推荐厂家
暂无
暂无
冷冻切片机 仪器价格: 12万元 购置日期:2001年 仪器所在地:中医肝病研究所实验室 联 系 人: 顾宏图 联系电话: 51322444 收费标准: 暂未定 开放时间: 8:00~17:00 仪器简介: 徕卡CM1850是应用于组织学和临床组织病理学的一种快速低温恒冷切片机,它是将切片机置于冷冻室以外的低温恒冷切片机。CM1850的特色之一是具有宽敞的冷冻室,快速冷冻室可同时存放多达10个样品,并和一个可持续冷却的吸热器相连,以保证样品托上的样品快速冷却。切片刀温度可冷却到-35℃,样本可以快速冷冻到-40℃。切片机有狭槽盖防护,避免残渣进入机器内部。增强绝热性能(真空面板)及温度控制系统,减低压缩机运作费用及提高耐用性,比传统绝热系统使用寿命长,可以保证冷冻箱温度,例如:在35℃室温保持-35℃。同时可以做到电脑诊断维护。高质量无焊接缝的不锈钢冷冻室表面光滑利于清洁和防止污染。切片机配备双速马达驱动粗进,控制键布置在左方靠手,符合人工学原理。具备自动及人工除霜功能。独特设计的玻璃反卷板可保证连续的切片。切片机具备方便的调节功能,可快速及精确对样本切片定位。切片机推进系统运作平稳、流畅,切片厚度为1~60μm,切片精度可达1μm,最大样品直径55mm。 应用范围 可提供各种冰冻切片服务。 目前应用于: 1. 为快速病理诊断提供冰冻切片。已成为癌症诊断的重要工具。 2. 细胞学:显示脂肪、脂类以及特种组织成份。 3. 免疫细胞化学、免疫组织化学和分子生物学技术等研究工作。 4. 神经生物学研究。 5. 常规组织胚胎学研究。 6. 皮肤病理学研究。 7. 动脉血管外科学研究。 同类仪器情况 : 中药研究所: SPOCTRA MXA190 2002年 倪跃元 解剖实验室: LION 1998年 余安胜 张建华
水质营养盐测定前,水样是冷冻的,如何快速解冻啊,我解冻了一天也还是不行
蛋白质是生命体的最主要组成元素,作为一种生物大分子机器,蛋白质功能的实现高度依赖于其复杂的三维原子结构。了解蛋白质的结构及其与功能的关系对探索生命的基本原理,理解疾病的分子机制以及药物的研发具有重要的意义。[align=center][img=,500,284]https://ng1.17img.cn/bbsfiles/images/2018/12/201812131109255316_9391_3224499_3.jpg!w500x284.jpg[/img][/align][align=center]基于粒子滤波的三维重构算法示意图。[/align]冷冻电子显微镜,简称冷冻电镜,使用电子束作为光源,是一种能在原子分辨率水平上观察并测定蛋白质分子结构的有力工具。伴随着最近几年的技术突破,冷冻电镜三维重构技术成为测定蛋白质及其复合物结构的关键技术。冷冻电镜三维重构的基本方法是,首先利用冷冻电镜对冷冻于液氮温度的生物大分子颗粒进行成像,以获得数万到数百万张生物大分子照片,然后通过一定的算法来整合这些图像,计算出生物大分子的三维结构。这其中三维重构算法是核心内容,用于测定出每一张照片的诸多参数,例如空间取向,然后才能将二维的照片整合重构出三维的结构。因为照片的数量巨大,且图像信号极其微弱,如何精确计算测定每张照片的参数,以达到超过0.4甚至0.2纳米的分辨率,一直以来都是冷冻电镜技术研究的重点和难点。来自清华大学生命科学学院的研究人员发表了题为“A particle-filter framework for robust cryoEM 3D reconstruction”的文章,介绍了一种基于粒子滤波的鲁棒的冷冻电镜三维重构算法框架,这种方法通过将电子工程应用中的粒子滤波算法引入到冷冻电镜三维重构中,大幅提高了对系统参数的搜索能力和对系统误差的容忍度;通过进一步融合高性能计算的方法,最终实现了对生物大分子结构高效高精度的三维重构。这一发现公布在11月30日的Nature Methods杂志上,由清华大学生命科学学院李雪明研究组,电子工程系沈渊研究组和计算机系杨广文研究组合作完成。第一作者为胡名旭,余洪坤和顾凯。同期他们开发的THUNDER冷冻电镜三维重构软件系统集成了这些新算法和新特性,为未来冷冻电镜海量图像数据的实时分析,以及大规模的自动化应用提供了一个可靠的算法和软件基础;同时,也为解析接近原子分辨率的生物结构提供了一套鲁棒、快速的解决方案,显著降低了对用户经验的要求,益于冷冻电镜技术的广泛普及,助力在原子尺度上对生命活动进行观察。为了获得一个更有效的算法和计算系统以满足未来高分辨率和大规模应用的需求,李雪明研究组联合电子系沈渊和计算机系杨广文研究组,利用清华大学生物学科和信息学科交叉的优势,将电子工程领域的粒子滤波算法引入到冷冻电镜的图像重构参数搜索中去,发展出一套比现有算法更完善、更有效的贝叶斯统计推断算法。这套新算法对高维参数的搜索具有更好的鲁棒性,可以自适应地进行参数的自动调整,以及通过引入一套新的权重机制大幅提高了对系统误差的容忍度。这些优势的整合,使整个系统具有很好的鲁棒性,更适用于未来自动化的运行工作模式。同时,在算法的实现过程中,深度融合了大规模并行计算的思路和方法,从而使整个系统具有极高的运算效率,和近乎理想的并行计算性能。未来该系统将能够高效运行于小到一个工作站,大到“太湖之光”这样的超大规模计算系统,适应生命科学研究和药物设计的大量结构测定需求。这项工作是三个不同学科研究组交叉研究的阶段性成果,团队正在利用新型的统计推断和机器学习算法将这一工作扩展到对细胞或者细胞器结构的原子分辨率三维重构上去。未来的冷冻电镜技术将使人们不必再借助于复杂的生物化学手段来提取蛋白质,而是利用冷冻电镜直接在细胞中对包括蛋白质在内的生物大分子的原子结构和动态变化进行观察和分析,探索生命活动的本质原理,设计能够治愈疾病的药物,造福人类健康。