或C2(Si3N4)准直器内部多层准直器电荷灵敏前置放大器CMOS增益稳定性20ppm/℃外壳尺寸XR-100FastSDD-703.00 x 1.75 x 1.13 in (7.6 x 4.4 x 2.9 cm)重量XR-100FastSDD-704.4盎司(125g)总功率XR-100FastSDD-702W质保期1年使用寿命取决于实际使用情况,一般5-10年仓储和物流长期存放:干燥环境下10年以上仓储和物流:-40℃到+85℃,10%到90%湿度,无凝结工作条件-35℃到+80℃TUV 认证认证编号:CU 72101153 01检测于:UL61010-1:2009 R10.08 CAN/CSA-C22.2 61010-1-04+GI1输入前放电源 XR-100FastSDD-70 OEM 配置±8V@15mA,峰值噪声不超过50mV。 PA210/PA230或X-123:±5V探头电源 XR-100FastSDD-70-100到-180V@25uA,非常稳定,变化0.1%制冷电源电流电压 最大450mA最大3.5V,峰值噪声100mV注: XR-100FastSDD-70包含它自身的温度控制器输出前放灵敏度 极性输出上升时间反馈 典型的3.6mV/keV(不同的探头灵敏度不同)正输出信号(最大1KΩ负载)60ns复位型温度监控灵敏度根据配置不同而变化当使用PX5,DP5,或X-123时,直接通过软件读取开尔文温度 FastSDD-70 探头可用于Amptek所有的配置中
  • 大面积扫描开尔文探针系统配件
    大面积扫描开尔文探针系统配件能够在垂直方向移动开尔文探针实现电动控制开尔文探针与样品的距离。 样品安装到真空吸盘上,真空吸盘可带着样品移动150x150mm位移,从而实现开尔文扫描探针系统大面积扫描样品表面。大面积扫描开尔文探针系统配件特色: 电动控制开尔文探针与样品的距离 电动控制样品XY移动范围150 mm x 150 mm 具有编码器的主动定位定位追踪系统 Z方向步进大小: 625 nm X - and Y-方向: 5 μm / microstep 功函分辨率:: 1 meV with 1.4 mm tip diameter on metals 最小的探针直径: 0.1 mm 集成法拉第防护功能 框架表面镀金 开尔文探针头采用纯金工艺 最大外形尺寸: 50 cm (W) x 60 cm (D) x 25 cm (H) 最大样品尺寸: 150 mm x 150 mm 真空样品吸盘 包含参考样品标准: HOPG, Au on Si, Al/Au-edge, Potential Check 可选配温度和湿度传感器
  • 闪烁探测器阵列
    这款欧洲设计的大面积闪烁探测器阵列是一种高性能闪烁体列阵探测器。这款闪烁探测器阵列可采用YAP:Ce, YAG:Ce, LuAG:Ce, BGO等闪烁体材料,获得最佳效率,可广泛用于大面积中子探测,中能(10-100MeV/u)重离子核反应前角度测量等应用。这款进口的闪烁探测器阵具有全球最佳的紧凑设计,像素之间距离可控制到小于0.05mm, 最大像素可达到0.3mm x 0.3mm, Detection matrices and bars can be used for position sensitive detection. YAP:Ce, YAG:Ce, LuAG:Ce, BGO, CRY19 and others are the scintillation materials used for this purpose. The size of detection elements ranges from several tenths of mm up to several mm depending on the scintillation material and on the design of the array. Our special production technology enables very compact designs with distance between pixels of less then 0.050 mm. The minimum pixel size is 0.3 mm x 0.3 mm我们根据用于的要求进行特别设计,请联系我们:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制