推荐厂家
暂无
暂无
触觉传感器 tactile sensor 用于机器人中模仿触觉功能的传感器。触觉是人与外界环境直接接触时的重要感觉功能,研制满足要求的触觉传感器是机器人发展中的技术关键之一。随着微电子技术的发展和各种有机材料的出现,已经提出了多种多样的触觉传感器的研制方案,但目前大都属于实验室阶段,达到产品化的不多。触觉传感器按功能大致可分为接触觉传感器、力-力矩觉传感器、压觉传感器和滑觉传感器等。 接触觉传感器 用以判断机器人(主要指四肢)是否接触到外界物体或测量被接触物体的特征的传感器。接触觉传感器有微动开关、导电橡胶、含碳海绵、碳素纤维、气动复位式装置等类型。①微动开关:由弹簧和触头构成。触头接触外界物体后离开基板,造成信号通路断开,从而测到与外界物体的接触。这种常闭式(未接触时一直接通)微动开关的优点是使用方便、结构简单,缺点是易产生机械振荡和触头易氧化。②导电橡胶式:它以导电橡胶为敏感元件。当触头接触外界物体受压后,压迫导电橡胶,使它的电阻发生改变,从而使流经导电橡胶的电流发生变化。这种传感器的缺点是由于导电橡胶的材料配方存在差异,出现的漂移和滞后特性也不一致,优点是具有柔性。③含碳海绵式:它在基板上装有海绵构成的弹性体,在海绵中按阵列布以含碳海绵。接触物体受压后,含碳海绵的电阻减小,测量流经含碳海绵电流的大小,可确定受压程度。这种传感器也可用作压力觉传感器。优点是结构简单、弹性好、使用方便。缺点是碳素分布均匀性直接影响测量结果和受压后恢复能力较差。④碳素纤维式:以碳素纤维为上表层,下表层为基板,中间装以氨基甲酸酯和金属电极。接触外界物体时碳素纤维受压与电极接触导电。优点是柔性好,可装于机械手臂曲面处,但滞后较大。⑤气动复位式:它有柔性绝缘表面,受压时变形,脱离接触时则由压缩空气作为复位的动力。与外界物体接触时其内部的弹性圆泡(铍铜箔)与下部触点接触而导电。优点是柔性好、可靠性高,但需要压缩空气源。
触觉传感器 tactile sensor 用于机器人中模仿触觉功能的传感器。触觉是人与外界环境直接接触时的重要感觉功能,研制满足要求的触觉传感器是机器人发展中的技术关键之一。随着微电子技术的发展和各种有机材料的出现,已经提出了多种多样的触觉传感器的研制方案,但目前大都属于实验室阶段,达到产品化的不多。触觉传感器按功能大致可分为接触觉传感器、力-力矩觉传感器、压觉传感器和滑觉传感器等。 接触觉传感器 用以判断机器人(主要指四肢)是否接触到外界物体或测量被接触物体的特征的传感器。接触觉传感器有微动开关、导电橡胶、含碳海绵、碳素纤维、气动复位式装置等类型。①微动开关:由弹簧和触头构成。触头接触外界物体后离开基板,造成信号通路断开,从而测到与外界物体的接触。这种常闭式(未接触时一直接通)微动开关的优点是使用方便、结构简单,缺点是易产生机械振荡和触头易氧化。②导电橡胶式:它以导电橡胶为敏感元件。当触头接触外界物体受压后,压迫导电橡胶,使它的电阻发生改变,从而使流经导电橡胶的电流发生变化。这种传感器的缺点是由于导电橡胶的材料配方存在差异,出现的漂移和滞后特性也不一致,优点是具有柔性。③含碳海绵式:它在基板上装有海绵构成的弹性体,在海绵中按阵列布以含碳海绵。接触物体受压后,含碳海绵的电阻减小,测量流经含碳海绵电流的大小,可确定受压程度。这种传感器也可用作压力觉传感器。优点是结构简单、弹性好、使用方便。缺点是碳素分布均匀性直接影响测量结果和受压后恢复能力较差。④碳素纤维式:以碳素纤维为上表层,下表层为基板,中间装以氨基甲酸酯和金属电极。接触外界物体时碳素纤维受压与电极接触导电。优点是柔性好,可装于机械手臂曲面处,但滞后较大。⑤气动复位式:它有柔性绝缘表面,受压时变形,脱离接触时则由压缩空气作为复位的动力。与外界物体接触时其内部的弹性圆泡(铍铜箔)与下部触点接触而导电。优点是柔性好、可靠性高,但需要压缩空气源。
传感器(Sensor)技术(Technology)是现代科技的前沿技术,传感器产业也是国内外公认的具有发展前途的高技术产业,它以其技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人瞩目。 我国自动化方面的专家呼吁:目前复杂系统越来越复杂,仪器仪表自动化已经陷入低谷,其主要原因之一是传感技术的落后,一方面表现为传感器在感知信息方面的落后;另一方面也表现为传感器自身在智能化和网络化方面的技术落后。 分析仪器产业迫切需要新型传感器。分析仪器是我国科技、经济和社会持续发展的基础,红外测温仪无论在工业过程控制、设施农业、生物医学、环境控制、食品安全乃至航空航天、国防工程等领域,均迫切需要各类新型传感器作为信息摄取源的小型化、红外测温仪专用化、简用化、家庭化(甚至个人化)的新一代分析仪器,实现更灵敏、更准确、更快速、更可靠地实时检测,以迅速改变我国分析仪器的落后状况。 而技术推动是加速传感器技术发展的保证和机遇。几十年来,风速仪以微电子技术为基础,促进了传感器技术的发展。未来10~20年,传统硅技术将进入成熟期(预测为2014年~2017年)。届时,直径300mm硅晶片将大量用于生产,使得硅的低成本制造技术和硅的应用(Application)技术将得到空前的发展,这无疑将为研制生产微型传感器、智能传感器等新型传感器提供技术保障。从总体发展看,传统硅技术将一直延续到2047年(即晶体管发明100周年)才趋于饱和(即达到芯片特征尺寸的极限)和衰退。而当前微电子技术仍将依循“等缩比原理”和“摩尔定律”两条基础规律走下去,在尽力逼近传统硅技术极限中,不断扩展硅的跨学科横向应用(如MEMS等)和突破“非稳态物理器件”风速仪(量子、分子器件),而上述微电子技术发展中的两大方向正是当前乃至未来20年传感器技术的主要发展方向。 同时,多学科、多种高新技术的交叉融合,推动了新一代传感器的诞生与发展。例如:我国重点开发的MEMS(微电子与微机械的结合)、MOMES(MEMS与微光学的结合)、智能传感器(MEMS与CPU、信息控制技术的结合)、生物化学传感器(MEMS与生物技术、电化学的结合)等以及今后将大力开发的网络化传感器(MEMS网络技术的结合)、纳米传感器(纳米技术与传感技术的结合)均是多学科、多种学科技术交叉融合的新一代传感器。