光纤线

仪器信息网光纤线专题为您提供2024年最新光纤线价格报价、厂家品牌的相关信息, 包括光纤线参数、型号等,不管是国产,还是进口品牌的光纤线您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光纤线相关的耗材配件、试剂标物,还有光纤线相关的最新资讯、资料,以及光纤线相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

光纤线相关的厂商

  • 深圳市荣邦光纤设备制造有限公司位于广东省深圳市龙华新区观澜大道,是一家专业从事全套光纤跳线生产线设备及配件的研发,生产与销售的高新技术企业。本公司成立于2007年,由多年从事光纤设备研发领域的专业技术人才所组建。目前拥有员工50人,生产车间 1800m2。各类生产设备齐全,有日本进口三菱慢走丝2台, CNC电脑锣3台,CNC数控车床4 台,全自动高精密磨床5台,自动车床 2台,数控铣床4 台等多台设备。经过多年的努力,公司在光纤全自动剪缆机,全自动陶瓷插芯压接机,光纤研磨机,精密研磨夹具,离心脱泡机,全自动注胶机,光纤恒温固化炉,超声波清洗机,一次成型压接机,插回损测试仪,400倍高清光纤端面检测仪,3D干涉仪等设备的研发,生产领域均具备了较强的实力,在行业中一直以品质卓越,价格适中及售后服务完善而深得广大用户的一致信赖与好评!目前与公司保持合作关系的客户数量有300多家,年销售额达到3000万人民币,规模位居专业光纤跳线设备生产厂家全国前列。
    留言咨询
  • 西安市碑林区宇宝嘉电子商行位于西北营销中心--西安,成立于2016年3月,主要经营产品:各类电子式电能表、预付费卡表、智能系列电能表、预付费冷水表、预付费热水表、表箱、配电箱、动力柜、电量自动控制器(限电器)、无塔上水器;触摸屏、开关电源、变频器、(防爆)控制箱;按钮、旋钮开关、信号灯、断路器;照明箱、多媒体集线箱、等电位箱、光纤接入箱;陶瓷材料等,我们秉承“诚信合作,实现共赢”的方针,欢迎各界朋友莅临宇宝嘉参观、指导和业务洽谈。
    留言咨询
  • 公司主要业务:光通讯生产设备、仪器仪表销售;其他节能设备的销售公司主要产品:光纤熔融拉锥机、光纤合束器制造系统,特种光纤单锥制造系统;激光器、光功率计、光无源器件。公司自建立以来一贯坚持以顾客需求为根本,我们所有努力的最终目标就是让客户满意。我们热诚欢迎各界光通讯企业、通讯设备制造商前来洽谈,并建立合作关系,谋求共同发展。主要设备简介光纤熔融拉锥机、光纤合束器制造系统,特种光纤单锥制造系统的共同特点是集成了光学、精密机械、电子技术、计算机控制等多项功能于一体的高自动化生产系统。主要特点: 采用滚珠丝杆,保证设备机械精度和优良的稳定度 采用进口的滑块和导轨,确保大量程的拉锥平稳性 Window平台下的人机界面 控制软件提供了尽可能多的参数设置和选择,为研发特种器件提供了强有力的平台 提供纯氢或氢-氧混合气体加热
    留言咨询

光纤线相关的仪器

  • 手动光纤延迟线〖特性Features〗n 独特的延迟机械装置 Unique delay mechanismn 连续可靠工作continuous and reliable operationn 宽延迟范围 Wide delay rangen 延迟精度高High delay accuracyn 高可靠性High reliability n 较低的偏振相关损耗(0.1dB)Lower polarization dependent loss(0.1dB)n 简洁紧凑的结构Simple and compact structure〖应用Applications〗n 雷达测试、校准Radar testing、calibrationn 相控天线阵列Phased antenna arrayn 光学相干层析X射线照相法Optical coherence mography X-ray photography methodn 光干涉度量Light interference measuring methodn 光纤传感器Optic fiber sensor〖规格参数Specification〗 参数Parameters指标Value工作波长(nm)Operation wavelength(nm)1260-1650,1310-1550,可定制 850,980,10601260-1650,1310-1550,Customizable 850,980,1060校准波长(nm)Calibration wavelength(nm)1310-1550 延迟范围Optical delay range0~100 ps0~330 ps0~700 ps0~1500ps分辨率Distinguishability1fs插入耗损Insertion loss典型0.8dB,最大1.2dB(0-1500PS耗损≤1.4db)Typ.0.8dB, max 1.2dB(0-1500PS loss≤1.4db) 插入损耗变化Insertion loss variation±0.25dB 对应0-100PS模块±0.25dB over entire range for 0-100PS model±0.35 dB 对应0-330PS模块±0.35 dB over entire range for 0-330PS model±0.55 dB 对应0-700PS模块±0.55 dB over entire range for 0-700PS model±1.5 dB 对应0-1500PS模块±1.5 dB over entire range for 0-1500PS model回波损耗Return loss 55 dB消光比Extinction ratio18 dB传输光功率Transmission optical power光功率典型 500mW/可定制5W/10W/15W/20W/30WTyp. 500mW/ can be Customized 5W/10W/15W/20W/30W工作温度Operating temperature0~50℃储存温度Storage temperature-40~65℃光纤类型Fiber typeConning SMF-28,or Fujikura PM Panda fiber Size (L x W x H)尺寸 (长 x 宽 x 高)72.53 x32x 35.5mm for 100ps model105x32x 35.5mm for 330ps model167.54x32x 35.5mm for 700ps model169x 46x 35.5mm for 1500ps model
    留言咨询
  • 非圆形纤芯光纤 400-860-5168转3512
    非圆形纤芯光纤Optran UV NCC, Optran WF NCC这种光纤主要应用于激光领域以及其他对输出光束的形状有要求的领域。CeramOptec可以提供包括矩形、八边形、正方形等其他形状的纤芯与包层。优点:l 多种多样的纤芯形状,如方形、矩形、八边形等l 均匀的能量分布很低的NA扩张l 优 秀的图像置乱特性l 不需要激光束整形l 高激光损伤阈值l 跃进型折射率分布l 生物相容性材料l 使用ETO以及其他方式灭菌技术参数波长/光谱范围Optran NCC UV:190-1200 nmOptran NCC WF:300-2400 nm数值孔径(NA)0,16 ± 0,02 | 0,22 ± 0,02 | 0,28 ± 0,02或定制工作温度-190°至 +350°C纤芯直径根据客户要求定制几何形状和直径OH含量Optran NCC UV: 高( 1000 ppm)Optran NCC WF: 低( 1 ppm) 也可根据需要提供羟基含量 0.25 ppm 和 0.1 ppm标准检验测试100 kpsi (尼龙, 氟塑膜, 丙烯酸酯套层)70 kpsi (聚酰亚胺套层)最 小弯曲半径50倍包层直径(短瞬时机械应力)150倍包层直径(高功率激光) NCC 光纤放射几乎所有的正交平顶光束。此图展示了使用内径800x800μm光纤在焦点层上的强度分布。矩形核心几何的光纤正方形和长方形的纯熔融/掺氟熔融石英光纤从传统的圆形光纤发展为正方形或者长方形光纤,其优势在于可以为输入和输出提供最 大的组装密度。正方形和长方形光纤极适用于连接有棱角的输入源和接受源,如二极管激光器。此角行的核心提供相容的短距离的均化输入功率分布。因我们独特的PCVD科技,我们的角行光纤也应用于带有大侧比例和小圆角半径的矩形。大NCC石英光纤能满足灵活性和大横截面结合的要求,如二极管激光器传输系统。举例,比例为1:3的矩形几何光纤可以满足在一个轴上旋转和移动,其横截面是圆光纤的4倍大。应用是光束成型的选择,包括表面处理或照明。
    留言咨询
  • OI200X7系列光纤是多芯多模导能光纤,采用7芯200μm光纤设计,输入端为圆型排布,输出端为线型排布。光纤耦合效率>80%,多次插拔一致性好。线转圆光纤应用场景为配合光纤光谱仪使用,提供光谱收光效率设计。产品简介OI200X7系列光纤,是多芯多模导能光纤,采用7芯200μm光纤设计,输入端为圆型排布,输出端为线型排布。线转圆光纤应用场景为配合光纤光谱仪使用,提供光谱收光效率设计。 产品特点? 多芯多模导能光纤;? 7芯光纤设计;? 光谱收光效率设计;规格参数型号OI200X7系列光纤多芯光纤200μm*7芯传输波长VIS-NIR/UV-VIS数值孔径0.22护套蓝色凯夫拉铠甲端口接头SMA905
    留言咨询

光纤线相关的资讯

  • 西安光机所成功推出三维光纤激光加工系统
    近日,西安光机所瞬态光学与光子技术国家重点实验室成功进行了三维光纤激光加工系统的演示试验,得到在场专家的好评。该系统所使用的500W光纤激光器是由中科院西安光机所新孵化企业西安中科梅曼激光科技有限公司研制。该企业致力于高功率光纤激光器的研发、生产和销售,并可为光纤激光加工系统提供全套的解决方案。现已具备200W~1000W光纤激光器的生产能力,所推出的光纤激光器在切割速度、切割质量等方面与国外同类产品相比具有较强的竞争优势。   三维光纤激光加工系统   500W光纤激光器
  • 西安光机所等在表面功能化光纤传感器研究中获进展
    近日,中国科学院西安光学精密机械研究所与西北大学合作,在表面功能化光纤传感器研究方面取得重要进展。研究基于通信单模光纤开发出一种免标记、高灵敏度、高选择性的法布里-泊罗(Fabry-Perot)型干涉探针。该探针具有测试便捷、成本低、温度稳定性高等特点,在生物大分子光谱检测方面具备广泛应用前景。   胆固醇是细胞膜、脂蛋白、神经细胞和脑细胞中的重要脂质大分子,其浓度与心脏病、高血压、动脉硬化、中风等疾病密切相关。因此,胆固醇水平检测备受关注。与目前常用的电化学法、酶分析、液相色谱、质谱等检测方法相比,光纤光谱检测方法具有体积小、抗电磁干扰、成本极低、免标记等突出特点,在生物化学检测领域备受关注。   传统的光纤光谱检测器件(如长周期光栅、倾斜光栅、表面刻蚀布拉格光栅等)受到制备仪器要求严格、温度及形变交叉敏感等困扰,在实用性上有较大局限。   该团队从光纤干涉理论及光与物质的相互作用理论出发,采用单模光纤和光纤插芯制备光纤光谱检测器件,通过范德瓦耳斯力在光纤插芯端面依次贴覆环氧树脂-氧化石墨烯(GO)-β环状糊精多层功能膜,基于最外层β环状糊精的疏水型空心分子结构与胆固醇的靶向性吸附结合原理,实现对胆固醇分子的高灵敏度光谱浓度检测,并在尿素、葡萄糖、抗坏血酸、人体血红蛋白等生化分析领域常见干扰物作用下可以呈现出强选择性,具备可重复制备和可重复检测特性,检出限达到3.5M, 灵敏度为3.92 nm/mM。该成果为表面功能化光纤器件在生化光谱分析领域的应用提供了新的思路和手段。   此外,研究通过X射线光电子能谱(XPS)探究EDC/NHS活化GO羧基对分子间键合相互作用影响以及β环状糊精和胆固醇分子的成键作用特性,对检测机制进行了验证分析。   相关研究成果发表在Analytica Chimica ACTA上。西安光机所为第一完成单位及通讯单位。图1.(a)为实验装置,(b)(c)为干涉结构。图2.(a)胆固醇检测光谱;(b)参杂/未参杂样本检测波长的Langmuir拟合;(c)选择性;(d)器件制备重复性测试。图3.XPS结果。(a) EDC/NHS未活化/活化羧基传感器的XPS光谱;(b)活化羧基传感器的N 1s光谱;(c)(d)分别为经过/未经过EDC/NHS活化羧基传感器的C1s光谱,(e)(f)分别为其O1s光谱EDC/NHS处理的传感器 (g)EDC/NHS活性羧基示意图。
  • 西安光机所在中红外空芯反谐振光纤研究方面取得进展
    近期,西安光机所光子功能材料与器件研究室郭海涛研究员团队在中红外空芯反谐振光纤(HC-ARF)研究方面取得重要进展。科研团队基于自研的硫系玻璃材料研制出一款“七孔接触式”HC-ARF,理论成功预测并通过实验验证光纤在中红外波段存在多个低损耗传输通带,兼具优异的高阶模抑制特性,并且存在进一步降低光纤损耗至0.01 dB/m的空间(比目前实芯阶跃型硫系光纤损耗低1个数量级以上)。相关研究成果发表在Optics Express。论文第一作者为西安光机所博士生张豪,通讯作者为郭海涛研究员。21世纪以后,中红外光纤激光器的功率/脉宽不断突破,但红外光纤材料的本征缺陷也越来越突出,如非线性、色散、光致损伤、材料吸收损耗等,这在传统实芯光纤中很难获得实质性突破,这些特征也就成为了制约中红外光纤技术发展的瓶颈。近年来,基于反谐振效应的HC-ARF因其传输带宽、激光损伤阈值高、传输损耗低和模式纯度高等优异特性而逐渐获得关注。虽然HC-ARF应用领域在不断扩张,但光纤拉制难度也成为了笼罩在研究人员头顶的一朵乌云,实际光纤损耗一直徘徊在几个dB/m水平。诸多国际知名公司或科研机构都在集中力量攻克这一难题,国内也鲜有光纤实际制备的相关报道。该成果团队怀着“解放光纤技术应用中的材料限制”的梦想,开始了对中红外空芯反谐振光纤的探索。他们从实际制备和应用角度出发,基于红外玻璃材料特点,创新性提出“七孔接触式”结构,利用有限元法对光纤的限制损耗、弯曲损耗、材料损耗和高阶模抑制等光纤性能进行理论仿真,基于As40S60硫系玻璃结合堆积拉制法和双路气压控制技术,成功制备出结构复现性良好的HC-ARF。测试数据表明,该光纤具有高阶模式抑制特性和多个低损耗传输通带,在4.79 μm激光波长处损耗仅为1.29 dB/m。此外,研究团队还深入研究了不同工艺参数下光纤结构的演化规律,分析造成额外光纤损耗的关键因素,并对该结构光纤的理论损耗极限进行了预测,为HC-ARF的结构设计和拉制提供理论支撑。图(a)堆积拉制法和双路气压控制技术(b)光纤预制棒 (c)光纤的理论损耗与实测损耗该项研究得到了国家自然科学基金、陕西省自然科学基金、广东省光纤传感与通信技术重点实验室开放基金的资助。光子功能材料与器件研究室的主要研究方向是西安光机所的优秀传统学科,它围绕高科技领域对光子功能材料和器件的需求,开展光子功能玻璃、特种光纤及器件的制备和应用技术研究,建立了“玻璃-光纤-器件”全链条一体化研究平台,研制了覆盖“可见-近红外-中红外-太赫兹”波段的增益、通信、传能及成像光纤和器件,性能优良,是国内特种玻璃、光纤材料研制的优势单位之一。

光纤线相关的方案

光纤线相关的资料

光纤线相关的论坛

  • 光纤族系列绪论

    目前,在有线电视和通信网络中,采用光纤干线已成主流。随着光纤的技术进步,光纤族也已形成系列。本文拟对正在不断开发和应用的光纤族系列产品作一简介。 1光纤的分类 光纤是光导纤维(OF:Optical Fiber)的简称。但光通信系统中常常将 Optical Fibe(光纤)又简化为 Fiber,例如:光纤放大器(Fiber Amplifier)或光纤干线(Fiber Backbone)等等。有人忽略了Fiber虽有纤维的含义,但在光系统中却是指光纤而言的。因此,有些光产品的说明中,把fiber直译成“纤维”,显然是不可取的。 光纤实际是指由透明材料作成的纤芯和在它周围采用比纤芯的折射率稍低的材料作成的包层所被覆,并将射入纤芯的光信号,经包层界面反射,使光信号在纤芯中传播前进的媒体。 光纤的种类很多,根据用途不同,所需要的功能和性能也有所差异。但对于有线电视和通信用的光纤,其设计和制造的原则基本相同,诸如:①损耗小;②有一定带宽且色散小;③接线容易;④易于成统;⑤可靠性高;⑥制造比较简单;⑦价廉等。 光纤的分类主要是从工作波长、折射率分布、传输模式、原材料和制造方法上作一归纳的,兹将各种分类举例如下。 (1)工作波长:紫外光纤、可观光纤、近红外光纤、红外光纤(0.85pm、1.3pm、1.55pm)。 (2)折射率分布:阶跃(SI)型、近阶跃型、渐变(GI)型、其它(如三角型、W型、凹陷型等)。 (3)传输模式:单模光纤(含偏振保持光纤、非偏振保持光纤)、多模光纤。 (4)原材料:石英玻璃、多成分玻璃、塑料、复合材料(如塑料包层、液体纤芯等)、红外材料等。 按被覆材料还可分为无机材料(碳等)、金属材料(铜、镍等)和塑料等。 (5)制造方法:预塑有汽相轴向沉积(VAD)、化学汽相沉积(CVD)等,拉丝法有管律法(Rod intube)和双坩锅法等。 2石英光纤 是以二氧化硅(SiO2)为主要原料,并按不同的掺杂量,来控制纤芯和包层的折射率分布的光纤。石英(玻璃)系列光纤,具有低耗、宽带的特点,现在已广泛应用于有线电视和通信系统。 掺氟光纤(Fluorine Doped Fiber)为石英光纤的典型产品之一。通常,作为1.3Pm波域的通信用光纤中,控制纤芯的掺杂物为二氧化绪(GeO2),包层是用SiO炸作成的。但接氟光纤的纤芯,大多使用SiO2,而在包层中却是掺入氟素的。由于,瑞利散射损耗是因折射率的变动而引起的光散射现象。所以,希望形成折射率变动因素的掺杂物,以少为佳。 氟素的作用主要是可以降低SIO2的折射率。因而,常用于包层的掺杂。由于掺氟光纤中,纤芯并不含有影响折射率的氟素掺杂物。由于它的瑞利散射很小,而且损耗也接近理论的最低值。所以多用于长距离的光信号传输。 石英光纤(Silica Fiber)与其它原料的光纤相比,还具有从紫外线光到近红外线光的透光广谱,除通信用途之外,还可用于导光和传导图像等领域。 3红外光纤 作为光通信领域所开发的石英系列光纤的工作波长,尽管用在较短的传输距离,也只能用于2pm。为此,能在更长的红外波长领域工作,所开发的光纤称为红外光纤。 红外光纤(Infrared Optical Fiber)主要用于光能传送。例如有:温度计量、热图像传输、激光手术刀医疗、热能加工等等,普及率尚低。

  • 如何选择光纤光谱仪

    光纤光谱仪基本配置包括一个光栅,一个狭缝,和一个探测器以及探测器的一些附件。这些部件的参数在选购光谱仪时必须详细说明。光谱仪的性能取决于这些部件的精确组合与校准,校准后的光纤光谱仪,原则上这些配件都不能有任何的变动。光纤光谱仪的光学结构是典型的非对称式Czerny-Turner(柴尔尼-特纳)结构,绝大部分的光纤光谱仪均采用以上结构。其中光栅前的第一个分光镜被称为准直镜,用于将发散的光束转为平行准直光,此镜片还可以减少光在入射时的杂散光。光栅后面为聚焦镜,用于将分散的光聚焦于探测器。光栅光栅的选择取决于光谱范围以及分辨率的要求。对于光纤光谱仪而言,光谱范围通常在200nm-2550nm之间。由于要求比较高的分辨率就很难得到较宽的光谱范围;同时分辨率要求越高,其光通量就会偏少。对于较低分辨率和较宽光谱范围的要求,300线/mm的光栅是通常的选择。如果要求比较高的光谱分辨率,可以通过选择1200线/mm以上,甚至3600线/mm的光栅,或者选择更多像素分辨率的探测器来实现。另外现在光栅都是采用平面光栅,具有一定的闪耀波长,越靠近闪耀波长的波段,其衍射效率越高,因此在选择光栅时,除了考虑光栅的刻划线数,还要考虑工作的波长范围。简言之,光栅的选择影响了三个方面的因素:光谱分辨率、光通量(灵敏度)、波长范围。

  • 【求助】询红外光纤厂商

    我做近红外在线用,因为现场的原因需要光纤长度大于20m,原来的供应商不能提供大于20m的铠装光纤,所以在这里请问下,有没有用过可信好一点的光纤供应或是光纤加工商,在这里推荐下,先谢谢你了

光纤线相关的耗材

  • 多模光纤跳线,FC/PC或SMA接头至裸纤
    多模光纤跳线,FC/PC或SMA接头至裸纤特性一端为裸纤的多模光纤跳线另一端为FC/PC(2.0 mm窄键)或SM905接头多模光纤纤芯?400 μm,跳线长度为3 m?3 mm橘色松套管光纤镀有?730 ± 30 μm Tefzel® 膜可以定制跳线这些多模光纤跳线由FT400EMT阶跃折射率多模光纤构成,一端为FC/PC或SMA905接头,另一端为经过平切的裸纤。库存标准跳线的长度为3 m。FC/PC或SMA905终端具有长为15 cm的?3 mm松套管。跳线的裸纤端镀有?730 ± 30 μm的蓝色Tefzel膜,且平切角为0°。每根跳线包含一个防尘帽,以防灰尘落入FC/PC或SMA905接头或其他损害。其他用于FC/PC终端的CAPF塑料光纤保护帽和CAPFM金属螺纹光纤保护帽,以及用于SMA终端的CAPM塑料光纤保护帽和CAPMM金属螺纹保护帽都单独出售。跳线的平切端包含一个塑料保护套。请注意,这类跳线还不能熔接。不过,使用Thorlabs的Vytran® 切割机和熔接机可将跳线中的光纤熔接到实验装置中。这些跳线不适合需要光纤传输高光功率的应用,因为过高的功率会使接头中使用的环氧树脂受热过度而造成损害。详细信息请看损伤阈值标签。Thorlabs还提供除无接头光纤之外的其他跳线选项,它们可以兼容高功率。下表中包含了相关链接。如果需要长度较短的光纤,Thorlabs推荐使用适合切割大芯径光纤的S90R红宝石光纤刻划刀,以及T21S31光纤剥除工具。我们也提供光纤终端清洁和修理套件。有关光纤抛光和切割的详细步骤和其他信息,请看我们的光纤终端指南。 跳线的裸纤端In-Stock Multimode Fiber Optic Patch Cable SelectionStep IndexGraded IndexFiber BundlesUncoatedCoatedMid-IROptogeneticsSpecialized ApplicationsSMA FC/PC FC/PC to SMA Square-Core FC/PC and SMAAR-Coated SMA HR-Coated FC/PC Beamsplitter-Coated FC/PCFluoride FC and SMALightweight FC/PC Lightweight SMA Rotary Joint FC/PC and SMAHigh-Power SMA UHV, High-Temp. SMA Armored SMA Solarization-Resistant SMAFC/PC FC/PC to LC/PC多模光纤教程在光纤中引导光光纤属于光波导,光波导是一种更为广泛的光学元件,可以利用全内反射(TIR)在固体或液体结构中限制并引导光。光纤通常可以在众多应用中使用;常见的例子包括通信、光谱学、照明和传感器。比较常见的玻璃(石英)纤维使用一种称之为阶跃折射率光纤的结构,如右图所示。这种光纤的纤芯由一种折射率比外面包层高的材料构成。在光纤中以临界角入射时,光会在纤芯/包层界面产生全反射,而不会折射到周围的介质中。为了达到TIR的条件,发射到光纤中入射光的角度必须小于某个角度,即接收角,θacc。根据斯涅耳定律可以计算出这个角:其中,ncore为纤芯的折射率,nclad为光纤包层的折射率,n为外部介质的折射率,θcrit为临界角,θacc为光纤的接收半角。数值孔径(NA)是一个无量纲量,由光纤制造商用来确定光纤的接收角,表示为:对于芯径(多模)较大的阶跃折射率光纤,使用这个等式可以直接计算出NA。NA也可以由实验确定,通过追踪远场光束分布并测量光束中心与光强为zui大光强5%的点之间的角度即可;但是,直接计算NA得出的值更为准确。光纤的全内反射光纤中的模式数量光在光纤中传播的每种可能路径即为光纤的导模。根据纤芯/包层区域的尺寸、折射率和波长,单光纤内可支持从一种到数千种模式。而其中zui常使用两种为单模(支持单导模)和多模(支持多种导模)。在多模光纤中,低阶模倾向于在空间上将光限制在纤芯内;而高阶模倾向于在空间上将光限制在纤芯/包层界面的附近。使用一些简单的计算就可以估算出光纤支持的模(单模或多模)的数量。归一化频率,也就是常说的V值,是一个无量纲的数,与自由空间频率成比例,但被归为光纤的引导属性。V值表示为:其中V为归一化频率(V值),a为纤芯半径,λ为自由空间波长。多模光纤的V值非常大;例如,芯径为?50 μm、数值孔径为0.39的多模光纤,在波长为1.5 μm时,V值为40.8。对于具有较大V值的多模光纤,可以使用下式近似计算其支持的模式数量:上面例子中,芯径为?50 μm、NA为0.39的多模光纤支持大约832种不同的导模,这些模可以同时穿过光纤。单模光纤V值必须小于截止频率2.405,这表示在这个时候,光只耦合到光纤的基模中。为了满足这个条件,单模光纤的纤芯尺寸和NA要远小于同波长下的多模光纤。例如SMF-28超单模光纤的标称NA为0.14,芯径为?8.2 μm,在波长为1550 nm时,V值为2.404。衰减来源光纤损耗,也称之为衰减,是光纤的特性,可以通过量化来预测光纤装置内的总透射功率损耗。这些损耗来源一般与波长相关,因光纤的使用材料或光纤的弯曲等而有所差异。常见衰减来源的详情如下:吸收标准光纤中的光通过固体材料引导,因此,光在光纤中传播会因吸收而产生损耗。标准光纤使用熔融石英制造,经优化可在波长1300 nm-1550 nm的范围内传播。波长更长(2000nm)时,熔融石英内的多声子相互作用造成大量吸收。使用氟化锆、氟化铟等氟氧物玻璃制造中红外光纤,主要是因为它们处于这些波长范围时损耗较低。氟化锆、氟化铟的多声子边分别为~3.6 μm和~4.6 μm。光纤内的污染物也会造成吸收损耗。其中一种污染物就是困在玻璃纤维中的水分子,可以吸收波长在1300 nm和2.94 μm的光。由于通信信号和某些激光器也是在这个区域里工作,光纤中的任意水分子都会明显地衰减信号。玻璃纤维中离子的浓度通常由制造商控制,以便调节光纤的传播/衰减属性。例如,石英中本来就存在羟基(OH-),可以吸收近红外到红外光谱的光。因此,羟基浓度较低的光纤更适合在通信波长下传播。而羟基浓度较高的光纤在紫外波长范围时有助于传播,因此,更适合对荧光或UV-VIS光谱学等应用感兴趣的用户。散射对于大多数光纤应用来说,光散射也是损耗的来源,通常在光遇到介质的折射率发生变化时产生。这些变化可以是由杂质、微粒或气泡引起的外在变化;也可以是由玻璃密度的波动、成分或相位态引起的内在变化。散射与光的波长呈负相关关系,因此,在光谱中的紫外或蓝光区域等波长较短时,散射损耗会比较大。使用恰当的光纤清洁、操作和存储存步骤可以尽可能地减少光纤jian端的杂质,避免产生较大的散射损耗。弯曲损耗因光纤的外部和内部几何发生变化而产生的损耗称之为弯曲损耗。通常包含两大类:宏弯损耗和微弯损耗宏弯损耗造成的衰减微弯损耗造成的衰减宏弯损耗一般与光纤的物理弯曲相关;例如,将其卷成圈。如右图所示,引导的光在空间上分布在光纤的纤芯和包层区域。以某半径弯曲光纤时,在弯曲外半径的光不能在不超过光速时维持相同的空间模分布。相反,由于辐射能量会损耗到周边环境中。弯曲半径较大时,与弯曲相关的损耗会比较小;但弯曲半径小于光纤的推荐弯曲半径时,弯曲损耗会非常大。光纤可以在弯曲半径较小时进行短时间工作;但如果要长期储存,弯曲半径应该大于推荐值。使用恰当的储存条件(温度和弯曲半径)可以降低对光纤造成yong久性损伤的几率;FSR1光纤缠绕盘设计用来zui大程度地减少高弯曲损耗。微弯损耗由光纤的内部几何,尤其是纤芯和包层发生变化而产生。光纤结构中的这些随机变化(即凸起)会破坏全内反射所需的条件,使得传播的光耦合到非传播模中,造成泄露(详情请看右图)。与由弯曲半径控制的宏弯损耗不同,微弯损耗是由制造光纤时在光纤内造成的yong久性缺陷而产生。包层模虽然多模光纤中的大多数光通过纤芯内的TIR引导,但是由于TIR发生在包层与涂覆层/保护层的界面,在纤芯和包层内引导光的高阶模也可能存在。这样就产生了我们所熟知的包层模。这样的例子可在右边的光束分布测量中看到,其中体现了包层模包层中的光强比纤芯中要高。这些模可以不传播(即它们不满足TIR的条件),也可以在一段很长的光纤中传播。由于包层模一般为高阶模,在光纤弯曲和出现微弯缺陷时,它们就是损耗的来源。通过接头连接两个光纤时包层模会消失,因为它们不能在光纤之间轻松耦合。由于包层模对光束空间轮廓的影响,有些应用(比如发射到自由空间中)中可能不需要包层模。光纤较长时,这些模会自然衰减。对于长度小于10 m的光纤,消除包层模的一种办法就是将光纤缠绕在半径合适的芯轴上,这样能保留需要的传播模式。在FT200EMT多模光纤与M565F1 LED的光束轮廓中,展现了包层而不是纤芯引导的光。入纤方式多模光纤未充满条件对于在NA较大时接收光的多模光纤来说,光耦合到光纤的的条件(光源类型、光束直径、NA)对性能有着极大影响。在耦合界面,光的光束直径和NA小于光纤的芯径和NA时,就出现了未充满的入纤条件。这种情况的常见例子就是将激光光源发射到较大的多模光纤。从下面的图和光束轮廓测量可以看出,未充满时会使光在空间上集中到光纤的中心,优先充满低阶模,而非高阶模。因此,它们对宏弯损耗不太敏感,也没有包层模。这种条件下,所测的插入损耗也会小于典型值,光纤纤芯处有着较高的功率密度。展示未充满条件的图(左边)和使用FT200EMT多模光纤进行的光束轮廓测量(右边)。多模光纤过满条件在耦合界面,光束直径和NA大于光纤的芯径和NA时就出现了过满的情况。实现这种条件的一个方法就是将LED光源的光发射到较小的多模光纤中。过满时会将整个纤芯和部分包层裸露在光中,均匀充满低阶模和高阶模(请看下图),增加耦合到光纤包层模的可能性。高阶模比例的增加意味着过满光纤对弯曲损耗会更为敏感。在这种条件下,所测的插入损耗会大于典型值,与未充满光纤条件相比,会产生较高的总输出功率。 展示过满条件的图(左边)和使用FT200EMT多模光纤进行的光束轮廓测量(右边)。多模光纤未充满或过满条件各有优劣,这取决于特定应用的要求。如需测量多模光纤的基准性能,Thorlabs建议使用光束直径为光纤芯径70-80%的入纤条件。过满条件在短距离时输出功率更大;而长距离(10 - 20 m)时,对衰减较为敏感的高阶模会消失。键槽对准FC/PC和FC/APC跳线键槽对准FC/PC和FC/APC跳线带有2.0 mm窄键或2.2 mm宽键,可以插入匹配元件对应的槽中。键槽对准对于正确对齐所连光纤跳线的纤芯至关重要,能够zui大程度地减少连接的插入损耗。例如,Thorlabs精心设计和制造用于FC/PC和FC/APC终端跳线的匹配套管,以确保正确使用时能够实现良好的对准。为了达到zui佳对准,需将跳线上的对准键插入对应匹配套管上的槽中。Thorlabs提供带有2.2 mm宽键槽或2.0 mm窄键槽的匹配套管。宽键槽匹配套管2.2 mm宽键槽匹配套管兼容宽键和窄键接头。但是,将窄键接头插入宽键槽时,接头可在匹配套管内轻微旋转(如左下方的动画所示)。这种配置对于FC/PC接头的跳线是可以接受的,但对于FC/APC应用,我们还是建议使用窄键槽匹配套管,以实现zui优对准。窄键槽匹配套管2.0 mm窄键槽匹配套管能够实现带角度窄键FC/APC接头的良好对准,如右下方的动画所示。因此,它们不兼容具有2.2 mm宽键的接头。请注意,Thorlabs制造的所有FC/PC和FC/APC跳线都使用窄键接头。宽键匹配套管和接头之间的匹配窄键匹配套管和接头之间的匹配 宽键槽匹配套管和窄键接头窄键接头插入宽键槽匹配套管之后,接头还有旋转空间。对于窄键FC/PC接头而言,这一点可以接受,但对于窄键FC/APC接头而言,这会产生很大的耦合损耗。 损伤阀值激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤 空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。损伤的光纤端面未损伤的光纤端面裸纤端面的损伤机制光纤端面的损伤机制可以建模为大光学元件,紫外熔融石英基底的工业标准损伤阈值适用于基于石英的光纤(参考右表)。但是与大光学元件不同,与光纤空气/璃界面相关的表面积和光束直径都非常小,耦合单模(SM)光纤时尤其如此,因此,对于给定的功率密度,入射到光束直径较小的光纤的功率需要比较低。右表列出了两种光功率密度阈值:一种理论损伤阈值,一种"实际安全水平"。一般而言,理论损伤阈值代表在光纤端面和耦合条件非常好的情况下,可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。而"实际安全水平"功率密度代表光纤损伤的zui低风险。超过实际安全水平操作光纤或元件也是有可以的,但用户必须遵守恰当的适用性说明,并在使用前在低功率下验证性能。计算单模光纤和多模光纤的有效面积单模光纤的有效面积是通过模场直径(MFD)定义的,它是光通过光纤的横截面积,包括纤芯以及部分包层。耦合到单模光纤时,入射光束的直径必须匹配光纤的MFD,才能达到良好的耦合效率。例如,SM400单模光纤在400 nm下工作的模场直径(MFD)大约是?3 μm,而SMF-28 Ultra单模光纤在1550 nm下工作的MFD为?10.5 μm。则两种光纤的有效面积可以根据下面来计算:SM400 Fiber:Area= Pi x (MFD/2)2 = Pi x (1.5μm)2 = 7.07 μm2= 7.07 x 10-8cm2 SMF-28 Ultra Fiber: Area = Pi x (MFD/2)2 = Pi x (5.25 μm)2= 86.6 μm2= 8.66 x 10-7cm2为了估算光纤端面适用的功率水平,将功率密度乘以有效面积。请注意,该计算假设的是光束具有均匀的强度分布,但其实,单模光纤中的大多数激光束都是高斯形状,使得光束中心的密度比边缘处更高,因此,这些计算值将略高于损伤阈值或实际安全水平对应的功率。假设使用连续光源,通过估算的功率密度,就可以确定对应的功率水平:SM400 Fiber: 7.07 x 10-8cm2x 1MW/cm2= 7.1 x10-8MW =71 mW (理论损伤阈值) 7.07 x 10-8cm2x 250 kW/cm2= 1.8 x10-5kW = 18 mW (实际安全水平)SMF-28 Ultra Fiber: 8.66 x 10-7cm2x 1MW/cm2= 8.7 x10-7MW =870mW (理论损伤阈值) 8.66 x 10-7cm2x 250 kW/cm2= 2.1 x10-4kW =210 mW (实际安全水平)多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。Estimated Optical Power Densities on Air / Glass InterfaceaTypeTheoretical Damage ThresholdbPractical Safe LevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。 光纤内的损伤阈值除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。弯曲损耗光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而zui大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。光暗化光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。制备和处理光纤通用清洁和操作指南建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。如果将光纤熔接到光学系统,用户首先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。对准系统和优化耦合时,用户应该使用低功率;这样可以zui大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。高功率下使用光纤的注意事项一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(ji佳的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户首先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得zui佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以zui大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。由于剧烈弯曲光纤造成的弯曲损耗S90RM119L03FC/PCb toFlat Cleave不锈钢插芯陶瓷插芯产品型号公英制通用M118L03
  • 大纤芯传能光纤
    大纤芯传能光纤Idealphotonics目前已能批量提供国际商用水平的石英能量光纤,烽火通信的能量光纤包括石英包层型高性能能量光纤和塑料包层型性能量光纤两大类。石英包层型能量光纤能够传输较高的激光功率,具有良好的抗光学损伤能力,以及较低的衰减和较高的光透过率(从近紫外波段到近红外波段400nm~1600nm)产品特点● 高激光功率传输能力● 大芯径● 良好的柔韧性和较高的强度● 采用合成的高纯石英材料制造,具备较低传输损耗,高透光率等优良性能● 可以加工成各种端面形状产品应用 ● 激光传输、激光耦合、激光焊接● 激光切割、激光医疗、光谱检测● 照明、传感器等高功率传输领域技术参数咨询电话:021-64149583、021-56461550、021-65061775公司邮箱:info@microphotons.com公司网址:http://www.ideal-photonics.com公司地址:上海市杨浦区黄兴路2077号蓝天大厦21F
  • 三孔光纤剥线钳
    F-STR-103T-250光纤剥离器是一种流行的三孔耐用的Miller工具,可从直径125µm的光纤中去除2-3 mm的光纤护套、900m紧缓冲层和250µm的涂层。不需要分别具有护套剥离器和涂层剥离器。刀片上的精确直径孔和V型开口实现了准确、干净的缓冲层去除。所有切割表面均经过精密成型、硬化、回火和磨削,以确保精确剥离。长度5.375英寸(136.5毫米)和重量2.5盎司(71 g)。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制